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The dynamics of polymers adsorbed on nanostructured solid substrates become
surprisingly sluggish on cooling, if the substrate is heterogeneous.
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We present molecular dynamics simulations of a polymer monolayer on randomly functionalized surfaces, characterized by
different fractions of weakly and strongly attractive sites. We show that the dynamics slow-down on cooling resembles that
of a strong glass-forming liquid. Indeed, the mean-square displacements show an increasingly lasting subdiffusive behaviour
before the diffusive regime, with signs of Fickian yet not Gaussian diffusion, and the dynamic correlation functions exhibit a
stretched exponential decay. The glassy dynamics of this relatively dilute system is dominated by interaction of the polymer
with the substrate and becomes more marked when its composition is heterogeneous. Accordingly, the estimated glass transition
temperature shows a non-monotic dependence on surface composition, in agreement with previous results for the activation
energy and with an analysis of the potential energy landscape experienced by the polymer beads. Our findings are relevant for
the description of polymer-surface adhesion and friction and the development of polymer nanocomposites with tailored structural

and mechanical properties.

1 Introduction

The interaction of polymers with solid substrates is relevant
for a wide range of problems and applications, including ad-
hesion,! friction? and nanocomposites3’4 (in the latter case,
the interaction occurs at the internal interface, between the
polymer matrix and the nanoparticles). In addition, poly-
mer brushes can play an important role in the adsorption and
the assembly of nanoparticles at liquid interfaces>® . Simi-
lar problems occur everywhere in molecular biology and liv-
ing organisms, as exemplified by biocomposites (e.g. bone),
biomineralization and biopolymer-cell recognition. Due to
their pervasiveness and intrinsic interest, these issues have
been extensively studied since the early days of polymer
physics. It is now well established that the interaction of a
single chain or a polymer melt on a solid surface is usually
accompanied by major changes in their statistical conforma-
tion and dynamics — see refs.”1?, for example — and that
“quenched” disorder in the polymer sequence (copolymers)
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or on the surface (chemical heterogeneity, roughness) can also
play a major role. =13

One of the most important indicators of the properties and
potential uses of a polymeric material is its glass transition
temperature (7). 14 A bulk amorphous polymer is said to be
rubbery above its T,, glassy below it. The neighbourhood to
a solid substrate may either increase or decrease the polymer
T, with repect to the bulk value, depending on the nature and
strength of the polymer-substrate interactions. !3-23 Similar ef-
fects are also seen in nanocomposites>*, where they are actu-
ally amplified due to the high extension of interfacial region
between the polymer and the nanoparticles.>*2> Several as-
pects of the mechanical properties of elastomeric nanocom-
posites (filled rubbers) can indeed be interpreted on the ba-
sis of a two-phase model, whereby the polymer chains within
a few nanometres from the nanoparticles are glassy, whereas
those away from them have a rubbery response, similar to that
of the bulk, unfilled polymer. While the fundamental under-
standing of the glass transition is still a major open issue in
condensed matter, ?° it is also interesting to investigate the be-
haviour of glassy systems in these technologically relevant sit-
uations.

