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The electronic and transport properties of graphene ribbons sandwiched between hydrogen dimer lines, of the kind recently

realized by Nilsson et al. (Carbon, 2012, 50 2052), are investigated with the help of first principles methods. It is found that such

lines of hydrogen atoms block conduction between neighboring channels and effectively allow confinement of graphene charge

carriers, thereby opening the possibility of imprinting nano-circuits in graphene by controlled hydrogenation.

1 Introduction

The isolation of graphene1, the one-atom thick layer of carbon

atoms arranged in a honeycomb lattice, opened new perspec-

tives for miniaturizing electronic devices where combining the

highly flexible, mechanically stable structure of graphene with

the extraordinary properties of its Dirac electrons2–5. The re-

markable possibility of tuning its electronic properties to a

large extent upon nanostructuring hold promises for various

applications, and graphene-based devices may be superior to

current technologies and suggestive of new ones.

Well-known examples of graphene nanostructures are

graphene nanoribbons (GNRs)6,7 where, analogously to car-

bon nanotubes8,9, electron confinement in the direction per-

pendicular to the ribbon axis opens a band-gap in their elec-

tronic structure and makes them suited for logic applications,

with potentially outstanding performances10. Current limita-

tions to exploit in practice GNR features arise from the lack

of control over the edge geometry, though recent progress in

controlled hydrogen etching is promising in this respect11,12.

Graphene nanoribbons with desired edges have indeed been

produced by a chemical synthetic route on a metallic sur-

face13,14, and recently proved to be transferable onto an in-

sulating substrate15, but practical ways to realize bottom-up

GNR transistors remain challenging. Likewise if atomic-scale

defects (e.g. carbon atom vacancies, voids and chemisorbed

atoms) are introduced in the lattice: whether precise control on

the defect positions were achieved, regularly arranged super-

lattice structures would display highly desirable properties -

including a band-gap16,17- thanks to the huge impact that such

kind of defects have on the low energy electronic structure of

graphene18–20.
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Recently, it has been predicted that parallel lines of

chemisorbed hydrogen atoms split a graphene sheet into

pseudo-ribbons with semimetal or semiconducting properties,

similar to conventional nanoribbons21–24. Analogues of arm-

chair graphene nanoribbons (aGNR) were conceived by plac-

ing lines of hydrogen atoms along an armchair direction in

graphene, and found to have a band-gap of size similar to that

of the aGNR with the same width23. Electron waveguides that

could act as two or three terminal junctions and serve as nano-

diodes, nano-transistors or logic network units were also en-

visaged with lines of hydrogen atoms playing the role of con-

fining walls24. Along the same line of thought, Rasmussen et

al.25 have recently shown how to stabilize single and multiple

kinks in graphene by placing hydrogen lines along an arm-

chair direction, thereby forming pseudo-ribbons with trans-

port properties similar to those of conventional aGNRs. Sim-

ilarly, Gunliycke et al.26 investigated chemical decoration of

a common extended line defect (the 5-5-8 topological defect

line), and showed that such nano-structuring creates confine-

ment and resonance bands which trace the bands in zig-zag

nanoribbons and display remarkable valley polarization prop-

erties. Importantly, in such approaches, defects (chemisorbed

atoms) are used to imprint ribbons on graphene rather than

cutting them out of it, thereby allowing the use of one and the

same substrate as a support for integrated (nano)circuits.

In practice, the possibility of realizing the above structures

by simply adsorbing hydrogen atoms on graphene is ham-

pered by the unavoidable randomness of the adsorption pro-

cess. Though well defined dimers (the so-called ortho- and

para- dimers) do preferentially form when exposing graphene

(graphite) to a hot hydrogen beam27, regioselectivity of the

adsorption process strongly depends on the number and posi-

tion of the already adsorbed species, as a consequence of the

aromatic character of the substrate28. As a result, a random

distribution of dimers is usually found on the surface, which

turns into clustering at high hydrogen doses27,29, because the

substrate softening accompanying hydrogenations causes a
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(local) enhancement of the reactivity of the surface. Even-

tually, disordered hydrogenated graphene is achieved, possi-

bly with local graphane-like domains30, and a metal-insulator

transition is triggered already at a modest hydrogen cover-

age31.

