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A fluorescence sensor array containing polyelectrolyte 

fluorophores is developed for foodborne pathogen detection 

and identification. The fluorophore-cell surface interactions 

generate fluorescence response patterns that can be 

differentiated by linear discriminant analysis (LDA) to 

identify 8 bacteria with the classification accuracy of 100%. 

Safe and sufficient food is a fundamental human need. Foodborne 

diseases are a global health concern encompassing millions of 

people. A wide spectrum of illnesses is the result of ingestion of 

foodstuffs majorly contaminated by microbial pathogens. In the past 

decade, serious outbreaks of foodborne disease have been reported 

on every part of the world which not only adversely affect people’s 

morbidity and mortality, but also have negative economic 

consequences for society, organizations, public and private, 

communities and individuals. The term “foodborne disease” has 

been traditionally defined as illnesses caused by microorganisms, 

with often acute reactions, such as diarrhoea. World Health 

Organization (WHO) estimates that worldwide foodborne and 

waterborne diarrheal diseases kill about 2.2 million people annually.1 

Conventional and standard bacterial detection methods such as 

culture and colony counting methods may take up to a few days to 

yield a result, while immunology-based methods and polymerase 

chain reaction based methods, require extensive sample 

preparation.2,3 Optical sensors for biological agents are promising to 

overcome these limitations and become a feasible choice for a rapid 

detection in less complex samples such as drinking water. The 

concept behind this work is that our fluorescent compounds having 

various interaction sites differently bind onto the pathogenic bacteria 

cell surface by electrostatic, hydrophilic and hydrophobic 

interactions. Thus, the challenges of our sensor involve the 

recognition of cell structural complexity, including cell morphology 

and outer membrane of the target analytes. 

We have previously reported the dendritic polyelectrolyte 

fluorescent compounds 1-3 (Fig. 1), having various interaction sites, 

created by different combinations of cationic trimethylammonium, 

anionic carboxylate and non-ionic methyl ester on the peripheries, 

for the application as a sensor array for discrimination of eight 

proteins.4 In this study, we aim to investigate the discrimination 

ability of this set of fluorophores in the pathogen identification based 

on the variation of the bacterial cell surfaces.  

 
Fig. 1 Structures of fluorophores. 

All fluorophore and bacteria solutions were prepared by using 

Milli-Q water (18.1 MΩ) PBS buffer (pH 7.4) as the solvent. All 

chemicals were reagent grade and used as received without further 

purification. Fluorescence spectra were acquired from a SpectraMax 

M2 microplate reader (Molecular Devices, Sunnyvale, CA) Varian 

Cary Eclipse spectrofluorometer using black polystyrene 96-well 

microplates. The number of bacterial counts (CFU/well) was 

estimated from the optical density (OD) at 600 nm, using a 

calibration line related to the plate counts. For the fluorescence 

measurement, the number of bacterial counts was controlled at 108 

CFU/well. The stock solutions of all fluorophores were prepared in 

10 mM sodium phosphate buffer saline (PBS) pH 7.4. For the 

fluorescence measurement, the protein and fluorophore mixture was 

prepared by mixing the corresponding stock solutions and diluting 

with PBS to afford the final fluorophore concentration of 0.7 µM 

and incubating for 15 minutes. 

Fluorescent molecules as sensor array have been developed for 

microorganism detection via pattern recognition of fluorescence 
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responses using multivariate statistical analyses such as principal 