Many glass forming materials, such as molecular liquids,
colloids and polymer melts, can be suitably modeled by sys-
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tems of spheres interacting by a combination of Lennard-Jones
and harmonic or FENE (Finitely Extensible Non-linear Elas-
tic) potentials, respectively representing the bonded and non-
bonded interactions.?” For these systems, glassy dynamics
typically emerges on cooling at rather high densities. Mod-
els of bulk and confined polymer melts (in 3D and quasi-2D,
respectively) approaching the glass transition are usually equi-
librated at zero or positive pressures, yielding monomer num-
ber densities around p ~ 1 or slightly larger.?%?° Here we
show that the glassy dynamics can be relevant for polymer
chains adsorbed on solid substrates — a common situation for
many of the applications mentioned above — even in the case
of a rather dilute system. Previous simulation work demon-
strated that glassy behaviour can be brought about also by
strong chemisorptive interactions, which often occur on metal-
lic surfaces,3® and that there can be significant differences
between the glassy polymer dynamics on a ideally flat sub-
strate and on an atomically structured one.3! Here, as well as
in our previous related work, 32 we have carried this idea one
step further by considering the emergence of glassy dynam-
ics on a chemically heterogeneous surface. For comparison,
we have also investigated the behaviour of the same polymer
system on a homogeneous substrate, which can be either per-
fectly smooth or have some atomic-scale roughness. We find
that the polymer on the flat substrate has a trivial behaviour,
with a weak temperature dependence and no glassy dynam-
ics (see the Appendix). The glassy behaviour appears only on
a structured substrate and is enhanced by heterogeneity. On
cooling, the mean-square displacement of the polymer chains
displays an increasingly lasting subdiffusive behaviour before
entering the diffusive regime, with the distribution of particle
displacements highlighting a Fickian yet not Gaussian diffu-
sion. The autocorrelation of the Rouse Normal Modes decays
as a stretched exponential function, and, overall, the dynamics
resembles that of strong glass-forming liquids. This enables us
to estimate the glass transition temperature of the systems, evi-
dencing a non-monotonic dependence on the substrate compo-
sition. This feature can be related to the characteristics of the
potential energy landscape experienced by the polymer seg-
ments.

2 Model and methods

2.1 Model

We performed equilibrium molecular dynamics (MD) simula-
tions of the model introduced in Ref.s3>33. Briefly, the sys-
tems contains several flexible polymer chains of N “P” beads,
connected by harmonic springs and deposited on a solid sur-
face (see Fig. 1). The substrate consists of a single layer of
two types of atoms, strongly “S” and weakly “W” interact-
ing, rigidly arranged on a square planar lattice, at a height

7z =0.0. Substrates characterized by different compositions
were generated by randomly assigning the type to the surface
atoms, with probability f for the S atoms and 1 — f for the
W ones. In particular, we sampled the whole range of surface
compositions, focussing on five evenly spaced values of f, i.e.
f=10.00,0.25,0.50,0.75,1.00. Two additional values in be-
tween these latter, f = 0.12,0.88, have been also considered
for some analysis. In our model, all non-bonded interactions
(between two particles p and g) are described by truncated and
shifted Lennard-Jones (LJ) potentials: 34,35

Vi (r) = 4epol(c/r)'? — (0/r)°] = Vrg (1

if r < rpg, VE)(r) = 0 otherwise. Here the subscript Q is the
type of particle g (i.e., P, W or S; particle p is always of P type,
as indicated), o is the the hard-core diameter of all atoms (P,
W, and S), €pg is the interaction strength (LJ well depth), rpp
is a cutoff distance and Vpp an energy shift factor which ex-
actly zeroes the potential at the cutoff, thus preserving its con-
tinuity over all distances. The interaction strength between
polymer beads and strong sites is twice the other strength, i.e
Epp = Epy = € and €pg = 2¢. All polymer surface interac-
tions are truncated at a cutoff distance of rpy = rpg = 2.50,
whereas the polymer-polymer interactions are truncated at
1/66 ~ 1.1220 to produce a purely repulsive poten-
tial. With this choice the chains adopt an essentially two-
dimensional “pancake” conformation. Units are reduced so
that 0 = m = € = kg = 1, where m is the mass of all atoms
and kp is the Boltzman constant. Periodic boundary conditions
were adopted in the directions parallel to the surface (x and y).
We used n = 450 chains of length N = 16 and a substrate of
side L = 100, resulting in a density p = Nn/L* = 0.72, and
investigated a temperature range T € [0.4,1.2]. Temperature
was controlled by a standard Langevin thermostat,3® and the
resulting equations of motion were integrated with a (reduced)
timestep At = 0.01. The simulations were carried out with the
COGNAC code.

