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This review explores the potential of bioinformatics and chemoinformatics tools to advance the exploration

of natural extracts libraries (NELs). Although metabolomics has become a term used routinely in natural

product (NP) research, the field remains focused on individual molecules or small sets of compounds,

which restricts scalability. This narrow focus is mirrored in the computational handling of generated data,

limiting broader insights. By challenging the traditional molecule-first paradigm—a framework historically

shaped by practical constraints—we present our vision of using computational approaches to unlock the

full potential of NELs, now and in the future.
1. Introduction
1.1 The importance of scalability in NELs exploration
1.2 Field-specic considerations: natural products versus

biomedical and environmental metabolomics
1.3 Dening scalability for NELs exploration: practical

dimensions
2. Scalability of MS-based metabolomics approaches

applied to NELs
2.1 MS data acquisition
2.1.1 Resolution
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2.1.1.2 Ion mobility
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2.1.3 Fragmentation
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e, Université PSL, 75016 Paris, France

ty & Research, Wageningen, 6708PB, The

Johannesburg, Johannesburg 2006, South

venue des Sciences, 91400 Orsay, France.

clay.fr

of Chemistry 2025
2.1.4 Detection
2.2 MS data processing
2.2.1 MS data formats, parsers, user libraries
2.2.2 Feature detection
2.2.3 Feature alignment
2.2.3.1 Project-centric approach
2.2.3.2 Sample-centric approaches and knowledge graphs:

a scalable paradigm for metabolomics
2.2.4 Feature grouping
2.3 MS data annotation
2.3.1 Structural similarity
2.3.2 Spectral similarity
2.3.2.1 Exact search
2.3.2.2 Modied cosine similarity
2.3.2.3 Analogue search
2.3.2.4 GNPS analogue search
2.3.2.5 Fragment ion indexing
2.3.2.6 Suspect library
2.3.2.7 Machine and deep learning-based similarities
2.3.2.8 MS2Query
2.3.3 Annotation using spectral libraries
2.3.4 Annotation using structural libraries
2.3.4.1 SIRIUS
2.3.5 Annotation of substructures
2.3.5.1 MS2LDA
2.3.5.2 MotifDB
2.3.5.3 MESSAR
2.3.5.4 Large-scale substructure mining
Nat. Prod. Rep.

http://crossmark.crossref.org/dialog/?doi=10.1039/d5np00034c&domain=pdf&date_stamp=2025-09-13
http://orcid.org/0000-0003-0443-9902
http://orcid.org/0000-0003-3244-1081
http://orcid.org/0000-0002-9340-5511
http://orcid.org/0000-0003-2153-4290
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5np00034c
https://pubs.rsc.org/en/journals/journal/NP


Natural Product Reports Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
se

tte
m

br
e 

20
25

. D
ow

nl
oa

de
d 

on
 2

3/
10

/2
02

5 
22

:2
4:

10
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
2.3.6 Annotation of unknown structures (de novo)
2.3.6.1 MSNovelist
2.3.7 Non-structural annotation
2.3.7.1 Repository scale
2.3.7.2 Biological source
2.3.7.3 Color-coded MN and bioactivity correlations

approaches
2.3.7.4 From compound activity mapping to NP analyst
2.4 Querying, prioritization, and decision-making
2.4.1 Querying metabolomics data
2.4.1.1 Toward scalable query frameworks
Robin Schmid

Robin Schmid is Chief Scientic
Officer at mzio GmbH in Bre-
men, Germany, where he shapes
scientic strategy and commu-
nity engagement for the open-
source mzmine platform. With
a PhD in analytical chemistry
and a background in food
chemistry, he specializes in
computational mass spectrom-
etry and metabolomics.
Following postdoctoral work on
host–microbiome interactions in
Pieter Dorrestein's group at UC

San Diego and research on plant specialized metabolism with
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1. Introduction
Natural products (NPs), from different biological sources have
played a key role in drug discovery.1 Collections of solvent-
derived extracts from diverse organisms, known as natural
extracts libraries (NELs), are central to the systematic explora-
tion of bioactive specialized metabolites. These libraries, typi-
cally formatted in well plates and comprising hundreds of
extracts, enable high-throughput screening for novel thera-
peutic leads.2 Despite the historical importance of NPs and their
multiple successful drug discovery examples, i.e., statins for
cardiovascular diseases and taxanes for cancer, pharmaceutical
companies have become increasingly reluctant to invest in NP-
based drug discovery programs due to challenges such as the
frequent rediscovery of known bioactives. As a result, some are
more willing to share their NELs with academic institutions,
which are better positioned to undertake the exploratory risks
associated with NP research. Recently, the issue of rediscovery is
being increasingly addressed by bioinformatics tools that effi-
ciently process and analyzemass spectrometry (MS) and nuclear
magnetic resonance (NMR) data acquired from complex
extracts and assist the process of biological and structural
dereplication. This led to a renewed interest in NP-inspired
omics-based drug discovery. For the sake of focus and depth,
this review centers on MS-based methods, though we
acknowledge that NMR spectroscopy remains a powerful
complementary tool for NP research, particularly valued for its
reproducibility and quantication capabilities.
1.1 The importance of scalability in NELs exploration

As NELs datasets increase in size and complexity, they grow in
power to nd novel bioactives; consequently, developing
approaches that support their efficient and comprehensive
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This journal is © The Royal Society of Chemistry 2025
mining becomes a necessity to unlock their potential. Scalable
NELs exploration aims to:

� Map biochemical diversity more effectively: by handling
larger and more diverse libraries, scalable approaches can
reveal the true breadth of biochemical diversity present in
nature, uncovering rare or previously overlooked metabolites.

� Prioritize the most relevant samples and features: efficient
data processing and intelligent prioritization strategies ensure
that resources are focused on the most promising extracts and
molecular features, accelerating the path from screening to
discovery.

� Assess chemical novelty with greater precision: advanced
computational tools allow for the robust assessment of chem-
ical novelty directly fromMS data, helping to identify truly novel
compounds and avoid redundant efforts.

Traditionally, NP chemists have made use of available tools
by adapting them to suit their research needs.3 In practice, this
has meant relying on general-purpose soware or workows
that were not originally developed to address the specic
complexities of exploring NELs.4,5 While these tools have
provided valuable information, they may no longer be sufficient
as the scale of NELs studies increases. As the complexity and
size of the datasets expand, more tailored solutions are needed:
solutions that not only handle large volumes of data, but also
integrate seamlessly with the workows of NP chemists.

This review highlights the multifaceted concept of scalability
in NELs exploration. We focus on the scalability of MS-based
metabolomics, from data acquisition onward, assuming the
availability of well-assembled extracts libraries. Readers inter-
ested in extracts library creation are referred to recent reviews
and articles.2,6–8 We compare the unique challenges and
opportunities presented by NELs to those encountered in clas-
sical large-scale metabolomics studies, such as studies using
human or yeast samples. Finally, we discuss the principal
benets and limitations of current computational
Mehdi A: Beniddir
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metabolomics tools and strategies, specically for processing,
annotation, querying, and prioritization, and offer perspectives
on future developments poised to enhance knowledge genera-
tion from NEL-based drug discovery.
1.2 Field-specic considerations: natural products versus
biomedical and environmental metabolomics

Scalability is a term whose meaning varies depending on the
eld of application. In biomedical research, scalability oen
refers to population size: how effectively metabolomics
methods can accommodate data sets derived from extensive
human cohorts, where thousands of biological samples are
analyzed to uncover biomarkers or metabolic signatures of
diseases.9 Although the chemical diversity in human samples
may be lower compared to samples of environmental or natural
sources, the complexity of the data is still considerable, inu-
enced by factors such as circadian rhythms, diet or disease
states, which contribute to temporal and concentration varia-
tions. Despite these variations, the matrix of ions across
samples in biomedical studies tends to be smaller, making the
scalability of such analyses more manageable compared to the
vast diversity of metabolites found in NP or environmental
studies.

In contrast, within environmental sciences, scalability
highlights the capacity to capture both the molecular diversity
and the breadth of coverage across intricate environmental
matrices. At the same time, it emphasizes on the ability to
handle large sample sizes, detect a broad range of metabolites,
and maintain data quality despite sample variability. These
divergent interpretations underscore the multifaceted nature of
scalability, shaped by technical and conceptual demands.