Progress in controlling hydrogenation has been made by ex-

ploiting superlattice (Moiré) structures arising naturally when

graphene grows on a crystalline substrate. Indeed, beside

inducing superlattice potentials for graphene charge carri-

ers32, substrates may act as templates for patterned adsorption

even when graphene binds only weakly to them. This is the

case, for instance, of graphene on Ir(111) where hydrogenated

structures were formed which followed the superlattice peri-

odicity, and shown to open a gap in the electronic band struc-

ture33.

More recently, it has been shown that pairs of hydrogen

lines of the type mentioned above do indeed form on graphite

upon hydrogen exposure if the surface is pre-covered with

a self-assembled monolayer of cyanuric acid34. Such struc-

tures were investigated by combining Scanning Tunneling Mi-

croscopy (STM) with Density Functional Theory (DFT) cal-

culations and found highly stable, thanks to the balanced mix-

ture of ortho- and para- dimer configurations which naturally

appears along an armchair direction. One specific pair of such

hydrogen-dimer lines was identified by its STM image and ap-

peared as bright lines enclosing a dark region, thereby suggest-

ing a reduction of the conductivity between the defect lines34.

In view of the above, in this paper we study in detail the

electronic and transport properties of the structures produced

by Nilsson et al.34 and similar structures of different sizes.

In particular, we investigate whether electronic confinement

does indeed occur and how it affects electronic transport. To

this end, we consider transport in a direction either parallel or

perpendicular to the dimer lines (in the disorder-free ballistic

regime where the geometry of the transport channels alone de-

termines the conduction properties), and characterize its spa-

tial features by means of transport eigenchannels. Our results

confirm that hydrogen-dimer lines act indeed as impenetrable

walls for graphene charge carriers and split the graphene sheet

into independent transport channels that can be used for real-

izing nano-transistors and electron waveguides in graphene.

The paper is organized as follows. Section 2 gives some de-

tails concerning the chosen models and the adopted theoretical

approach, Section 3.1 and 3.2-3.4 describe, respectively, the

electronic structure and the transport properties of the systems

considered, and finally Section 4 summarizes and concludes.

Fig. 1 Fully relaxed 6-SL (top) and (6,11)-SL (bottom) structures

along with their unit cells projected on the surface plane. The inset

is a blow-up of the hydrogen-dimer line.

2 Theory

2.1 Methods

Electronic structure and transport calculations were performed

at the Density Functional Theory level, within the general-

ized gradient approximation, employing the Perdew-Burke-

Ernzerhof functional35,36 to handle exchange and correla-

tion effects. Core-electrons were described by separable

norm-conserving pseudopotentials37 with a partial core cor-

rection38, and a set of numerical atomic orbitals with com-

pact support of double-ζ plus polarization quality was used

to expand the wavefunction, as implemented in SIESTA39.

Brillouin zone (BZ) sampling was performed following the

Monkhorst-Pack scheme40 with a few hundreds indepen-

dent k-points for each periodic direction, depending on the

structure considered. Structural and transport calculations

were artificially periodic in the direction perpendicular to the

graphene plane, and a large vacuum layer (∼20 Å) was intro-

duced to ensure negligible interaction between layers, along

with a simple one-k point sampling of the BZ along this direc-

tion, as usual.

Transport properties were computed with standard, non-

equilibrium Green’s function (NEGF) techniques that use the

corresponding Kohn-Sham one-electron Hamiltonian, HKS. In

such set-up three different regions are identified, two semi-

infinite leads and a central scattering region. Transport prop-

erties require calculation of the retarded Green’s function of

the scattering region, upon proper inclusion of the electrodes

self-energies in the scattering-region Hamiltonian. The lat-

ter are obtained separately by standard DFT periodic calcula-

tions for the semi-infinite electrodes alone, and the Hamilto-

nian (Green’s function) is made self-consistent with the charge

density it describes, for each applied bias, as implemented in

TRANSIESTA41.

The zero-temperature, linear-regime conductance G is

given (in units of quantum of conductance G0 = 2e2/h =
77.48 µS appropriate for spin-unpolarized channels) by the cu-
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mulative transmission probability N(ε)42

N(ε) = Tr[G†(ε)ΓR(ε)G(ε)ΓL(ε)]

(to be evaluated at the Fermi level εF ) which is computed from

the scattering-region Green’s function G(ε) and the imaginary

parts of the self-energies ΓL(R) = i
(

ΣL(R)(ε)−Σ†
L(R)

(ε)
)

≡

−2ImΣL(R)(ε) of the left (L) and right (R) electrodes. In prac-

tice, in the above expression Tr stands for an ordinary trace,

and the operators G,Σ, etc, are understood to be their matrix

representation in the chosen basis.