A small constant force f, = —0.1 (in LJ units) was ap-
plied to all the P beads along the z direction, gently press-
ing them against the underlying surface to prevent any de-
tachment and long-range “jumps” of the chains. This pos-
sibility has been seen experimentally under appropriate con-
ditions37-3% and sometimes we also observed it in a prelimi-
nary set of simulations at the highest temperatures (7 > 1.0).
Thus, the force was applied in order to simplify the analysis
and interpretation of the MD results, by preventing these rare
adsorption/desorption events and concentrate exclusively on
the planar dynamics of the adsorbed chains. The force itself
does not have a special physical meaning, but we note that a
similar effect could have been obtained by running the MD
simulations in an extremely narrow slit (width comparable the
chains’ radius of gyration).

rpp =2
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Fig. 1 Model System. An illustration of the investigated system
with f =0.75, at T = 0.7. The P chains are white, W surface sites
red, S surface sites blue. The black area corresponds to different
replicas of the system’s unit cell, with periodic boundary conditions.

2.2 Mapping

To connect our results with real material properties, we
adopted an approximate mapping based on the following
monomer properties:*? diameter 6y = 0.7 nm, mass ny =
lOONXl g, and interaction energy & = 0.04 eV, where Ny
is Avogadro’s number. With this mapping, each bead would
roughly correspond to 6-7 carbon atoms in a real polymer
chain. This leads to resonable, semiquantitative results for
typical polymer properties. In particular, the characteristic
time and temperature of our bead-and-spring model are fy =
(mo/€)"/>09 = 3.56 ps and Ty = &y/kp = 464.35 K, where kg
is the Boltzmann constant. These will be used to extrapolate
the simulation results to experimental time and temperature
scales in Sec.3.3.

3 Results

3.1 Diffusion

We start by illustrating the diffusive properties of the sys-
tem. The double logarithmic plots in Fig. 2 show the mean-
square displacements (MSD’s) (r?(t)) of the polymers’ center
of mass for different temperatures and surface compositions.
At f =0 (panel a) and high temperature the motion is diffusive
from the beginning, as (r*(¢)) o ¢ within our temporal resolu-
tion (MD snapshots were saved at intervals At = 50, in our
reduced LJ units). At lower temperature, the long-time diffu-
sivity decreases, and the diffusive regime is preceded by a sub-
diffusive one which becomes increasingly lasting on cooling.

Fig. 2 Mean square displacement as a function of time, for
T=12,1.1,1.0,0.9,0.8,0.7,0.6,0.55,0.5,0.45,0.4 from top to
bottom. Different panels report different values of f, as indicated.
Dashed lines are guides to eyes of slope 1.

This behaviour is more marked at higher values of f (panels b,
c and d), inasmuch as at low temperature the diffusive regime
is not recovered within the simulated time. This resembles the
intermediate time plateau in the MSD, which is a distinctive
feature of glass-forming materials.*? It is typically ascribed to
the particle crowding and to the consequent cage-jump mo-
tion, recently investigated in detail in simulations of molecu-
lar liquids**~* and of concentrated polymer melts,?® and in
experiments on colloidal glasses.*® In our case, the primary
cause of transient confinement is not particle crowding, but
rather the interaction with the substrate. This not only slows
down the polymer motion as a result of the mutual affinity,
but also creates the heterogeneous energy landscape shown
in Figure 9. In the case of a single-species substrate (f =0
and f = 1), this heterogeneity merely arises from the surface’s
atomic discreteness. Conversely, at intermediate values of f,
heterogeneity is enhanced by the presence of S and W parti-
cle clusters of different size and shape and therefore it might
also be related to the random percolation properties of the sub-
strate. As a matter of fact, accurate inspection of Fig. 2 re-
veals that at the lowest temperatures the sub-diffusive regime
is longer for f = 0.75 than for f = 1, suggesting that hetero-
geneity does play an important role.