For NELs, scalability should incorporate lessons from these
disciplines but tailor its focus to unique challenges. Specically,
scalability in NELs exploration involves handling a large series
of extracts while maximizing the quality and breadth of the
metabolome coverage. The purpose is to facilitate data-driven
decisions that prioritize the samples and metabolites to
discover novel or bioactive compounds. The eld of NELs
research can transition similarly to more comprehensive and
high-throughput strategies by using large-scale metabolomics
approaches, which have proven effective in biomedical and
environmental applications.
1.3 Dening scalability for NELs exploration: practical
dimensions

In the context of NELs-derived metabolomics, scalability is best
dened as the ability of analytical and computational tools to
accommodate the analysis of large libraries of extracts and
metabolites without compromising data quality or interpret-
ability. True scalability goes beyond mere throughput; it
requires tools that facilitate actionable decision-making by
automating key steps, providing intuitive visualizations, and
efficiently summarizing complex datasets.

Key practical dimensions of scalability in NELs exploration
include:
Nat. Prod. Rep.
� Time: the speed at which tools can process large datasets
while maintaining computational efficiency. As the number of
samples and metabolite features increases, scalable solutions
must ensure timely data analysis to avoid bottlenecks.

� Quality: the extent and reliability of metabolome coverage
and annotation. Scalable tools must maintain high standards
for data integrity and metabolite annotation, even as sample
numbers grow.

� Data retrieval: the accessibility and interpretability of
processed data. Scalable systems should enable seamless
querying, visualization, and exploration of large datasets,
empowering chemists to prioritize extracts or metabolites for
further investigation without impeding the discovery process.10
2. Scalability of MS-based
metabolomics approaches applied to
NELs

In this section, we will discuss how MS-based metabolomics
could face scalability issues associated with NELs (Fig. 1), and
how these could potentially be circumvented or solved.
2.1 MS data acquisition

Scaling MS-based metabolomics for the exploration of NELs
requires overcoming signicant challenges in throughput, data
complexity, and the need to futureproof the acquisition process.
Although the democratization of computational MS has made it
more accessible, the sheer volume of data generated in large-
scale studies requires a robust acquisition strategy to ensure
data quality, metabolome coverage, and processing efficiency.
Fundamentally, the scalability of NELs studies depends on
obtaining high-quality data at the outset; no matter how
advanced post-acquisition tools become, starting with low-
quality data compromises the utility of even the most sophis-
ticated computational approaches. Acquisition strategies
(Fig. 2) must evolve to meet the needs of large and diverse
datasets. Key factors in scaling MS-based metabolomics for
NELs include optimizing data throughput without sacricing
quality, ensuring broad metabolome coverage, and anticipating
the demands of future technological advancements. Achieving
these goals requires not only improved instrumentation but
also more efficient workows capable of processing large
datasets with high delity. One bottleneck in this context is the
acquisition speed of MS data for large NELs. To address this,
Linington et al. developed MultiplexMS, a dual-grid orthogonal
multiplexing strategy that increases the throughput of untar-
geted MS analyses by pooling rows and columns of extract grids
and computationally deconvoluting the pooled MS data into
individual feature lists. While this method signicantly accel-
erates data collection, it may introduce trade-offs such as
increased computational complexity or potential ambiguity in
feature assignment, particularly in highly complex mixtures.
The discovery of bioactive NPs is well-suited to a pool/
deconvolute approach since individual NP structures are
sparsely distributed across large NELs.11
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 An overview of key issues in scalability. Principal steps are illustrated, together with the estimated times, related objects, and their size. The
experimental design and sample generation steps are illustrated as crucial, but are not covered in this article. The data generation step is time-
consuming and generates hundreds to thousands of files. The feature generation step is the most efficient. It generates thousands to millions of
features in a relatively short time. The annotation step is more time-intensive and the final number of annotated features is smaller. Finally,
knowledge generation can take years and cover only a few molecules.
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2.1.1 Resolution. In NPs metabolomics, separation tech-
niques are essential for resolving the complex mixtures typical
of natural extracts. The most used separation technique for this
Fig. 2 Focus on mass spectrometry data acquisition steps. The selection
these are out of the scope of this article. Point (III) starts with the ioniza
some molecules missed. Ionization is followed by resolution (IV), which
should be taken with missed/artifactual features. Finally, the fragmentati

This journal is © The Royal Society of Chemistry 2025
purpose is liquid chromatography (LC). Occurring before ioni-
zation—typically electrospray ionization (ESI) in the context of
NPs—this step is essential for reducing ions co-elution,
of raw material and its extraction are described as previous steps but
tion of the molecules, where artifactual signals can be generated, and
can be chromatographic or ion mobility-based separation. Again, care
on step (V) is also depicted with some of its limitations.

Nat. Prod. Rep.
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mitigating ion suppression, allowing the detection of isomers,
and improving the sensitivity toward low-abundance metabo-
lites. Following ionization, ion mobility spectrometry (IMS) can
be employed as an additional separation step, further di-
stinguishing ions based on their size, shape, and charge.

2.1.1.1 Chromatography. Chromatography remains
a cornerstone of metabolomics workows, enabling the sepa-
ration of metabolites from complex mixtures prior to MS anal-
ysis. Balancing high-throughput capabilities with the need for
high resolution is a major challenge in studies involving NELs.
Although omitting chromatography altogether may provide the
highest throughput, this comes at the expense of resolution and
oen leads to data congestion, where an overwhelming number
of unresolved metabolites complicate downstream analysis. In
addition, without chromatographic separation, ion suppression
effects become more pronounced, as co-eluting metabolites
may interfere with the detection and quantication of target
compounds. Furthermore, without proper separation, the
fragmentation of isomers or structurally similar compounds
becomes nearly impossible, limiting the ability to differentiate
and accurately identify metabolites with similar mass-to-charge
ratios.

Alternatives such as capillary electrophoresis (CE)12 and
supercritical uid chromatography (SFC)13 offer promising
solutions to improve separation efficiency but have not been
widely adopted due to limited infrastructure and the scalability
challenges they present. In addition, nanoow14 or microow
chromatography, which operates at lower ow rates, can offer
improved sensitivity to detect metabolites at low concentra-
tions. However, its application in NELs studies remains limited
by throughput constraints and the need for specialized
instrumentation.

For NELs exploration to truly scale, the future of chroma-
tography must balance speed and resolution, maximizing the
number of metabolites detected per unit time, while mini-
mizing data overlap that hinders interpretability. Novel chro-
matography technologies, including automated high-
throughput platforms and advanced column chemistries,
such as stationary phases that allow mixed mode separation,15

will be critical in addressing current limitations. Although
mixed-mode separation has already been applied to allow the
separation of small polar compounds in (bio)pharmaceutical
analysis,16 or in PFAS,17 reports on NPs are still very few.18

Importantly, future chromatography solutions must be adapt-
able to a variety of natural extracts, including oen disregarded
polars, ensuring that the method used can handle various
chemical spaces encountered in NELs studies.

2.1.1.2 Ion mobility. MS represents an important develop-
ment in MS, adding a third dimension to the data by separating
ions according to their shape and size, in addition to their mass-
to-charge ratio. This offers a richer, more comprehensive view
of the metabolome, especially for structurally similar metabo-
lites that might otherwise be indistinguishable. However, IMS
increases data complexity and processing demands, as current
workows for integrating IMS data with traditional MS are not
yet standardized.
Nat. Prod. Rep.
Although advances in IMS technology show great promise,
IMS is still underutilized in NELs studies due to the challenges
of widespread adoption and the heavy data processing burden it
creates. For IMS to scale effectively in metabolomics, there is
a pressing need for soware tools that can process, analyze, and
integrate IMS data seamlessly with conventional MS workows.
In addition, improvements in the IMS instrument design could
further reduce acquisition times while maintaining the neces-
sary resolution to differentiate structurally similar metabolites.

Future research should focus on developing IMS platforms
that are faster and compatible with high-throughput NELs
workows, ensuring the incorporation of this valuable analyt-
ical dimension into large-scale studies without a signicant loss
of efficiency.

2.1.2 Ionization. This review focuses exclusively on ESI, as
it remains the predominant ionization technique in NP meta-
bolomics. While alternative ionization methods such as atmo-
spheric pressure chemical ionization (APCI) or matrix-assisted
laser desorption/ionization (MALDI) offer unique advantages in
other contexts, their application in natural extracts analysis is
currently limited and thus considered out of scope here.

Polarity selection plays a critical role in MS acquisition,
directly impacting the depth of the metabolome covered. The
positive ion mode remains the most widely used, offering better
sensitivity for certain metabolite classes and enabling the
generation of more adducts.19 However, it also introduces
challenges, such as increased noise and in-source fragmenta-
tion (ISF),20 which can complicate the interpretation of the data.
The negative ion mode, while less commonly employed, can
capture a complementary range of metabolites, offering vital
insights into the complete chemical space. Although polarity
switching, which alternates between positive and negative
modes within a single run, holds promise for improving
coverage, it introduces practical issues such as reduced scan
rates and potential data misalignment. No consensus has yet
emerged on the best polarity strategy for NELs analysis, high-
lighting the need for advanced acquisition methods that could
dynamically optimize polarity on a per-sample basis. Future
strategies may implement adaptive polarity switching based on
sample characteristics or integrate multi-modal data computa-
tionally to achieve more comprehensive metabolome proles.