More generally, the current flowing from L to R follows

from

I =−
2|e|

h

∫ +∞

−∞
[ f (ε − µL)− f (ε − µR)]N(ε)dε

where f is the Fermi function and µL(R) are the chemical

potentials of the left and right electrode, respectively. Typ-

ically, N(ε) is only weakly dependent on the applied bias

VSD =−(µL−µR)/|e| and on the (charge) doping level. Thus,

a zero-bias evaluation of N(ε) suffices to evaluate I for rea-

sonably small values of VSD and G(ε) = G0N(ε) (the con-

ductance function) takes the meaning of zero-bias linear con-

ductance when the Fermi level is placed at ε by e.g. a gate

voltage. The calculations to be described below are mostly

of this type, though a full I −V characteristic including the

bias-dependence of N(ε) will be presented for a selected case.

Spatial features of conduction modes were analyzed with

transmission (left) eigenchannels43. These are eigenvectors of

the product current operator in the device subspace of the left-

incoming scattering states, and describe independent transport

channels with transmission probabilities tm(ε) given by the

corresponding eigenvalues (N(ε) = ∑m tm(ε)) . They were

computed with the above G(ε) and ΓL(R), as described in Ref.s

43 and 44, by means of INELASTICA45.

2.2 Structural models

Electronic structure was investigated in superlattices describ-

ing parallel hydrogen-dimer lines, i.e. structures where hy-

drogen atoms sit on every lattice position of parallel armchair

directions in graphene. Generally speaking, two such lines

may be superimposed by a lattice translation along one zig-

zag direction, and two different structures can be identified

depending on whether such translation can be taken orthogo-

nal to the hydrogen line or not. We considered only the first

case -the one relevant to the work by Nilsson et al.34- and de-

signed several superlattices that differ in the period of the re-

peating units in the direction perpendicular to the dimer lines.

For the simplest of such structures there is one dimer line per

unit cell and the structures can be denoted as n-superlattices

(n-SL), n being the width of the channel in units of graphene

1234
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Fig. 2 Density of states (left) and band structure (right, fill lines) of

the 6-SL structure. The inset gives the superlattice Brillouin zone

with its high symmetry points. Also shown in the right panel the

band structure of the armchair nanoribbon cut out from the 6-SL

structure and terminated with hydrogen atoms (dashed lines, from Γ
to X).

lattice constant a0 in such a way that e.g. n = 10 identifies

a channel ≈ 2.5 nm wide. Fig.1 reports the unit cell of the

6-SL structure (the one experimentally observed) along with

the geometry resulting from full structural relaxation. In more

complex situations two or more lines are needed to define the

repeating unit and the structures are denoted as (n1,n2, ..)-SL

where n1,n2, .. is the width of each channel in the same units

as above. Thus, the (6,11)-SL contains two channels, 6a0 and

11a0 wide (see Fig.1), and an ideal hydrogen-dimer channel

in pristine graphene would be (n,∞).

All the structures considered were fully relaxed until the

force acting on each cartesian coordinate was below 0.01

eV/Å, using a sufficiently large mesh cutoff for the real-space

integration (500 Ry) that minimized egg-box effects. Only the

cell parameters were kept fixed to the values they have in pris-

tine graphene, to mimic the behaviour of realistic dimer lines

embedded in graphene, disregarding the interesting effect of

a tensile or a compressive stress normal to the lines24 whose

analysis would be beyond the aims of this work.

Formation of hydrogen-dimer lines induces substantial lat-

tice reconstruction, as a consequence of the sp2− sp3 rehybri-

dazation which necessarily occurs on the underlying carbon

atoms if they have to bind a hydrogen atom each. Structural

relaxation extends for quite large distances from the dimer

lines and determine a sizable curvature ξ of the graphene sheet

which scales linearly with the inverse lattice dimension up to

n = 10; for larger values of n the bending of the sheet extends

∼ 4− 5a0 on either side of each hydrogen dimer line and a

flat region resembling pristine graphene develops in the mid-

dle of the channels. Similar results were obtained when allow-
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ing the cell parameters to vary and/or accounting for the pres-

ence of a substrate (see Electronic Supplementary Informa-

tion). The above bending of the graphene sheet is essential for

the hydrogen-dimer lines to act as effective confinement walls,

since transport calculations on model, flat SL structures show

sizable tunneling across the defect lines (data not shown).