The last statement becomes more evident by focussing on
the diffusion constant D, defined by the long-time limit of the
MSD: tlgg (r2(t)) = Dt. Fig. 3 shows that its temperature de-

pendence is well described by the Arrhenius law,

Docexp(—E,/T), )
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Fig. 3 Diffusion constant D as a function of 1/7 for different
values of f, as indicated. Solid lines are Arrhenius fits to the data:
D o< exp(—E,/T). Inset: activation energy E, as a function of f.

characterizing activated processes in a static energy landscape.
The present data does not suggest any crossover to a super-
Arrhenius behaviour typical of fragile glass-formers (includ-
ing bulk polymers), in agreement with the scarce relevance of
cooperative effects in our dilute system (see Appendix Al).
The estimated activation energy E,, shown in the inset of
Fig.3, has a maximum at f = 0.75, where the diffusivities
vanishes faster. This confirms our earlier ﬁndings,32 the final
numerical values being only slightly different since here we
have been more careful to exclude the sub-diffusive regime
and some truly glassy data points from the fits.*’ The max-
imum in the activation energy results from the combined ef-
fects of interaction strength and heterogeneity. The former
increases linearly between f = 0.00 and f = 1.00, while the
latter is maximum between f = 0.50 and f = 0.75, depend-
ing of the statistical quantity used to describe it, as we discuss
later in Sec.3.4.

As a final characterization of the diffusion properties, we
investigate the distribution of particle displacements, i.e. the
Van Hove function,

Gs(x,1) = (8[x = [Xi(r) = Xi(0)[]), ©)

where X;(7) is the center-of-mass position of polymer i at time
t along a given direction and the brackets indicate an ensem-
ble average. As typical of Brownian systems, at short times
G;(x,1) decays exponentially and progressively evolves into a
Gaussian as time passes. Fig. 4a shows that this crossover is
fully manifested at high temperature, even for f = 0.75. Fig.
4b, instead, refers to the lowest temperature where the diffu-
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Fig. 4 Particle displacements distribution divided for its maximum
Gs(x,1)/Gs(0,1) at f = 0.75, different times and temperatures, as
indicated. Solid lines are Gaussian fits exp(—x?/2A2()) to the data
at the longest time.

sive regime can still be observed within the simulated time. In
this case, the Van Hove function retains the exponential tails at
the longest available time, i.e. well after the system enters the
diffusive regime. This is a typical manifestation of the Fickian
yet non-Gaussian diffusion found also in glass-formers and
other soft materials. 3743

3.2 Conformational relaxation

The glassy dynamics of the polymer chains is reflected also by
their slowed-down conformational relaxation. This has been
investigated via the autocorrelation function C,(t) = (Q,(0)-
Q, (1)) of the Rouse Normal Modes (RNM): #

Q,(1) = l i r;(r)cos [(1_1/2)1’”] 4)

PN &Y N ’

where r;(t) is the position of monomer j at time 7 and p =
1,2,...,N—1 is the mode index (the polymer center-of-mass
formally corresponds to mode p =0). We first focus on the
surface producing the most glassy dynamics, f = 0.75. Fig.5a
show C,(r) for different value of p at the temperature 7 =
0.7, where the slowest mode still relaxes over the simulated
time. The decay is not consistent with a simple exponential,
as predicted by original Rouse model, but it is well described
by a stretched exponential,

Cp(t) = exp[—(t/75)F] (5)
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with B < 1. This rather general form of relaxation in equi-
librium supercooled liquid has been related to heterogeneous
dynamics,>? while also compressed exponentials (8 > 1) can
be typical of non-equilibrium aging glasses.>! The predictions
of the Rouse model are respected in a melt of short polymer
chains, where excluded-volume, entanglement and hydrody-
namic interactions are negligible.** Away from these condi-
tions, “stretching” of the Rouse modes may occur for a variety
of reasons, such as the approach to the glass transition,>? dy-
namical asymmetries in blends of flexible and stiff chains,>>
geometrical constraints due to randomly dispersed nanoparti-
cles.>* In their theoretical analysis of the Langevin dynamics
of a polymer chain in a random potential, Vilgis and cowork-
ers 133 also predicted that the stretching of the Rouse modes
should be be accompanied by an incomplete relaxation (i.e.,
lim; . Cp(t) = f, whenever B < 1, where f,, > 0 is the so-
called non-ergodicity parameter for mode p). Here, however,
we find that this is not the case, possibly because the disorder
strength in our model is not high enough (it could be increased
by including more surface types, with a greater disparity in in-
teraction energy).