2.1.3 Fragmentation. A major challenge in LC-ESI-MS-
based metabolomics is the lack of standardized collision
energy settings for fragmentation, particularly when using
collision-induced dissociation (CID). This variability in energy
settings across laboratories and instruments leads to inconsis-
tent fragmentation spectra, complicating both metabolite
annotation and the effective use of public or commercial spec-
tral libraries.21

Moreover, CID oen provides only partial structural infor-
mation. This limitation can result in insufficient spectral data
for condent compound annotation, leaving many features
unannotated or ambiguously assigned. The lack of compre-
hensive fragmentation information is a signicant bottleneck
for advancing large-scale, high-throughput NP metabolomics.

To address these challenges, there is growing interest in
adopting multimodal fragmentation strategies, such as
This journal is © The Royal Society of Chemistry 2025
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electron-activated dissociation (EAD) and ultraviolet photodis-
sociation (UVPD), alongside traditional CID.22 These alternative
methods can generate complementary and richer fragmenta-
tion patterns, improving structural elucidation and metabolite
coverage. Integrating multimodal fragmentation into LC-ESI-
MS workows promises to enhance the depth and reliability
of spectral information, ultimately facilitating more robust and
scalable metabolite annotation in NELs.

2.1.3.1 DDA and DIA. The choice of data acquisition strategy
is crucial in scaling MS-based metabolomics for NELs explora-
tion. Data-dependent acquisition (DDA) has long been the
standard approach, allowing for detailed MS/MS analysis of the
most abundant ions. However, DDA inherently biases the data
toward more abundant metabolites, oen leaving low-
abundance compounds underrepresented.

In contrast, data-independent acquisition (DIA) aims to
capture comprehensive MS/MS data for all detectable ions,
providing a more complete metabolome prole. One key chal-
lenge with DIA (or too wide window DDA) is the production of
chimeric spectra, where fragments from multiple co-eluting
precursor ions are combined within a single MS/MS scan.
This spectral overlap complicates downstream data analysis
and can hinder condent metabolite identication, especially
in complex natural extracts.23 Although DIA offers signicant
advantages in terms of data breadth, it comes at the cost of
increased data density, placing additional strain on computa-
tional resources, and requiring advanced algorithms for spec-
tral deconvolution and feature extraction. Remarkably, there
are still no NELs exploration studies using DIA to date. As the
demand grows to cover more low-abundance metabolites,
acquisition strategies must evolve ensuring optimal meta-
bolome coverage while maintaining computational feasibility.

2.1.4 Detection. The choice between time-of-ight (ToF)
and Orbitrap mass analyzers has signicant implications for
LC-ESI-MS-based metabolomics, particularly in terms of reso-
lution, dynamic range, scan speed, and mass accuracy. ToF
analyzers provide full-spectral data with excellent mass accuracy
and isotopic delity. Modern ToF instruments offer fast acqui-
sition speeds (oen exceeding 100 Hz) and a broad dynamic
range, making them well-suited for applications requiring rapid
scanning and robust quantitation, such as large-scale biomed-
ical metabolomics and high-throughput screening.

In contrast, Orbitrap analyzers operate by trapping ions in an
electrostatic eld and measuring their oscillation frequencies,
which are then converted to m/z values via Fourier trans-
formation. Orbitrap are renowned for their ultra-high mass
resolution (oen surpassing 240 000 at m/z 200), and their sub-
ppm mass accuracy. However, their resolution is inversely
related to scan speed; achieving the highest resolution requires
longer transient acquisition times, which can limit the number
of data points acquired across narrow chromatographic peaks.
This trade-off can be a limitation in high-throughput workows
but is less problematic when structural elucidation and con-
dent annotation are prioritized, as in NP metabolomics.

Ultimately, the choice of instrument not only shapes the
acquisition phase but also dictates the computational
This journal is © The Royal Society of Chemistry 2025
strategies, annotation pipelines, and even the biological ques-
tions that can be addressed in each eld.
2.2 MS data processing

2.2.1 MS data formats, parsers, user libraries. Efficient and
scalable management of MS data requires standardized, open,
and lossless formats that facilitate interoperability, long-term
storage, and compatibility with downstream tools. Formats
such as mzML,24 mzTab-M,25 mzML2ISA25,26 and mzSpecLib27

exemplify the growing suite of open standards developed to
address these needs. Among them, mzML is widely regarded as
the cornerstone of MS data representation, offering a compre-
hensive XML-based structure to capture raw data, metadata,
and instrument settings. Complementary formats, such as
mzTab-M, are tailored for tabular outputs and facilitate the
exchange of processed data, while mzSpecLib focuses on spec-
tral libraries and their integration into workows.

Looking ahead, the adoption of these formats must
emphasize adaptability to emerging technologies such as arti-
cial intelligence (AI) and machine learning (ML). AI-driven
analyses demand consistent high-quality datasets, oen
requiring data to be structured and annotated in ways condu-
cive to advanced algorithms. Ensuring that current formats are
extensible and compatible with future standards will allow
seamless integration of AI into NELs workows. For example,
standardized ontologies and metadata annotations could
enhance interpretability while reducing preprocessing
demands.

Finally, soware libraries that facilitate the processing steps
for the nal users, such as pyOpenMS,28 matchms,29 spec-
trum_utils,30 MSnbase,31 and others serve as critical tools for
interfacing with these formats. Most of these tools have formed
or are forming user and developer communities to foster their
uptake and maintenance. Each package has its own core func-
tionalities, usually inspired by the reasons for conceptualizing
the package. For example, the origin of matchms lies in making
the comparison of mass fragmentation easier. Over time,
additional functionality has been added, i.e. reading in various
MS data types and curation of MS library metadata.

Hence, by simplifying data parsing, visualization, and
manipulation, these libraries lower the barrier to entry for
researchers seeking to develop custom workows. Efforts to
ensure that these tools remain open-source and broadly
compatible will foster collaboration and innovation across the
eld, making MS data management a scalable and future-proof
endeavor. Developers can further lower barriers by ensuring
documentation is accessible to non-experts in chemistry, within
reasonable limits.

There are many open-source tools available that are used for
MS data processing in NP research, such as mzmine (Java),32

XCMS33 (R), Metaboanalyst (R),34 MS-DIAL (C#),35 and OpenMS
(C++, Python).36 We are aware that these and other meta-
bolomics tools have been undergoing developments over the
last years to support the analysis of larger datasets. The major
steps in feature detection and project-centric feature alignment
are similar in all these tools with varying algorithm options. The
Nat. Prod. Rep.
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Fig. 3 Overview of the main feature detection and alignment steps and corresponding complexity and challenges. Feature detection starts with
mass spectral processing like spectral filtering and centroiding of profile mode spectra. Performance for these steps is defined by the number of
spectral signals, scan rate, and the number of samples. Chromatogram building connects similarm/z signals across the retention time dimension
and feature resolving applies peak detection. Then, in a project-centric approach, features are aligned based on m/z and other separation
dimensions and potential missed features (gaps) are filled in an optional step. The performance depends on the number of features detected
across all samples and in the case of gap-filling on access to the spectral data. Higher feature quality filters may lower the number of noisy
features, therefore increasing the alignment performance.
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next section exemplies a workow for LC-MS data processing
in mzmine and how this tool solved some of the scalability
challenges.

2.2.2 Feature detection. Feature detection typically
describes a complex multistep approach that aims to extractm/z
signals of interest and their abundance across samples (Fig. 3).
Most tools require centroid mass spectra by applying mass
detection, i.e., peak detection algorithms, on each scan. If
spectra were already acquired or converted as centroids, this
step applies only a noise threshold to reduce the memory
requirements and speed up processing. The data processing
workow comprises multiple spectral processing and feature
processing steps, as exemplied for LC-MS data processing in
Fig. 3, and may vary for other hyphenated sample introduction
systems. For example, mzmine provides an easy conguration
through the mzwizard for LC-MS, GC-MS, and MALDI-MS with
options to include ion mobility separation. First, raw data
import supports open MS data formats, e.g., mzML or imzML,
and various vendor-specic formats. For chromatography,
extracted ion chromatograms (EICs) are built by connectingm/z
signals across the entire retention time (RT) range. Peak
detection algorithms then resolve each EIC into separate
features, i.e., chromatographic peaks with specic m/z, RT, and
other optional identiers. For LC-IMS-MS measurements,
features are then extended into the ion mobility dimension by
building and resolving ion mobilograms.