All these properties translate almost unchanged in more

complex (n1,n2, ..)-SL structures, where the geometry of each

ni channel closely resembles that of the constituent ni-SL

structure, see e.g. the case of the (6,11) SL structure shown

in Fig. 1.

As for the details of the relaxed structures the smallest

H −H distance in the lines (i.e. the dimer extension) is 2.02

Å, the separation between dimers is 2.24 Å and the carbon-

hydrogen bond length is 1.14 Å. Similarly to isolated ortho-

dimers28, the hydrogen atoms are not aligned perpendicularly

to the graphene sheet, rather they are slightly tilted by steric re-

pulsion; consequently, the benzene rings accommodating hy-

drogen atoms in para- positions take a stable boat conforma-

tion.

3 Results

3.1 Electronic structure

Relaxed structures were analyzed in detail by computing the

band-structure and the corresponding density-of-states (DOS)

per unit volume ρ(ε) as given by the Kohn-Sham Hamilto-

nian. Fig. 2 shows the DOS and the low energy band struc-

ture of the 6-SL structure, referenced to the Fermi level, along

the path M − Γ − X , where M − Γ is perpendicular to the

hydrogen-dimer lines and Γ−X along that line (see inset in

Fig. 2). The structure features a small energy gap (of the order

of 0.2 eV) at the Fermi level and a set of quasi-1D van Hove

singularities which signal a vanishing dispersion perpendicu-

larly to the dimer lines. Indeed, the band structure shows sev-

eral states which are nearly flat along M−Γ and with quadratic

or nearly conical dispersion along the Γ−X path. In the en-

ergy range of Fig. 2, there are five occupied (νh,m) and five

unoccupied (νe,m) bands showing this behavior. They closely

resemble the electronic states in armchair graphene nanorib-

bons, and form quasi-1D conduction channels appearing at

quantized energies εm, approximately electron-hole symmet-

ric. Actually, at a closer look, the band structure closely re-

sembles that of the corresponding armchair graphene nanorib-

bon which can be ‘cut out’ from the superlattice structure.

This is shown in Fig. 2 where the band structure of the 11-

aGNR is given as dashed lines, from Γ to X [in general, for

the n-SL structure the relevant ribbon to compare with is the

(2n−1)-aGNR, where 2n−1 gives the number of CC dimers

across the GNR axis, as customary].

We further analyzed the spatial properties of the electronic

Fig. 3 Isosurfaces of the local density of states evaluated in

correspondence of the lowest energy van Hove singularity of Fig.2,

νh1 and νe1 in the left and right panel, respectively.

states by looking at the Local Density of States (LDOS)

ρ(x,ε) = 〈x|δ (ε −HKS)|x〉 which measures the weight of the

system eigenstates at energy ε in a given point of space x. For

the structure shown in Fig. 2 we evaluated the LDOS at sev-

eral energies above and below the Fermi level, close to the

van Hove singularities which mark the channel opening. An

example is given in Fig. 3, where the isosurfaces of the LDOS

at the energies of the νh,1 and νe,1 bands at the Γ point are

reported. Note that they are clearly electron-hole symmetric,

with the phase in one sublattice reverted when passing from h

to e and the bond patterning changing accordingly∗. The zeros

of the localized state wave functions are clearly distinguished

for m = 1 only because for m > 1 a number of states (with

different kinetic energy along the channel) contribute to the

LDOS.

Finally, the energy gap in n-SL structures is generally de-

creasing for increasing n, though the actual decay depends

strongly on whether n = 3m,3m+ 1 or 3m+ 2 (m integer),

analogously to what happens in armchair nanoribbons6,7. This

is shown in Fig. 4 where the energy gap of several SL struc-

tures, as computed at the above level of theory, is reported as a

function of n [for a comparison, notice that the number of CC

dimers belongs to the 3m+ 2,3m+ 1 and 3m sequences, re-

spectively]. Note in particular, that the sequence n = 3m has a

gap which is almost unchanged with the width. The computed

values agree reasonably well with those previously reported

for these structures24, once the differences in the DFT func-

tionals adopted are taken into account.