Fig.5b shows that 8 is smaller at larger p (i.e., for more
localized modes), indicating a more heterogeneous relaxation,
while the RNM relaxation times increase by more than two or-
ders of magnitude, as reported in Fig.5c. The decreasing of f3
at larger p is reflected in the deviation from the quadratic scal-
ing T, o< p~? predicted by the Rouse model. Indeed, we find
a quite strong deviation 7, o< p~¢, with a = 2.8 £0.08. This
agrees qualitatively with the a generalized Langevin Model,
which predicted a = 2/ under some simplifying assump-
tions.>3 Incidentally, note the good agreement between the re-
laxation times obtained from the fits (75, see again Eq.5) and
those measured on the relaxation curves (7,, where C,(7,) =
1/e). The RNM relaxation properties are rationalized by con-
sidering that a mode p is associated with a typical length-scale,
as it describes the collective motion of chain sections contain-
ing N/p beads. The most collective modes (small p) require
longer times to relax (large 7)), but the heterogeneity of the
surface is averaged on the corresponding length scale, becom-
ing less relevant for the polymers dynamics (§ ~ 1).

Fig.6a shows the most collective mode Cj(z) at different
temperatures. At very low temperature the dynamical correla-
tion function does not relax on the simulated time scale, pre-
cluding a reliable fit to the data. At larger T, B increases, as
shown in Fig.6b, and becomes 1 in the high temperature limit,
where exponential decay is recovered. The very good agree-
ment between 77 and 7; is confirmed (see Fig.6b). Although
less markedly, a similar scenario holds for different values of
f-

The different panels of Fig.7 show the temperature depen-
dence of the RNM relaxation times 7,(7"). The inverse diffu-
sion constant D! is reported for comparison. As distinctive
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Fig. 5 (a) RNM autocorrelation function C, () at f = 0.75, T = 0.7
and p = 1,2,...,8, from right to left. Solid lines are stretched
exponential fits to the data, C,,(r) = exp[—(t/ Tls,)ﬁ]. (b) Exponent 8
as a function p. (c) Fitted ‘L';; and measured relaxation time

Cp(7p) = 1/e as function of p. The solid line is a fit to the data,
Tpo<p ¥ (a=2.8%£0.38).

0 | L |
10° 10° ¢ 10* 10°
b

1; L 105; T — 3
095F E w [0 Sk
@ 09F S U
035 TooF b Tes ]
ogbE— 1 | L3 weg P73

$6 08 1 12 06 08 1 12

T T

Fig. 6 (a) Ci(¢r) at f =0.75, p=1and
T=12,1.1,1.0,0.9,0.8,0.7,0.6,0.5,0.4 from left to right. At low
temperature the correlation function does not decay within the
simulated time. Solid lines are stretched exponential fits to the data,
Cp(t) = exp[—(t/f;,)ﬁ}. (b) Exponent f3, (c) 7, and 7, as function of
T.
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of strong glass-formers, the relaxation times follow the Ar-
rhenius behaviour of Eq.2, a kind of Stokes-Einstein relation
being valid:

7,(T) =< D™I(T). (6)

3.3 Glass Transition Temperature

The glass transition temperature 7, can be defined as the
temperature where the shear relaxation time exceeds a given
time threshold, compatibly with the available observation
timescale. In experiments this threshold is conventionally set
att, = 102—103 s, while in simulations it is constrained by
the CPU time, resulting in simulated times 7, substantially
short compared to experiments.