All feature detection processing steps can run in parallel
using one thread per sample and thread pooling. Performance
implications for feature detection arise from the number of
samples and the complexity of the MS data. A faster scanning
Nat. Prod. Rep.
mass spectrometer with higher resolution, like those oen used
for IMS-MS, produces more m/z signals resolved in a multidi-
mensional space. This amount of data quickly outgrows the
available random access memory (RAM). Modern MS data
processing tools use memorymapping to offload data onto disk,
creating a direct connection between computer memory and
storage, allowing access and manipulation of large datasets. In
the case of mzmine, spectra, chromatograms, mobilograms,
and most of the feature tables are memory mapped, increasing
the number of samples that can be processed in parallel. In the
case of timsTOF IMS-MS data processing in mzmine, the
memory mapping reduced the memory requirements by >90%.
A recent update to the internal feature list data model in
mzmine 3.7.8 improved the RAM requirements 10×, enabling
the processing of larger studies. Another optimization for large
datasets applies centroiding and ltering to spectra during
import, allowing parts of the chromatogram's beginning and
end to be removed.

2.2.3 Feature alignment. Feature alignment is another
cornerstone of MS-based metabolomics workows, ensuring
that ion signals corresponding to the same compound are
correctly matched across runs. Without reliable alignment,
downstream quantitative and comparative analyses become
error-prone, especially as study size grows. Broadly, alignment
algorithms follow one of two paradigms—project-centric and
sample-centric. Each approach offers distinct advantages and
challenges depending on the scale and nature of the study,
which will be discussed in the following subsections.

2.2.3.1 Project-centric approach. Feature alignment takes all
sample-specic feature lists and aligns features based on their
This journal is © The Royal Society of Chemistry 2025
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m/z, RT, and tandem mass spectra, ion mobility or collisional
cross section (CCS) if available. The aligned feature list usually
contains gaps that originate from misalignment, maybe due to
RT shis, and feature detection issues during the chromato-
gram resolving. For example, if a double peak was split in one
sample but not in the other, or if a chromatographic peak fails
the user-dened peak shape constraints. Therefore, a gap-lling
step is oen added as a secondary feature detection that is
informed by the initial results. Gap lling automates the typical
manual process of going back to the raw data and extracting the
intensity of the missing m/z ranges. The nal feature list is then
used for downstream statistical analysis, compound annota-
tion, and exploration of the chemical space. Integration of
results from multiple downstream tools is possible through the
feature ID, sometimes called row ID. There are many optional
lters and steps that are described in more detail in a recent
protocol.37

Most steps until feature alignment can run in parallel as one
task for each sample. However, algorithms that align results or
that run on a single aligned feature list need special attention
during their design to split the work for modern multicore
hardware. The join aligner and gap-lling in mzmine are good
examples of steps that used to be bottlenecks for large-scale MS
analysis. Processing thousands of LC-MS runs would take
multiple days to complete in old mzmine 2 versions,38 but were
completely redesigned for concurrency reducing the time
required to minutes or seconds. In a benchmark, mzmine 3
processed 1920 diverse plant extracts in less than 40 min and
8270 human plasma extracts in less than 50 min on a data
processing computer.32 Generally, most feature detection tools
scale hardware vertically on a single computer or server with
more CPU, RAM, and fast (SSD) storage to map memory and
offload data from RAM.

Still, one of the most important performance deciders is the
size of the dataset and workow parameter optimization. For
large-scale analysis, higher noise levels, stricter feature shape
constraints, and other lters can reduce the number of noisy
features that will otherwise increase the processing time.

Project-centric alignment offers a unied reference frame
that ensures consistent m/z and retention-time coordinates
across all samples, minimizing cumulative dri and simplifying
batch-effect detection and correction. By generating a single
consensus feature map, it improves management of missing
value and streamlines manual curation. Compared to sample-
centric alignment, the project-centric approach also includes
features without tandem mass spectra and those with poor
fragmentation patterns in its statistical analysis and feature
prioritization workows.

2.2.3.2 Sample-centric approaches and knowledge graphs:
a scalable paradigm for metabolomics. The sample-centric
approach proposed by Gaudry et al., through the introduction
of MEMO, represents a novel approach in metabolomics data
organization, particularly when viewed through the lens of
scalability.39 Unlike traditional project-centric frameworks,
which structure data around specic studies or experiments,
the sample-centric approach focuses on individual samples as
fundamental units. This allows for more exible integration,
This journal is © The Royal Society of Chemistry 2025
aggregation, and re-analysis of data across diverse projects and
contexts. Knowledge graphs40,41 are central to this methodology,
linking samples to metadata, experimental results, and chem-
ical or biological annotations in a highly interconnected
network. Such graphs facilitate the exploration of relationships
between datasets, offering scalability by enabling efficient
querying, visualization, and hypothesis generation.

In contrast, project-centric approaches oen silo data within
specic experimental scopes, limiting reuse, and requiring
additional preprocessing to integrate results across studies.
This fragmentation becomes a bottleneck when scaling to large
datasets, as it inhibits the aggregation of information, essential
for comprehensive analyses. The sample-centric model, on the
contrary, inherently supports scalability by allowing data from
new samples or studies to be seamlessly incorporated into
existing knowledge frameworks.

Furthermore, by leveraging knowledge graphs, researchers
can apply advanced computational tools such as machine
learning and articial intelligence to identify patterns or
prioritize samples and features at a scale that project-centric
approaches struggle to achieve. By reconceptualizing meta-
bolomics workows around the sample-centric model and
harnessing the power of knowledge graphs, the eld is better
equipped to address the challenges of NELs exploration at scale.

2.2.4 Feature grouping. The grouping of various ion
adducts, in-source fragments, and multimers of the same
compound is oen done on a feature grouping level using the
m/z and other separation dimensions as identiers. The
mzmine workow provides metaCorrelate to group features that
may originate from the same compound. Depending on the
study size, the grouping can be based on just RT windows,
a feature height Pearson correlation across all samples, or
a more comprehensive feature shape Pearson correlation
between feature pairs within the same sample. These three
options increase in computational complexity, and feature
shape comparison may reduce the throughput signicantly for
large studies with many coeluting features. If the ionization
conditions are similar across all samples, the feature height
correlation will provide a signicant performance increase. In
a second step, called ion identity networking in mzmine,42 ion
adducts, in source fragments and multimers are annotated by
searching for specic m/z differences between grouped features
that correspond to pairs from an ion library. Overall, the initial
feature grouping reduces the number of metabolite features
and, as such, it decreases the number of comparisons required
in the nal ion annotation. Still, the size of the ion library and
the number of coeluting features increase the computational
complexity and render the feature grouping step one of the
time-limiting steps. Very large studies may decide to skip this
step. Furthermore, typically, NELs metabolomics data les
contain a relatively large portion of less abundant features. To
streamline exploration in tools and interactive dashboards, the
resulting peak quantication table can be subsequently ltered
based on feature abundance by removing lower-intensity
features. Another lter that could be applied is the minimum
number of samples in which the feature should be present
across the entire dataset or within a sample group. Note that
Nat. Prod. Rep.
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removing (relatively) unique features is likely to reduce the
number of novel features as they tend to be more unique, so it is
important to consider this well in NELs explorations targeting
novel specialized metabolites.
Fig. 4 Overview of different search strategies, the objects required,
the search space they need to consider, and the computational effi-
ciency of similarity calculations. Spectral library searching only needs
to consider a small amount of reference spectra, thus a small search
space. Structural database retrieval requires a large training set, and
employs a larger search space. Finally, de novo search requires a very
large amount of training data and essentially considers an uncon-
strained search space. Spectrum similarity (using cosine-based
approaches) can be calculated relatively efficiently, and structural
similarity (using the Tanimoto similarity) can be computed very effi-
ciently, while de novo molecule generation requires advanced algo-
rithmic and deep learning approaches that are more computationally
intensive.
2.3 MS data annotation

Before going into the details of the tools used in this important
task, two fundamental notions (i.e. structural and spectral
similarities) must be dened to understand key aspects of
scalability in MS data annotation.