component analysis (PCA) and linear discriminant analysis 

(LDA).2,3 Eight bacteria i.e. Vibrio cholera (Gram-negative, curved 

rod shape), Shigella flexneri (Gram-negative, rod shape), Bacillus 

cereus (Gram-positive, rod shape), enterotoxigenic Escherichia coli 

and non-enterotoxigenic Escherichia coli (Gram-negative, rod 

shape), Listeria monocytogenes (Gram-positive, rod shape), 

Salmonella typhi (Gram-negative, rod shape) and Staphylococcus 

aureus (Gram-positive, round shape) were selected as the samples 

for testing the discrimination power of the fluorophores 1-3 sensor 

array. These bacteria are pathogenic microorganism responsible for 

various foodborne illnesses (Table S1).4,7-9
 The fluorescence 

responses of the fluorophores upon mixing with the solution 

containing pathogens (108 CFU/well) were measured in the range of 

400-700 nm using the excitation wavelength at 375 nm in a 

fluorescence microplate. The intensity differences ∆I, calculated 

from IE–I0, where IE and I0 were the fluorescence intensity in the 

presence and absence of the bacteria, at all wavelength were 

collected and analysed by multivariate statistical analyses.10,11 The 

fluorogenic responses (∆I) obtained from the fluorescence 

measurements were prepared as data matrix of p × n where p (row) 

corresponds to the numbers of bacteria samples time numbers of 

repetitions and n (column) corresponds to the numbers of 

fluorophores time numbers of wavelengths. 

 

 
 
Fig. 2 Fluorescence responses (∆I) of fluorophore (a) 1 (b) 2 and (c) 

3 upon addition of the solution containing pathogens. Each spectral 

line is an averaged ∆I of 21 repetitive samples. 

Fig. 2 shows that the fluorescence signal of 1 was enhanced by 

ETEC > B.cereus > V.cholearae > S.aureus, and almost no response 

to the rest of the bacteria. Fluorophore 2 showed fluorescence 

enhancement with B.cereus > ETEC ∼ V.cholearae > S.aureus, and 

almost no response to the rest of the bacteria. Fluorophore 3 gave 

both fluorescence enhancement (S.aureus > B.cereus > E.coli > 

L.monocytogenes) and quenching (V.cholearae ≅ S.Typhimurium > 

ETEC > S.flexneri). 

 

Principal component analysis (PCA) and linear discriminant 

analysis (LDA) were performed on the p × n data matrix using 

XLStat 2010. Full cross-validation with a leave-one-out technique 

was applied to both PCA and LDA models to assess the performance 

of each model based on the classification accuracy of the samples in 

the validation set. In the cross-validation, a sample in p was 

randomly removed from the data set and LDA was used to determine 

the centroid coordinate for each known class of the rest of the 

samples (p-1). The removed sample was then classified to the group 

of which centroid closest to the sample score coordinate. The 

procedure was repeated until all samples were classified. The ratio of 

the numbers of the samples correctly predicted by LDA to the total 

numbers of the samples defined the accuracy percentage. 

 

