## Polymer Chemistry

## CORRECTION



Cite this: Polym. Chem., 2025, **16**, 386

## Correction: Axial-phenyl-constrained bis(imino) acenaphthene-nickel precatalysts enhance ethylene polymerization

Quanchao Wang,<sup>a,b</sup> Qiuyue Zhang,<sup>a</sup> Yizhou Wang,<sup>a,b</sup> Song Zou,<sup>a</sup> Yanping Ma,<sup>a</sup> Tongling Liang<sup>a</sup> and Wen-Hua Sun<sup>\*a,b</sup>

DOI: 10.1039/d4py90150a

Correction for 'Axial-phenyl-constrained bis(imino)acenaphthene-nickel precatalysts enhance ethylene polymerization' by Quanchao Wang et al., *Polym. Chem.*, 2024, https://doi.org/10.1039/d4py01110d.

The authors regret that an incorrect version of Table 5 was included in the original article. The correct version of Table 5 is presented below. The authors note that the correction does not change the conclusions of the paper.

| Table 5 | Branching analysis, | density, n | nechanical cha | racterization, a | and other | parameters o | f selected samples |
|---------|---------------------|------------|----------------|------------------|-----------|--------------|--------------------|
|---------|---------------------|------------|----------------|------------------|-----------|--------------|--------------------|

| PE sample <sup><i>a</i></sup> | $M_{\rm w}{}^b$ | $M_{\rm w}/M_{\rm n}^{\ b}$ | $T_{\rm m}^{\ \ c} \left(^{\rm o} {\rm C}\right)$ | Branches <sup>d</sup> (B/1000 C's) | Density (g cm <sup><math>-1</math></sup> ) | Stress <sup>e</sup> (MPa) | Strain <sup>e</sup> (%) | $SR^f(\%)$ | Details         |
|-------------------------------|-----------------|-----------------------------|---------------------------------------------------|------------------------------------|--------------------------------------------|---------------------------|-------------------------|------------|-----------------|
| PE <sub>Ni2-60-M1</sub>       | 158             | 2.15                        | 85.7                                              | 81                                 | 0.90                                       | 20.86                     | 989                     | 60.9       | Run 2, Table 2  |
| PE <sub>Ni2-80-M1</sub>       | 198             | 2.28                        | 111.9                                             | 83                                 | 0.94                                       | 26.48                     | 1407                    | 57.1       | Run 4, Table 2  |
| PE <sub>Ni1-60-M3</sub>       | 66              | 2.56                        | 111.5                                             |                                    | 0.91                                       | 5.11                      | 441                     |            | Run 11, Table 2 |
| PE <sub>Ni3-60-M3</sub>       | 205             | 2.09                        | _                                                 |                                    | 0.85                                       | 7.16                      | 946                     |            | Run 12, Table 2 |
| PE <sub>Ni4-60-M3</sub>       | 58              | 2.42                        | 116.7                                             |                                    | 0.94                                       | 10.63                     | 1358                    |            | Run 13, Table 2 |
| PE <sub>Ni5-60-M3</sub>       | 171             | 2.02                        | 97.5                                              |                                    | 0.93                                       | 22.83                     | 1008                    |            | Run 14, Table 2 |
| PE <sub>Ni2-60-E5</sub>       | 120             | 2.20                        | 60.3                                              | 122                                | 0.89                                       | 12.11                     | 1189                    | 63.2       | Run 2, Table 3  |
| PE <sub>Ni2-80-E5</sub>       | 89              | 2.20                        | 51.3                                              | 167                                | 0.85                                       | 10.37                     | 2020                    | 66.1       | Run 4, Table 3  |

<sup>*a*</sup> The rule of naming: PE<sub>complex-temperature-activator and ratio. For example, PE<sub>Ni2-60-M1</sub> means the PE produced by Ni2 under the temperature of 60 °C and the MMAO/Ni ratio of 1000. <sup>*b*</sup>  $M_w$  (kg mol<sup>-1</sup>),  $M_w$  and  $M_w/M_n$  determined by GPC. <sup>*c*</sup> Determined by DSC. <sup>*d*</sup> Data determined from the <sup>13</sup>C NMR spectrum using approaches described by Galland *et al.*<sup>63 *e*</sup> Data was gained from monotonic tensile stress–strain tests. <sup>*f*</sup> Strain recovery values (SR) were calculated by using the standard formula SR =  $100(\varepsilon_a - \varepsilon_r)/\varepsilon_a$ , where  $\varepsilon_a$  is the applied strain and  $\varepsilon_r$  is the strain in the cycle at 0 loads after 10 cycles.</sub>

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.



**View Article Online** 

<sup>&</sup>lt;sup>a</sup>Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn

<sup>&</sup>lt;sup>b</sup>CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China