2.3.1 Structural similarity. Structural similarity is a key
concept in cheminformatics and computational MS, enabling
the comparison of molecular structures to identify related
compounds. One of the most widely used approaches for this
purpose is the Tanimoto similarity, which calculates the Jaccard
index between molecular ngerprints (i.e. the size of the inter-
section of two molecular ngerprints divided by the size of their
union).43 Molecular ngerprints are representations of mole-
cules as bit vectors, where each bit corresponds to the presence
or absence of specic structural fragments within the molecule.
These ngerprints are generated by applying a kernel to the
molecule, which encodes structural features such as atom
connectivity and substructures. Extended-connectivity nger-
prints (ECFPs), which capture circular substructures around
atoms, are among the most popular ngerprint types due to
their ability to capture a wide range of molecular features.44

Recently, new ngerprints have emerged, also designed to
specically handle biomolecules and natural products, such as
MAP4.45 This increase in specicity, however, due to more
calculations, also comes with increased computation time. The
Tanimoto similarity is computationally efficient, especially
when ngerprints are precomputed, as it relies on simple bi-
twise operations. Consequently, Tanimoto similarity is a prac-
tical choice for large-scale applications requiring many
molecular comparisons. Despite its efficiency, Tanimoto simi-
larity has limitations. Because encoding molecules as binary
vectors is based on local substructures rather than the full
molecular structures, this simplied representation can lead to
counterintuitive similarity values, such as low similarity scores
for molecules that are visually and chemically similar or unex-
pectedly high scores for structurally distinct molecules with
coincidental overlaps in their ngerprints.46

To address these shortcomings, alternative methods based
on graph representations of molecules have gained traction. In
these approaches, molecules are modeled as graphs, with atoms
as nodes and bonds as edges. Structural similarity is then
assessed using metrics such as the maximum common
subgraph (MCS) and maximum common edge subgraph
(MCES). Intuitively, MCS determines the largest subgraph that
two molecular graphs share, focusing on the common struc-
tural framework, while MCES extends this by also considering
the largest subset of edges (bonds) shared between the graphs.
These metrics are more interpretable than Tanimoto similarity,
as they directly reect shared structural features and provide
insights into how molecules are related in terms of their core
scaffolds and bond arrangements.
Nat. Prod. Rep.
However, the computational complexity of MCS and MCES
calculations presents a signicant challenge. Both problems are
nondeterministic polynomial-time complete, meaning that
there is no known algorithm that can solve them efficiently for
all cases in polynomial time. As a result, comparing large
numbers of molecular pairs using these metrics can be
prohibitively time-consuming, especially for large datasets. To
overcome this bottleneck, heuristic-based approaches have
been developed to approximate MCS and MCES calculations.
One recent advancement is the introduction of the myopic-
MCES Python package, which uses heuristic optimization
methods to estimate the MCES distance for molecular pairs
above a dened similarity threshold.47 By focusing on high-
similarity pairs and approximating results for others, myopic-
MCES achieves signicant speed improvements. While this
approach sacrices some accuracy for less similar pairs, it offers
a practical trade-off, enabling the efficient analysis of large
molecular datasets. Although still too new to have been used in
NELs exploration, GESim48 offers the best of both worlds—
combining the speed of ngerprints with the structural richness
of graph-based similarity, approaching the computational effi-
ciency of ngerprints.

2.3.2 Spectral similarity. The comparison of mass spectra
lies at the heart of most MS data analysis tools (Fig. 4). For
example, library matching, analogue search, and mass spectral
networking are amongst the computational metabolomics
strategies that require mass spectral comparisons. With a few
spectra at hand, such comparisons can be performed manually,
assessing whether the fragmented molecules are structurally
similar or whether they share scaffolds or building blocks.
However, to handle large amounts of spectra efficiently, MS
similarity scores are used as numeric representations of the
spectral similarity. Such scores allow researchers to rank library
matching results and to apply thresholds when creating mass
This journal is © The Royal Society of Chemistry 2025
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spectral networks. Traditionally, a few spectral similarity scores
are used with the cosine score as the main go-to score; however,
recently a range of new avors have been developed that have
shown to outperform the cosine score on specic tasks using
various benchmarking datasets. In this section, we will high-
light various strategies that build on the MS similarity score.

2.3.2.1 Exact search. Exact search attempts to nd identical
molecules by matching experimental spectra with reference
measurements in a spectral library. One of the most widely used
methods for spectral annotation is cosine similarity, also
referred to as the (normalized) dot product. The cosine simi-
larity between two spectra measures the degree of alignment
between their fragment intensities, rewarding overlapping
peaks and penalizing those that are mismatched. The mathe-
matical formula for cosine similarity is as follows:

Cosine similarity ¼

P
ði; jÞ˛M

I1; i � I2; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

I1;i
2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
j

I2; j
2

r

Here, I1,i and I2,j are the intensities of the i-th peak in the rst
spectrum and the j-th peak in the second spectrum, respec-
tively. M is the set of all pairs of peaks (i, j) where the m/z
difference between the peaks is within a specied tolerance of
the fragment, i.e., jm/z1,i − m/z2,jj # tolerance. For increased
computational efficiency, the intensities of the fragment can be
normalized to unit length, thus turning the denominator to
a constant.

Cosine similarity is intuitive: it captures the proportion of
matching intensity between two spectra while penalizing
unmatched intensities. Although it has been a foundational
method used for decades,49 it remains the default approach in
many bioinformatics pipelines due to its simplicity and
robustness. However, implementing cosine similarity efficiently
requires careful consideration. One common approach involves
binning the spectra according to the fragment mass tolerance
and using standard vector operations. Although straightfor-
ward, this method is prone to edge effects, where peaks near bin
boundaries are incorrectly assigned to neighboring bins,
leading to missed matches. A more precise approach is a peak-
by-peak comparison, iterating through all peaks in both spectra
and matching those within the fragment mass tolerance.29 This
avoids binning artifacts and ensures accurate comparisons.

In terms of computational scalability, a key consideration is
handling duplicate peak matches. For example, a single peak in
one spectrum might match multiple peaks in other spectra due
to similar m/z values. Including all possible matches would
articially increase the similarity score. To address this, only the
most relevant peak matches should be considered. A common
heuristic involves a greedy search that iteratively selects the pair
of peaks with the highest contribution to the explained inten-
sity, ensuring that the peaks are not reused.29,50 This approach is
computationally efficient, with a time complexity of O(n log n) ,
where n is the number of peaks in a spectrum. Alternatively, the
Hungarian algorithm for combinatorial optimization can
provide an optimal solution to the peak matching problem, but
its O(n3) time complexity makes it impractical for large-scale
This journal is © The Royal Society of Chemistry 2025
spectral comparisons. The heuristic approach is typically suffi-
cient with minimal deviations from the optimal solution in
most cases. Furthermore, this approach can be efficiently
implemented using graphics processing units (GPUs),51

providing orders of magnitude speedup compared to central
processing unit (CPU)-based implementations. This computa-
tional efficiency, combined with its intuitive approach and
competitive results,49 makes cosine similarity an essential
baseline method for large-scale spectral comparisons.

2.3.2.2 Modied cosine similarity. An extension of cosine
similarity, is commonly used as a spectral similarity metric
during analogue searching. Modied cosine similarity is
capable of capturing not only directly matching peaks but also
peaks shied by the pairwise precursor mass difference and
thus accounts for fragments differing by a modication inferred
from the precursor mass difference. During exact searches,
where only spectra within a small precursor mass tolerance are
compared, the modied cosine similarity reduces to the stan-
dard cosine similarity.52 However, in analogue searches and
molecular networking, where larger precursor mass differences
are allowed, the modied cosine similarity is able to capture
both identical fragments and those resulting from neutral los-
ses or structural variations.53 Despite these advantages, the
modied cosine similarity also has limitations. It assumes that
the precursor mass difference corresponds to a single modi-
cation, which restricts its accuracy for molecules differing by
multiple modications. This challenge arises because the
algorithm cannot partition the precursor mass difference
between multiple potential shis, limiting its ability to accu-
rately score spectra of more complexly related molecules.

2.3.2.3 Analogue search. Reference spectral libraries can be
further leveraged through an analogue search. This seeks to
determine whether the reference library contains similar or
related structures as to those that were measured in the exper-
iment. There is no exact denition of relatedness, but analogues
are typically dened as “sharing a main scaffold” or “belonging
to the same compound family”. Indeed, analogue search can
provide structural annotation guidance, as the found analogue
may help in structural annotation of overlapping parts of the
queried mass spectrum. Moreover, the mass difference between
the query and the database hit may also contain relevant clues,
especially when they represent values corresponding to
hydroxylation, methylation, glycosylation, or other known
biotransformations.

However, analogue searching poses a substantial challenge
to computational workows. Any naive approach for large-scale
analogue searching is unfeasible, regardless of the similarity
measure used, due to the quadratic number of spectrum
comparisons that need to be performed. Although exact
matching benets from selecting possible library entries based
on recorded precursor masses, thereby avoiding a considerable
amount of mass spectral comparisons, analogue search, in
principle, needs to consider the entire library (although, in
practice, most tools usually still restrict to subparts of the
library). The increasing size of (public) mass spectral libraries is
benecial, but it also imposes an increased challenge to mine
them, especially considering that experimental datasets are also
Nat. Prod. Rep.
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becoming more information-rich, resulting in many-versus-
many comparisons. To mitigate this challenge, at least partly,
different tools use different approaches. In the following, we
will highlight several analogue searching tools and discuss how
they handle this challenge.