PCA is an unsupervised statistical method which condense large 

amounts of data into fewer latent variables called principal 

components (PCs), while preserving intrinsic variance of the original 

data as much as possible.12,13 The first PC contains the highest 

degree of data variance and other PCs follow in the order of 

decreasing variance. In this study, PCA was applied to convert the 

fluorescence dataset with 42 original variances (3 flurophores × 14 

wavelengths) into PC scores of PC1 and PC2 which accounted for 

97.7% of the total variance. The PC score plot (Fig. 3) of all 168 

samples (8 bacterial samples × 21 repetitions) on PC1 and PC2 

coordinates gave four distinctive clusters of V. cholera, S. aureus, 

ETEC and B. cereus distributing on the right half of the plot, while 

S. flexneri, E. coli, L. monocytogenes and S. Typhimurium gathered 

as one cluster on the left hand and cannot be discriminated. The use 

of 3 sensing fluorophores combined with PCA technique is not 

likely to recognize the difference of bacteria cell envelope and shape 

as 3 out of 4 bacteria were in the same cluster, S. flexneri, E. coli and 

S. Typhimurium are Gram-negative and rod shape. In Gram-negative 

bacteria, the surface of the outer membrane is composed 

predominantly of lipopolysaccharides,14 amphiphatic molecules 

which could be bound with the fluorophores 1-3. The only Gram-

positive bacterium in the bunch is L. monocytogenes but it is 

different from other Gram-positive bacteria for possessing of 

lipopolysaccharide at the cell surface resemble to the Gram-negative 

bacteria.15,16 ETEC scores are at the lower right quadrant of the PCA 

score plot distinctively separated from the E. coli cluster which is on 

the left side of the plot. ETEC is a Gram-negative rod-shaped 

bacterium that produces more enterotoxin causing secretion of large 

amounts of fluids and electrolytes that result in diarrhea.14,17-19 It 

typically adhere to host cells via filamentous bacterial surface 

structures known as colonization factors (CFs) 20,21 which possesses 

Coli Surface Antigen (CS), an antigen located in the outer surface 

coat. CS expressing charged residues at cell surface makes ETEC 

fluorescent pattern distinguished from the less harmful E. coli 

species. 
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Fig. 3 PCA score plot of ∆I values of fluorophores 1-3 upon mixing 

with each bacteria sample. 

 

Since PCA is the unsupervised method, the generated clusters of 

data are based on their similarities and differences perceived by the 

sensing elements without taking into consideration of analytes class 

labels.13 Evidently, the results described above demonstrated that 

PCA did not have enough discrimination ability of some bacteria 

classes. The supervised LDA which normally gives superior 

discrimination ability than the PCA was then further investigated in 

our study. LDA is probably the most frequently used supervised 

pattern recognition method for complex samples such as in food 

analysis.10 In order to achieve an optimum classification capacity of 

our sensor array, we applied the LDA analysis to process the same 

spectroscopic dataset. LDA is based on the determination of linear 

discriminant functions, which will find the directions (axes) that 

maximize the linear separation among the multiple groups of 

analytes.10,22,23 

 

The fluorescence response patterns were subjected to linear 

discriminant analysis (LDA); which converts the data matrix of 

7,056 ∆I values (3 flurophores × 14 wavelengths × 8 bacterial 

samples × 21 repetitions) to discriminant scores. The 3-D plot 

showed 8 well defined clusters corresponding to the bacterial 

pathogens (Fig. 4). The first three discriminant factors (F1, F2 and 

F3) contain 58.08, 27.69, and 8.69% respectively, occupying 94.46% 

of total variation. Fig. 4 shows 8 clusters with no overlap between 

the groups. The leave-one-out cross-validation of the LDA scores 

also revealed a classification accuracy of 100%. 

 

Part of the motivation of this work was to practically apply our 

fluorescence sensor as a rapid detection method. We thus attempted 

to reduce sensing elements as minimal as possible by selecting a 

subset of fluorescence sensor array without deteriorating its 

discriminatory capacity.24 In addition, the removal of irrelevant or 

noise variables should improve the performance of the sensor array 

because not every variable would be always significant for the 

discriminating ability. The LDA correlation plot (Fig. 5) was used to 

identify the importance of each individual fluorophore at each 

wavelength to each linear discriminant factor (F). 

 

 
 

Fig. 4 LDA score plot of first three discriminant factors (F1, F2 and 

F3) obtained from fluorescence responses data of bacteria samples. 

 

 

 
 

Fig. 5 LDA loading plot of ∆I values of fluorophores 1-3 upon 

mixing with each bacteria sample. 

 

Fig. 5 shows that 3 yielded the lowest discriminant factor for both 

F1 and F2 while 1 and 2 yielded high discriminant factors for both 

F1 and F2. Compound 3 was thus removed from the array due to its 

low performance. The dataset without fluorogenic responses 

obtained from 3 was applied to LDA for further investigation. 

 

Fig. 6 shows the LDA score plot for the LDA with cross validation 

performed for the sensor arrays of 1 and 2. The first two Fs (F1 and 

F2) contained 85.76% of the variance and all 8 bacteria samples 

could be 100% accurately classified. The result confirms that the 

fluorescence dataset from 1 and 2 contains highly correlated 

variables which enable effective visualization and classification of 

multivariate data. Compound 3 can be removed from the sensor 

array without losing its discrimination power. 
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Fig. 6 LDA score plot of first two discriminant factors (F1 and F2) 

obtained from ∆I values of fluorophores 1 and 2 upon mixing with 

each bacteria sample. Oval outlines indicate groups of bacteria 

sample at 95% confidence level. 