We obtain a rough estimation of the characteristic relax-
ation time from the relation T = D~!.%7 Fig.2 clarifies that
the equilibrium systems become diffusive for + < 7 and that
(r*(t)) ~ 1. Thus 7 is the time required by a chain to dif-
fuse a distance of the order of the atomic spacing in the un-
derlying surface, which for our short polymers is also of the
order of its radius of gyration. In analogy of the mentioned
definition of T, and of the approach recently used in Ref. 2,
we can obtain by extrapolation the temperature at which T
would reach an arbitrarily large threshold, exploiting the ro-
bust Arrhenius behaviour found on the investigated timescale.
By using the mapping described in Sec.2.2 we convert the re-
duced MD units in the experimental ones and obtain 7, from

a

01 234567891011
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Fig. 8 a) relaxation time 7 = D~! as a function of the temperature
and different values of f, as indicated. The horizontal dashed and
the pointed lines mark the typical experimental observation time 7,
and the simulation duration 3™, respectively. These timescales are
used to define the experimental T, and numerical Té‘fim glass
transition temperatures, from the intercepts with the Arrhenius fits
(solid lines). b) T, and Tgs"’" as function of f. The horizontal dashed
line marks the lowest investigated temperature.

7(Ty) =ty = 100 s. This procedure is illustrated in the two
panels of Fig.8, where the corresponding MD units are also
reported on the axes. As an aside, it is worth noticing that
any (reasonably) different choice of the time threshold or of
the mapping scheme has a negligible effect on 7,. Differ-
entiating the Arrhenius law, it results dT, o< exp (—E,/T;)dt,
and thus a change in #, is exponentially weakened, resulting
in a very small change of the estimated glass transition tem-
perature. For comparison, we also extrapolate T;i’”, which is
akin to a “glass transition temperature” on the simulated time:
T(T3™) = £5™, where 1™ ~ 1077 s after the mapping.

Fig. 8 shows T, and Tg”"” as a function of the surface com-
position. Similarly to the activation energy, both temperatures
have a maximum around f = 0.75. We note that T;”" is higher
than the lowest investigated temperature, for f > 0.25. This is
consistent with the behaviour found for the MSD, which at low
temperature and large f no more reaches the diffusive regime
within the simulated time (see 3.1). Finally, we point out that
glass transition temperatures of the order of 50—100 K are low
in comparison with typical elastomer values (200—250 K), but
this is understandable considering that ours is a dilute system
with purely repulsive polymer-polymer interactions, and there
are no conformational barriers in our bead-and-spring model.
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3.4 Potential energy landscape

We rationalize the system dynamics presented above, inves-
tigating the potential energy landscape seen by the polymer
beads. In earlier publications by one of us,3>3* we did this
by sampling their adsorption energies, placing a P bead at a
fixed height above the centre of the squares formed by four
neighbouring surface atoms. The resulting histograms demon-
strated that (a) the average polymer-surface interaction energy
increases linearly from f=0 to f=1, and (b) the broadest dis-
tribution of these energies is obtained for f = 0.5, which can
thus be considered the “most disordered” substrate. However,
this procedure does not yield any information about the energy
barriers separating the absorption energy minima, which are
important for the dynamics of the adsorbed polymers. Here
we provide a more extensive characterization, including infor-
mation about the energy barriers to diffusion.

Figure 9 shows some representative plots of the potential
energy of a P bead, as it slides horizontally along a short sec-
tion of five different surfaces. These plots were obtained by
running MD simulations at a very low temperature (7' = 0.01),
constraining the y coordinate of the bead at a value corre-
sponding to a row of absorption minima, and its x coordinate
to move at a constant velocity v, = 1.0 (see the inset in Figure
9). Thus, the z coordinate of the bead is the only degree of
freedom in these simulations, and this oscillates up and down
as the bead moves from a minimum, to a maximum (actually,
a transition state), to the next minimum.*' As expected, the
two homogeneous surfaces have a periodic potential energy
pattern, the energies on f = 1 being twice as large as those on
f =0. Instead, those for f =0.25,0.50,0.75 are non-periodic
and irregular, reflecting the randomness in the chemical iden-
tity (W or S) of the underlying atoms. The average energy
appears to decrease (i.e., to become more negative) as f in-
creases, but it is hard to draw further conclusions about the
“roughness” in the potential energy landscape by visual in-
spection of these plots.