2.3.2.4 GNPS analogue search. Within the GNPS ecosystem,
the mass spectral library annotation allows for both exact
matching and analogue search. Users can indicate thresholds
for the similarity score used to lter possible library hits. By
default, analogue search is switched off. If toggled on, the
default maximum mass difference is 1999 Da that, if unaltered,
does substantially increase the analysis time. Hence, to make
this analogue search more scalable, the maximum mass shi
can be set by the user. In the NPs context, a maximum of 200 Da
covers a nice amount of biotransformations that could occur,
and it will reduce the analysis time considerably. However, this
comes with the cost that some relevant analoguesmay no longer
be found. The use of the modied cosine score is helpful to nd
analogues that differ in one building block, consequently
shiing mass fragments with the mass of the building block.

2.3.2.5 Fragment ion indexing. Recent advancements in
computational efficiency have leveraged fragment ion indexing
to handle the increasingly large datasets generated by modern
MS experiments. This approach can signicantly speed up the
calculation of spectrum similarities, including cosine similarity
and spectral entropy-based scores, improving scalability. Frag-
ment ion indexing, originally popularized by the MSFragger tool
for open modication searches in proteomics,54 operates by
creating an efficient representation of peak presence across
spectra. The process begins by binning spectra based on frag-
mentm/z values, with bin widths corresponding to the fragment
mass tolerance. For each spectrum, the presence or absence of
peaks within these bins is then encoded in efficient data
structures that facilitate rapid access and comparison.

Querying with a fragment ion index involves comparing
a query spectrum against the indexed database to identify
spectra with a dened minimum number of matching peaks.
This comparison is computationally efficient because it directly
retrieves thematching fragments from the index without having
to consider irrelevant spectrum pairs. The result is a drastic
reduction in the time required to lter and rank spectra, espe-
cially for large-scale datasets.

The fragment ion indexing strategy has been applied to tasks
such as analogue searching, matching against spectral reposi-
tories, and for molecular networking.55 By replacing more
computationally intensive pairwise similarity calculations with
efficient indexing-based queries, these applications achieve
better scalability without sacricing accuracy.

A notable extension of fragment ion indexing is its applica-
tion to spectral entropy-based similarity calculations. Spectral
entropy provides an alternative to cosine similarity by
measuring the disorder of the fragment ion intensity distribu-
tion.56 In the context of analogue searches, where query spectra
are compared to spectra of related but non-identical molecules,
fragment ion indexing accelerates entropy-based similarity
calculations. This approach, termed ash entropy, uses
a similar indexed framework to efficiently process large
Nat. Prod. Rep.
datasets, enabling rapid identication of spectra with high
entropy-based similarity.57

It is important to note, however, that because fragment ion
indexing relies on peak binning, edge effects can occur, as di-
scussed previously. While the method remains computationally
efficient and broadly applicable, users should be aware of these
limitations and consider alternative approaches, such as peak-
by-peak comparisons, for tasks requiring the highest precision.

2.3.2.6 Suspect library. The nearest neighbor suspect spec-
tral library is a recent approach to leveraging repository-scale
MS data for the discovery of structural analogs.58 This method
capitalizes on the growing availability of open data repositories
and scalable computational tools to interpret unannotated
spectra that are linked to annotated spectra corresponding to
known molecular structures. By deriving insights from
hundreds of millions of MS/MS spectra across thousands of
datasets, this strategy perfectly exemplies the power of large-
scale MS data analysis. The creation of the nearest neighbor
suspect spectral library involved analyzing 521 million MS/MS
spectra derived from 1335 public projects hosted on reposito-
ries such as GNPS/MassIVE,59 MetaboLights,60 and Meta-
bolomics Workbench.61 Using molecular networking with the
modied cosine similarity, “suspects” were extracted, which are
unannotated spectra that were connected in the molecular
network to annotated spectra via spectral matches. Next, by
propagating molecular annotations and analyzing the observed
precursor mass differences compared to a curated list of
potential modications, structural hypotheses for these
suspects were generated. This approach underscores the major
potential of repository-scale analyses. By co-analyzing datasets
from thousands of studies, it becomes possible to uncover
relationships and patterns that are undetectable within the
connes of individual datasets. The outcome of this effort was
the creation of the nearest neighbor suspect spectral library
comprising 87 916 unique MS/MS spectra. This spectral library
is freely accessible on the GNPS platform, where researchers can
use it to identify novel structural analogs that are absent from
traditional reference spectral libraries. Across various applica-
tions, integrating the nearest neighbor suspect spectral library
has been shown to on average double the number of annota-
tions during spectral library searches, signicantly enhancing
the scope of molecular discovery.

2.3.2.7 Machine and deep learning-based similarities. The
implementation of the cosine score has inspired the creation of
various avors that use different weighings to inuence the
contribution of smaller or large m/z values or intensities.56

Furthermore, several machine/deep learning-based similarity
scores have been proposed and evaluated in their exact
matching performance.62 Spec2Vec is the rstly introduced
unsupervised machine learning-based score,63 learning frag-
mental and neutral loss relationship of mass from large
amounts of mass spectra. A key asset is its tolerance to multiple
minor modications: the authors demonstrate how, unlike
signal alignment-based scores, Spec2Vec still results in higher
similarity scores even when two molecules differ in more than
two structural modications, and as a result, their mass spectra
have little signal overlap. In addition, it showed encouraging
This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5np00034c


Review Natural Product Reports

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
se

tte
m

br
e 

20
25

. D
ow

nl
oa

de
d 

on
 2

3/
10

/2
02

5 
22

:2
4:

10
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
performance in library searching. Another example of a super-
vised deep learning-based similarity score is MS2DeepScore.64,65

Here, the scoring is trained using MS libraries as input, with the
Tanimoto score between structure pairs as a goal to approach
with the spectral score. Again, the score turned out to be more
modication-tolerant than the signal alignment-based scores,
and, even though not specically trained, had encouraging
performance in library matching. Overall, the scalability of such
machine-/deep-learning-based similarity scores is promising, as
one needs to compute an embedding for each mass spectrum
only once, aer which the cosine similarity can be applied on
the matrix of embeddings.

We note that current approaches mostly rely on binning to
determine if mass signals should be considered the same across
spectra, similar to how signal alignment-based scores do. The
bin size is a key factor in scalability: smaller bins will result in
more accurate discrimination between isobaric mass frag-
ments, but in larger computational times. Furthermore, using
smaller bin sizes (i.e., 0.005 Da) relies on high-resolution MS
data. To accommodate a larger section of the public data, wider
bin sizes (i.e., 0.01 or 0.1 Da) are typically used, thus sacricing
some accuracy over scalability and coverage. We note how also
a combination of such scores can be used for tasks such as
library matching or analogue search (see previous Section
2.3.2). Supervised scores such as MS2DeepScore are reliant on
the availability of curated comparable library spectra, and
recent initiatives such as MassSpecGym are valuable resources
as they specically aim to have machine learning-ready data.66

Furthermore, having a large public dataset available for
learning or training and testing/validation, will also help to
compare new scores more effectively. Overall, on the basis of the
above developments and considerations, we expect more mass-
spectral similarity scores to be developed in the near future, and
we hope that the community will further adopt and test them
for their specic use cases. For example, a recent study
compared the discriminative power of various similarity scores
for monoterpene indole alkaloids.67 We anticipate that with
more such studies, it will become increasingly clear what kind
of score to use for which task and chemical compound class.