Furthermore, we considered the energy gap of several

(n1,n2)-SL structures and found, in agreement with the dis-

persionless behavior along M −Γ, that is always given, to a

good approximation, by the ni-SL with the smallest gap. This

supports the idea that the conduction channels are independent

∗Electron-hole symmetry implies that the phase of the wavefunction on one

sublattice is reverted when moving from electrons to holes, i.e. if ψ = φA+φB

is the wavefunction at a given energy ε and φA,φB its amplitudes on the A,B
sublattices, then φ = φA −φB is its e−h counterpart at energy −ε .
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Fig. 4 Dependence of the energy gap in n-SL structures as a

function of n (orange symbols).

Fig. 5 Geometry adopted for transport calculation along the

hydrogen-dimer lines (z axis) in the (6,11)-SL structure, showing

the left (L) and right (R) electrodes as rectangles. Big arrows mark

the width (red) and length (cyan) of the scattering region. The

system is periodic along x,y, with a ∼20 Åwide vacuum along x.

of each other, as we detail in the next section by showing the

results of our transport calculations.

3.2 Transport across and along the channels

Transport calculations were performed on channels of finite

length, periodically repeated in the directions perpendicular

to the transport direction, according to the geometry depicted

in Fig. 5 for the case of transport along the hydrogen-dimer

lines in the (6,11)-SL structure (i.e. along an armchair line).

Similarly for transport perpendicular to the hydrogen-dimer

lines, with y playing the role of transport direction and the

electrodes placed on the left and right sides of the slab reported

in Fig. 5.

Fig. 6 reports the zero-bias cumulative transmission func-

tion N(ε) ≡ G(ε)/G0 of 6-SL structures, both along the

hydrogen-dimer lines and perpendicularly to them. Results

refer to a single unit cell along (x,y), and were obtained with

a fine k-mesh containing 100 k−points parallel to the slab. It

-2.0 -1.0 0.0 1.0 2.0
ε−ε

F
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5.0

G
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0
) 

Fig. 6 Conductance function for the 6-SL structure along the

hydrogen-dimer lines (red) and perpendicularly to them (black). The

latter values have been multiplied by a factor of 10 for clarity.
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Fig. 7 Band structure (left) and conductance function (right) for

transport along the hydrogen-dimer lines of the (6,7)-SL structure.

Also shown in the right panel the results of the constituent 6-SL

structure (black) for comparison.

is evident from this figure that electronic transport is strongly

anisotropic, with a nearly vanishing transmission probability

perpendicularly to the lines, despite the presence of a single

hydrogen-dimer line to be crossed. In contrast, transport along

the dimer lines occurs without scattering and the transmis-

sion function shows an almost perfect step-like behavior as ex-

pected when transmission modes progressively open. Similar

results were obtained for different SL structures considered,

and thus in the following we focus only on the case where

transport occurs parallel to the hydrogen lines.

In general, transport along the dimer lines remains rather

simple in all the n-SL structures: the step-like behavior of

N(ε) marks the opening of transport channels, with a step oc-

curing at any energy where a transverse modes appears. The

height of each step reaches its maximum (usually correspond-
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ing to one perfectly conducting channel) in the very small en-

ergy window where dispersion along the transverse direction

occurs.

Less trivial results are obtained upon combining superlat-

tices with different width, and exploiting their different elec-

tronic properties (energy gap). For instance Fig. 7 reports the

transmission results for the (6,7)-SL structure, along with its

band structure. Notice that in this case, the energy gap of the

constituent 7-SL structure is about 0.5 eV larger than that of

the 6-SL one, despite its larger width (see Fig. 4). As a conse-

quence, the gap in the transmission function closely resembles

that in the constituent 6-SL structure (Fig. 6, and black lines in

Fig. 7), while the steps mainly follow the denser energy levels

of the 7-SL structure. In fact, at a closer inspection the trans-

mission function of the compound (6,7)-SL structure is given,

to a very good approximation, by the sum of the transmission

in the two constituent structures, the 6- and 7- SL structures.

Similarly for all the compound structures we considered (not

reported).

Stated differently, the channels confined by the hydrogen-

dimer lines essentially act as independent conduction chan-

nels, i.e. as resistors in parallel, as a consequence of the

weakly dispersing character of the energy bands along the di-

rection transverse to the dimer line. Thus, hydrogen-dimer

lines work as hard-wall confining potentials for the electrons

in graphene, much like the presence of edges in nanoribbon

geometries.

3.3 Transmission eigenchannels

The above considerations suggest that the conduction proper-

ties of the channels confined by hydrogen-dimer lines are su-

perimposable because conduction channels are spatially sepa-

rated. To check this we computed the transmission eigenchan-

nels at the Γ point for a number of selected energies below the

Fermi level (notice though that the results for the square mod-

uli of the transmission channels are insensitive to the exact

value of the energy, in the range where they transmit).