Figure 10 shows the histograms of the energies of the min-
ima (negative values, in green) and of the barriers separating
these minima (positive values, in red), as obtained by scanning
across a surface with f = 0.75. The information contained in
the former is essentially equivalent to that given in earlier pa-
pers.3233 It shows that on a random, heterogeneous surface
there can be different types of absorption sites. The distribu-
tion can be rather broad, but the energies are always comprised
between those on the f = 0 and f = 1 surfaces. Instead, the
information in the red histogram is new and demonstrates that
on this surface there is also a broad distribution of energy bar-
riers. Unlike the energy minima, these can be both smaller and
larger than those for f =0 and f = 1, respectively. In particu-
lar, the large fraction of high energy barriers can be expected
to have a significant effect on the polymer dynamics on this

f=0.50 ——=0.75 ——f=1.0

39— =00 —10.25

Fig. 9 Potential energy scans. Representative potential energy
profiles, for a P bead sliding along surfaces with different f’s, as
shown in the inset.

0.10 4
c
2
©
©
[T
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0.00 +—
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Fig. 10 Potential energy histograms. Histograms of the energies
of the minima (in green) and of the barriers separating these minima
(in red), for the surface with f = 0.75. The vertical lines represent
energies of the minima (continuous) and of the barriers (dashed) of
the homogeneous surfaces, with f = 0 (blue) and f =1 (black).

surface.

Table 1 collects some significant statistical properties, for
all the studied surfaces. The mean value of the potential (V')
changes linearly with f, and so does the mean barrier height
(V,). Instead, the standard deviation oy (: ((v- (V))2>1/ 2)

is maximum for f = 0.5, confirming that this is the “energet-
ically roughest”. Notice that the values of (V), (V;) and oy

This journal is © The Royal Society of Chemistry [year]
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f V) oy (Vi) by(%)

0.00 -3.97 0.34 0.95 0.0
0.12 -4.53 0.71 1.12 1.6
0.25 -4.98 0.85 1.23 4.3
0.50 -5.97 1.00 1.49 14.6
0.75 -6.97 0.93 1.73 27.6
0.88 -7.51 0.84 1.86 26.9
1.00 -7.97 0.69 1.97 0.0

Table 1 Potential energy statistics. Properties of the potential
energy landscapes, for different values of f. (V) and oy are the
mean and standard deviation of the potential energy. (Vj,) is the
mean barrier height. b is the percentage of energy barriers which
are larger than that on the surface with f=1.

for the f = 1 surface are equal to twice those for the f =0
one, suggesting a linear relationship between activation en-
ergy and surface-polymer interaction strength in the homoge-
neous case. Finally, we give in Table 1 also the fraction by
of energy barriers which are strictly larger than that on the
most strongly interacting surface, with f=1. This appear to
achieve its maximum between f = 0.75 and f = 0.88, where
more than one in four monomer “hops” involves such a large
energy requirement. We conclude that the latter is probably
the most significant descriptor of the surfaces, as it is the one
that correlates best with the polymer dynamics described in
the previous sections.

In the present model, there are no correlations in the posi-
tions of the surface sites. However, one could think also of sit-
uations with S-rich and W-rich “patches” on the surface. The
composition, the size and the shape of these patches would
clearly be important and affect the chain dynamics through the
potential energy landscape. For example, considering the sit-
uation with f = 0.50, one could gradually switch from broad
monomodal (randomly intermixed case) to bimodal distribu-
tions of both the energy minima and the barriers (fully seg-
regated case). What would be the consequences for the dy-
namics of an absorbed chain? In principle, many situations
are possible. Considering for example a weakly segregated
situation, the chains would clearly tend to populate the S-rich
patches, thus feeling an “effective composition” correspond-
ing to a locally enhanced value of f (0.75, say). The result
would be a shift of the maxima in the effective activation en-
ergy and Ty, to a smaller f.