2.3.2.8 MS2Query. An alternative route to nd structural
analogues based on mass spectral similarity was proposed in
2023 with MS2Query.68 Building on machine learning-based
mass spectral similarity scores, the unsupervised Spec2Vec63

and the supervised MS2DeepScore64,65 (see de Jonge & Mildau
et al. for further information62), MS2Query uses an overarching
machine learning model that takes the input from the above
scores and other spectral information to rank potential
analogues and exact matches in a provided mass spectral
library. As the tool is not dependent onmass fragmental overlap
(as all the cosine score avours are), MS2Query can account for
multiple modications that typically result in low or sometimes
even no fragmental overlap between the two analogue mass
spectra. Aer training the machine learning models, the
retrieval of ranking scores is relatively fast, thereby removing
the need to cap hits based on a maximum mass shi – instead,
the entire library can be considered. When doing analogue
search with approximately 6000 query spectra in an
This journal is © The Royal Society of Chemistry 2025
approximately 300 000-sized mass spectral library, MS2Query
was almost an order of magnitude faster than the modied
cosine-based analogue search as implemented in matchms at
the time of publication in 2023 (i.e., approximately 80 spectra
per min versus approximately 10 spectra per min), without
maximum mass shi for MS2Query, and using 100 Da for the
modied cosine-based search (thus heavily restricting the
number of candidate analogues). Altogether, MS2Query offers
an alternative route to analogue searching, and when capped
using precursor mass information of the query spectrum, can
also be used to search for exact matches. As it is built on the
matchms package (see also Section 2.2.1), it ts neatly in
Python-based metabolomics annotation workows used for
large-scale annotations, for example as done by Simone et al.69

2.3.3 Annotation using spectral libraries. In this section,
we will discuss a non-comprehensive selection of spectral and
structural MS-based annotation tools in the context of large-
scale NELs metabolomics studies.70–72

Spectral library matching remains a cornerstone for MS-
based annotation in large-scale NELs metabolomics studies.
Several open-access spectral libraries are widely used for der-
eplication and identication of NPs. MassBank73 is one of the
earliest and most comprehensive public repositories, providing
high-quality reference spectra for a broad range of metabolites.
GNPS has become a central platform, not only aggregating MS/
MS spectra relevant to NPs from diverse sources but also
enabling community-driven curation and containing more
specialized sub libraries such as PhytoChemical Library, the
NIH Natural Products Libraries, the Lichen Database,74 the
MIADB,75 or Annonaceous Metabolites Database.76 Here we
would like to emphasize how much the size covered by the
chosen library will impact later scalability. Other openly avail-
able spectral libraries specialized libraries include the multiple
ones shared by Brungs et al.77 or MassBank of North America.

Despite the increasing size and diversity of these libraries,
coverage of the vast chemical space of NPs remains incomplete,
and matching rates in large-scale untargeted studies are still
low. This limitation has driven the development of hybrid
approaches that bridge spectral and structural annotation. The
rst one was MetFrag,78 followed by CFM-ID,79 and more
recently FIORA.80 CFM-ID was used to fragment 1 million
compounds of interest originating fromWikidata (or its LOTUS
subset) and shared as an ISDB81 (In Silico DataBase). These
integrative strategies are increasingly important for NELs
studies, where the diversity of metabolites oen exceeds the
coverage of any single spectral library.

2.3.4 Annotation using structural libraries
2.3.4.1 SIRIUS. SIRIUS has emerged as the leading suite for

molecular structure annotation from MS/MS data. At its core,
SIRIUS determines the molecular formula of precursor ions and
their fragments using high-resolution MS, constructing frag-
mentation trees that model the breakdown of molecules during
MS/MS analysis. To simplify use, the platform's modular design
now includes several specialized subtools: CSI:FingerID82

predicts molecular ngerprints and enables structure identi-
cation by searching large molecular databases; CANOPUS83

assigns compound classes also to unknown metabolites;
Nat. Prod. Rep.
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ZODIAC84 improves molecular formula ranking by leveraging
relationships across spectra; COSMIC85 provides condence
scoring for structural annotations; and MSNovelist86 supports
de novo structure generation. Parts of these subtools will be
presented here and others in later subsections.

Sirius' compute times are important, but the most intensive
steps are outsourced to external servers. While those times
might look prohibitive, the problems it answers are much more
complex. Keeping in mind the computation time increases
exponentially with m/z, SIRIUS's scalability has been demon-
strated on small molecules through its application in large-scale
metabolomics studies. For example, in a recent study,85 its
ability to process 20 080 LC-MS/MS datasets, including a human
dataset of 2666 runs completed in 4 days and an Orbitrap
dataset of 17 414 runs requiring 21 days, both on a 96-core
compute node. In a study oriented towards multi-omics of
Earth's microbiomes,38 Sirius annotated fragmentation spectra
in 880 environmental samples, though specic computation
times for SIRIUS were not detailed, it was specied that the
Sirius v. 4.4.25, headless, Linux was used for this task. The term
“headless” indicates that this version is designed to run without
a graphical user interface (GUI), oen used for servers or virtual
machines where graphical interfaces are unnecessary, allowing
for more efficient use of system resources. These instances
highlight SIRIUS's capacity for repository-scale analysis,
managing databases like PubChem (77 190 484 unique struc-
tures) and a biomolecule structure database (391 855 unique
structures), indicating robust scalability with high-performance
computing resources.

2.3.5 Annotation of substructures. Substructure annota-
tion is another way to get structural insights, when full struc-
tural annotation is not possible. Several computational tools
have been developed to address this challenge: CFM-ID,
mentioned earlier for in silico generation of spectra from
structures, has substructure annotation at its core. While it
slows its execution down, the fragments generated by CFM-ID
are matched to substructures of the original structure, using
RDKit to generate possible combinations. SIRIUS now also
offers substructure annotation capabilities. With the release of
SIRIUS 5, the Epimetheus module enables direct visualization
and assignment of substructures to MS/MS peaks, allowing
users to inspect and validate substructure annotations along-
side candidate structures. This development further
strengthens SIRIUS's position as a comprehensive suite for both
structure and substructure annotation in metabolomics
workows.

2.3.5.1 MS2LDA. Introduced in 2016, MS2LDA was the rst
tool to identify substructure-related mass spectral patterns in
an unsupervised manner.87 By applying a topic modeling algo-
rithm to MS/MS spectra, MS2LDA groups frequently co-
occurring mass fragments and neutral losses into patterns
termed Mass2Motifs. Ideally, these Mass2Motifs serve as
“substructure footprints” that can be linked to underlying (bio)
chemical structures. The number of these unsupervised “free”
Mass2Motifs to be discovered must be specied by the user—
a task that becomes increasingly challenging with complex
mixtures and large datasets. As a result, MS2LDA outputs
Nat. Prod. Rep.
typically contain both meaningful and noise-driven patterns. To
address this, a dedicated web application was developed,
offering visualization tools such as feature histograms and
color-coded spectra to support expert review. However, manual
interpretation of Mass2Motifs remains a bottleneck in large-
scale analyses, prompting the development of automated
tools for prioritizing plausible motifs for downstream
annotation.

2.3.5.2 MotifDB. Recognizing the value of capturing and
sharing validated substructure patterns, the MotifDB repository
was established shortly aer MS2LDA's launch.88 It now hosts
several curated MotifSets derived from plant, microbial, urine,
and reference standard datasets. Ten of these MotifSets contain
at least 10 manually annotated and validated Mass2Motifs—
ranging from 10 motifs derived from monoindole alkaloid
standards to 134 motifs from experimental urine data. In total,
nearly 500 annotated Mass2Motifs are available. These can be
integrated directly into MS2LDA analyses to screen experi-
mental data for known motifs, streamlining substructure
identication and, in some cases, eliminating the need for
further structural annotations.

2.3.5.3 MESSAR. An alternative supervised substructure
discovery approach introduced in 2020.89 This tool was trained
to connect mass fragments and mass differences to specic
substructures to perform substructure recommendations
motivated by association rule mining. The substructure anno-
tation takes place in two steps: rst, the mass fragments and
differences are annotated with structures, and secondly, these
annotations are clustered to nd the maximum common
substructures that best t with the provided information.

2.3.5.4 Large-scale substructure mining. Both the MS2LDA-
MotifDB and MESSAR route may work well for relatively small
datasets, with the number of mass fragment and neutral loss
features combined for all mass spectra as the key factor,90 but
their applicability for larger-scale datasets is limited. One aspect
that contributes to this is the memory requirements of these
tools: when run with a large amount (over 100 000) combined
mass fragments and neutral losses, a typical server easily runs
out of memory. We should add here that running MS2LDA with
mainly annotated Mass2Mots is substantially faster and less
computationally demanding than running MS2LDA with
predominantly “free” Mass2Motifs, as part of the topic model-
ling distributions are xed for annotated preset Mass2Motifs
and no longer need to be learnt from the data. Another aspect is
the required human expert knowledge and time to analyze and
compare MESSAR results (of step 2) to come to plausible and
reliable substructure information, and to validate the MS2LDA-
MotifDB matches. For instance, is the annotated Mass2Motif
genuinely associated with the experimental mass spectrum, or
could it be a misleading result caused by the overlap of one or
two prominent features that make up the Mass2Motif
substructure pattern? Current initiatives are focused on
addressing these challenges in MS2LDA, with the goal of
developing a community-driven substructure annotation plat-
form that is modular, scalable, and that makes it easier to
interpret the mass spectral patterns. Very recently, MS2LDA 2.0
has been launched as a stepping stone toward such an
This journal is © The Royal Society of Chemistry 2025
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ecosystem, including Mass2Motif Annotation Guidance to
facilitate Mass2Motif structural annotation and a completely
redesigned MS2LDAViz application to visualize and interpret
Mass2Motifs interactively.91

2.3.6 Annotation of unknown structures (de novo).
Currently, complex extracts contain more unknown than known
structures, and these include completely novel chemistry.20

Thus, computational metabolomics tools that are able to aid in
the elucidation of novel chemistry are indispensable when
analyzing NELs.