 

The test was also performed at a lower bacteria concentration of 

103 CFU/well. The LDA score plot of the dataset obtained from 8 

bacteria solutions × 9 repetitions × 2 fluorophores × 45 wavelengths 

(Fig. 7) accurately showed clusters of 8 bacteria on the first two 

discriminant factors containing 96.59% of the total variance. The 

cross-validation routine also gave a 100% level of correct 

classification for all samples.  

To demonstrate discriminating applicability of our sensor array in 

real drinking water, two types of commercially available bottled 

drinking waters, mineral and non-mineral ones were tested. The 

mineral water samples were spiked with each of 7 pathogens (V. 

cholera, S. aureus, B. cereus, ETEC, E.coli, L. monocytogenes and 

S. Typhimurium) and the non-mineral water samples were spiked 

with each of 5 pathogens (V. cholera, S. aureus, B. cereus, ETEC 

and E.coli) at the concentration of 108 CFU/well. The mineral water 

samples gave different fluorescence responses from the non-mineral 

water samples (Fig. S15) indicating that the ions in the mineral water 

significantly altered the electrostatic interaction between the 

fluorophores and bacteria.25 This effect may further complicate the 

data analysis that could reduce the discrimination ability of the 

sensor array. LDA was applied, without taking the water types into 

account, the dataset of 16,104 (12 bacteria-spiked waters × 11 

repetitions × 2 fluorophores × 61 wavelengths) and processed to 

generate clusters of LDA scores corresponding to the numbers of 

bacteria types. The LDA score plot (Fig.8a) showed that F1 and F2 

contained 76.51% of the variance and the cross-validation gave only 

2 misclassified samples out of 132 samples (12 bacteria-spiked water 

× 11 repetitions) representing a classification accuracy of 98.48%. 

The LDA correlation plot (Fig. S16) demonstrated that fluorophore 1 

gave well spread out loading values on F1, while fluorophore 2 

provided relatively invariant effect on F1 suggesting that 1 

contributed more significantly to the discriminatory performance of 

the array. To reduce the number of sensing elements, only 1 was 

selected to construct the array. The LDA score plot (Fig. 8b) gave 

no-overlapping clusters between the bacteria types and the leave-

one-out cross-validation routine also confirmed 100% classification 

accuracy by fluorophore 1. LDA was also performed on minimized 

array of 2 (Fig. 8c) but it gave discriminatory ability of only 96.97% 

accuracy. The results demonstrated that the identification of food 

pathogens in drinking water may be achieved by using just only 

fluorophore 1.  

 
 
Fig. 7 LDA score plot of first two discriminant factors (F1 and F2) 

obtained from ∆I values of fluorophores 1 and 2 upon mixing with 

each bacteria–spiked drinking water at concentration of 103 

CFU/well. Oval outlines indicate groups of bacteria sample at 95% 

confidence level. 

 

 

 

 
 

Fig. 8 LDA score plot of first two discriminant factors (F1 and F2) 

obtained from ∆I values of fluorophores (a) 1 and 2, (b) 1 and (c) 2 

upon mixing with each bacteria–spiked drinking water. Oval outlines 

indicate groups of bacteria sample at 95% confidence level. 
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Conclusions 

A fluorescence sensor array composed of three synthetic 

fluorophores has been investigated and successfully applied for 

discriminating bacterial pathogens. Statistical pattern 

recognition techniques, PCA and LDA, were applied on the 

fluorescence responses. Optimum classification result was 

achieved by LDA which was outperformed in recognizing the 

similarities within the group of bacteria samples. We 

demonstrated that fluorescent sensor array could identify a 

single type of foodborne pathogens in contaminated drinking 

water including the mineral water. 
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