Fig. 8 shows how the eigen-transmissions in the (6,7)-SL

structure sum up to give the cumulative transmission proba-

bility: they are perfectly conducting channels with different

threshold energies (i.e. t(ε) ≡ 1 when the channel is open).

Correspondingly, the eigenchannels localize in different su-

perlattice regions, according to the band structure of the con-

stituent elements. For instance, the first and fourth step in the

conductance function is due to the energy levels in the 6-SL

structure (see also Fig.7) and the corresponding eigenchannels

localize in the six-unit-wide canal.

These results confirm that confinement is indeed at work in

electronic transport and that each section defined by a pair of

hydrogen-dimer lines acts as an independent transport chan-

nel, as previously suggested by the spatial distribution of the

HOMO-LUMO in multiple period structures22 (compare also

Fig. 3 with the m = 1 eigenchannel reported in Fig. 8).

3.4 I-V characteristic

Finally, we analyze the effect that finite bias voltages VSD

have on the transmission functions. Fig. 9 shows the results

obtained for the (6,7)-SL structure at different bias (VSD =
0.25,0.50,0.75 and 1.00 V), well beyond the size of the band-

gap of this structure.

As expected, the effect of the bias is rather simple: the po-

tential drop inside the channel occurs smoothly from one elec-

trode to the other, and determines a band-mismatch between

the left and right ends. As a consequence, the shape of the

conductance function is simply determined by an overlap re-

quirement and can be calculated to a good approximation as

G(ε,VSD) = min{G(ε −|e|VSD/2,0),G(ε + |e|VSD/2,0)}.

An exception is for energies within the gap region, where

transport can occur, depending on the channel length, from the

valence band of one end to the conduction band of the other

end, upon tunneling through the gap region. Thus, the peak

at the center of the conductance spectrum reflects the increase

of tunneling probability that occurs when the barrier width de-

creases as a consequence of a bias increase. In this regime, the

transistor simply breaks down, and the total current has an ap-

proximately cubic increase, which fits well to Simmons’ tun-

neling in the intermediate-voltage range42, I ≈ JL(V + γV 3).
This is shown in the inset of Fig. 9 which reports the I −V

characteristic obtained with the above bias values.

4 Summary and Conclusions

We reported on the electronic and transport properties of a

family of hydrogen-dimer line structures, one of which has

been recently realized on graphite after hydrogen treatment of

a monolayer of cyanuric acid self-assembled on the surface.

The electronic structure of these ordered hydrogenated do-

mains agree with previous theoretical results suggesting that

hydrogen-dimer lines could behave as hard-wall confinement

potentials for the electron, and turn graphene into (armchair)

nanoribbons. We support this interpretation with the results of

NEGF-DFT transport calculations on several single and com-

pound structures, which show conductance plateaus clearly re-

lated to the states which are confined in between the dimer

lines, as further confirmed by the spatial properties of the

transmission eigenchannels.

All this suggests that hydrogen-dimer lines may represent

a valid alternative to graphene nano-ribbons to be used in one

and the same support for fabricating (chemically imprinting)

integrated nano-circuits. Such lines may be used to define in-

sulating layers and create electron waveguides (as exempli-

fied by a (n1,n2)-SL structure with n1 small -the insulating

6 | 1–8
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Fig. 8 Middle panel: the conductance function of the (6,7)-SL structure (solid black line), along with the eigen-transmissions computed at Γ,

offset by one unit each for clarity. Red, green, blue and orange lines for eigen-channels m = 1−4, respectively. Left and right panels: the

corresponding eigen-channels (square moduli) at ∼1 eV below the Fermi level.
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Fig. 9 Conductance function of the (6,7)-SL structure for different

bias voltages, VSD. Black, red, green and blue curves for

VSD = 0.25,0.50,0.75 and 1.00 V, respectively. The inset shows the

computed I −V characteristic (black symbols) along with its cubic

fit (red).

sections- and n2 ≫ n1 - the electron waveguides), or to draw

semiconducting ribbons (when n is sufficiently small), pro-

vided transverse lines are introduced in the remaining arm-

chair directions to block conduction outside the channel.
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Hydrogen-dimer lines might be used to imprint nano-circuits on graphene. The figure shows a possible Hall 
bar defined by H-dimer lines (white) with gold contacts (gold).  
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