4 Conclusion

We have shown that the dynamics of a molecularly thin poly-
mer layer on a solid substrate becomes glassy on cooling, in
spite of the fact that cooperative effects are not an intrinsic

properties of the investigated polymer system, which is indeed
quite dilute. Instead, such a slow dynamics is induced by the
affinity for the surface and by the structural heterogeneity of
the latter, which in our model are both controlled by the frac-
tion f of strongly interacting sites. On increasing the affin-
ity, the polymer motion becomes slower as in a more viscous
medium, while the structural heterogeneities create a corru-
gated energy landscape which also interferes with diffusion.
The glassy dynamics is more marked at f = 0.75, as a sort of
compromise between interaction strength and heterogeneity.
In this respect, the most relevant description of the potential
energy landscape appears to be the fraction of large barriers,
where here “large” means exceeding the value for the most
strongly interacting surface. The spatial extension of the poly-
mer chains tends to average out the effects of heterogeneity,
but never completely, as polymer diffusion always proceeds
through a series of discrete hopping events involving individ-
ual monomers or short chain sections.

The Arrhenius behaviour of the relaxation time suggests
that activated events are not cooperative at all or that their
size is temperature independent. In order to clarify this is-
sue we plan to investigate the segmental dynamics for differ-
ent chain length N. This includes not only the behaviour of
much longer polymer chains, but also N = 1, i.e. soft spheres.
This simpler system should allow us to identify more precisely
the relationship between structural heterogeneity of the sub-
strate and dynamical heterogeneity of the diffusing particles.
It would be also interesting to extend these studies to con-
fined and nanoparticle-filled polymer melts. With an increased
polymer density, we would expect to observe a growing in co-
operativity on cooling, with fragile glass behaviour eventually
taking over the strong glass behaviour observed in the present
case. Another possibility is to examine surfaces with differ-
ent geometrical features (hexagonal instead of square planar
arrangements of atoms, say), to enhance the surface hetero-
geneity (using €s/&w > 2), or to introduce some “patchiness”
on the surfaces (correlations in the positions of W and S sites).
In principle, each of these variations should produce a shift in
the surface composition corresponding to the maxima in E,
and 7.

Appendix—Dynamics on a smooth surface

In order to better appreciate the dynamic effects of the hetero-
geneous surfaces described in the main text, here we discuss
the behaviour of the same polymer system but interacting with
a perfectly smooth surface. In this case, the potential energy
of a polymer bead interacting with a surface at z = 0 is ob-
tained by integrating the pairwise Lennard-Jones interactions
over all the atoms making up the wall, and is a function only
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of its z coordinate: 58

1/c,\" 1/c,\*
Uwall(Z) =4np,€, [5 (ZW> - 5 <Z) +Ucut0ff

@)
The number density of wall atoms (p,,) and their Lennard-
Jones parameters (€, and o,,) have all been taken equal to
unity, to be comparable with the f=0 discrete surface.

Fig.11a shows that the mean square displacement is diffu-
sive at short time, even at very low temperature, without the in-
termediate time subdiffusive behaviour found for the discrete
surfaces, also at high temperatures for large values of f (cfr.
Fig.2). Fig.11b shows that the decrease of the diffusion con-
stant on cooling is compatible with a power law, D(T) o T?
(b =1.18 £0.05), i.e. much slower than the Arrhenius be-
haviour found for the heterogeneous surfaces (cfr. Fig.3).
The decay with time of the RNM autocorrelation functions
is fully compatible with that predicted by the Rouse model,
C,(r) = exp(—t/1,), even at the lowest investigated temper-
ature. Indeed, Fig.11c shows that log(C,(¢)) at different p
collapse on a straight master curve when plotted as a function
of ¢/ Tp. By contrast, for the heterogeneous surface we have
found C,(r) = exp(—t/7,)P, with B < 1 decreasing at larger
p (cfr. Fig.5) .

Accordingly, major and even qualitative differences arise in
the case of a smooth surface, clarifying that glassy dynamics
is not an intrinsic property of this rather dilute polymer sys-
tem, but it results from the interaction with a discrete surface,
especially when this is also chemically heterogeneous.
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