2.3.6.1 MSNovelist. Exploring the unknown chemical space
remains one of the greatest challenges in metabolomics, where
many spectra do not match known structures or analogues.
MSNovelist86 offers a cutting-edge solution by predicting puta-
tive molecular scaffolds or structural features for unknown
compounds. By employing generative models trained on large
chemical libraries, MSNovelist suggests possible structural
hypotheses based on MS/MS data, even for compounds entirely
outside the boundaries of known chemical space. This capa-
bility is crucial for scaling metabolomics to NELs, where the
chemical diversity vastly exceeds the capacity of traditional
structural annotation tools. Diving into the unknown not only
expands our understanding of chemical diversity but also
highlights potential leads for further experimental investiga-
tion. By combining generative tools like MSNovelist with
repository-wide non-structural annotation strategies, meta-
bolomics can achieve a scalable and integrative framework for
addressing both the known and unknown realms of NELs.

2.3.7 Non-structural annotation
2.3.7.1 Repository scale. Non-structural annotation provides

critical insights into metabolomics datasets without requiring
full structural elucidation, offering a scalable approach to
handle the vast chemical diversity present in NELs. Kruve
et al.92,93 demonstrated how activities can be predicted based on
empirical data without resolving chemical structures, using
tools that infer properties such as toxicity or bioactivity through
machine learning models trained on physicochemical and
spectral features. This approach is particularly valuable for
prioritizing compounds with potential biological relevance
when structural elucidation is infeasible due to data limitations
or complexity. Similarly, Capecchi et al.94 showcased how bi-
osource annotation—linking metabolites to their biological
origins—can be predicted. Other trials to predict the missing
data points are ongoing.95 By using statistical models to corre-
late spectral features with biosource metadata, they enabled the
prediction of probable biological origins of unknown
compounds. This is exemplied by workows such as MASST
repositories,96 which integrate spectral similarity to link known
spectra to biological sources or previously studied NPs. On
a broader scale, repository-wide analyses of spectral databases
provide a powerful means of non-structural annotation,
leveraging the vast known spectral space to contextualize
unknowns based on their spectral neighborhoods.

2.3.7.2 Biological source. Incorporating taxonomic and bio-
logical source information into metabolomics workows is
a crucial step toward improving annotation accuracy and scal-
ability in NELs studies. Rutz et al.97 demonstrated that
This journal is © The Royal Society of Chemistry 2025
Taxonomically Informed Metabolite Annotation (TIMA) signif-
icantly enhances the condence of NPs annotations by inte-
grating taxonomic metadata directly into computational
workows. This approach enables researchers to prioritize
annotations that align with known biosynthetic capacities of
organisms, reducing false positives and improving the overall
reliability of metabolite annotation. Building upon this foun-
dation, the LOTUS initiative98 presents a scalable, community-
driven framework for associating molecules with their biolog-
ical origins. By structuring NPs data with rich taxonomic
metadata, LOTUS fosters interoperability and knowledge-
sharing across research disciplines, breaking traditional silos
in metabolomics. This initiative not only improves annotation
quality but also expands the reach of repository-scale analyses,
enabling global collaborations in NPs discovery.

The impact of taxonomically informed workows is further
exemplied by foodMASST,99 microbeMASST,96 and plant-
MASST,100 which leverage repository-wide spectral similarity
searches to link unknown metabolites with known biological
sources. By integrating taxonomy-driven approaches with
spectral matching, researchers can uncover novel chemical
relationships, rene annotation condence, and scale meta-
bolomics analyses to unprecedented levels. These methods
collectively demonstrate that incorporating biological context
into computational tools is not just an enhancement—it is
essential for the future of scalable, high-condence
metabolomics.

2.3.7.3 Color-coded MN and bioactivity correlations
approaches. Integrating biological activity data with large-scale
untargeted MS-based metabolomics data involved several
innovative approaches. Initially, the NP community employed
color-coded molecular networks to represent the biological
activities of active fractions. This visual method allowed
researchers to manually prioritize MS features based on their
bioactivity. A larger-scale example of this approach is the work
by Olivon et al.,4 who analyzed 292 extracts from various
Euphorbiaceae species. The authors successfully integrated
metabolomic, taxonomic, and bioactivity data into a single data
matrix, facilitating the prioritization of bioactive compounds.
Another signicant advancement in this eld is bioactivity-
based molecular networking, proposed by Nothias et al.101

This method predicts the bioactivity of each MS feature by
calculating the Pearson correlation between activity proles and
intensity proles for each feature in the sample set. The
approach utilizes a combination of open-source tools and
custom R scripts to achieve this integration. Despite its poten-
tial, no studies have yet applied this tool for NELs bioactivity
integration. However, these methods are labor-intensive and
require tailored workows to be applicable to NELs. At last, an
updated version of this approach has been adapted by McCall
et al.102 by applying Spearman correlation instead of a Pearson
correlation which assumes linear relationships and normally
distributed data.

While our focus here has been on correlation-based
approaches due to their widespread use and accessibility in
the eld, alternative methods also exist. These include super-
vised machine learning algorithms, multivariate statistical
Nat. Prod. Rep.
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models (e.g., PLS-DA), and network-based or topology-informed
strategies, which can capture more complex, non-linear rela-
tionships between chemical features and biological activity.
Although these approaches are promising and increasingly
explored, correlation methods remain the most commonly
applied in current NELs workows due to their interpretability
and ease of implementation.

2.3.7.4 From compound activity mapping to NP analyst. The
quest for the development of new strategies for the prioritiza-
tion of lead compounds with unique structural and/or biolog-
ical properties from large scale untargeted metabolomics data
led Linington et al. to design Compound Activity Mapping
platform.103 In this study, the authors combined high-content
screening and untargeted MS-based metabolomics of 234
natural extracts, combining 10 977 MS features with 58 032
biological measurements to identify 13 clusters of fractions
containing 11 known compound families and four new
compounds. Seven years later, the same authors developed NP
Analyst,104 a stand-alone platform for data integration that
includes both data analysis and data visualization components.
NP Analyst accepts bioassay data of almost any type and is
compatible with MS data from major instrument manufac-
turers, making it a versatile tool for generating global network
views of biologically active chemical space for large extracts
libraries. NP analyst analyzed a set of 925 pre fractions from an
in-house marine actinobacterial strain library for bioactive
compound discovery, using biological data from BioMAP anti-
bacterial proling against 15 bacterial pathogens.
Fig. 5 Scalable workflow for the exploration of NELs. This diagram illustra
novel data generation to enable scalable exploration of natural extracts l
biological and chemical domains as well as spectral data themselves. (1) E
incorporated as prior knowledge. (2) Extracts are prioritized, and novel
extract prioritization based on spectral signatures. (4) Individual featur
combines biological, chemical, and spectral information to enable more
enables complex, hypothesis-driven queries—such as identifying comp
informs subsequent iterations, creating a continuous, virtuous cycle of d

Nat. Prod. Rep.
2.4 Querying, prioritization, and decision-making

2.4.1 Querying metabolomics data. Efficient querying is
a pivotal aspect of scaling MS-based metabolomics, enabling
researchers to extract meaningful insights from increasingly
complex datasets (Fig. 5). As metabolomics workows grow to
incorporate large-scale NELs studies, the development of
versatile and scalable query languages tailored for MS data is
essential. This section highlights two key approaches to
querying MS data: MassQL, designed specically for MS data,
and SPARQL, a semantic query language for knowledge graphs.

MassQL105 is a specialized query language tailored for
metabolomics data, offering an intuitive syntax to perform
advanced queries on MS datasets. Built to accommodate the
complexity of MS, MassQL allows researchers to query raw and
processed data by specifying parameters such as RTs, mass-to-
charge ratios, and intensity thresholds. This granularity
makes it an excellent tool for identifying features of interest
within large datasets or pinpointing specic metabolites across
samples.

What sets MassQL apart is its accessibility to non-
programmers, as its syntax closely resembles natural
language. This democratizes data exploration, enabling
a broader range of researchers to engage with complex datasets
without requiring extensive computational expertise. As meta-
bolomics scales, MassQL's ability to handle vast datasets effi-
ciently will become increasingly important, particularly for
high-throughput studies where rapid and targeted data extrac-
tion is critical.
tes an iterative framework that integrates prior knowledge retrieval with
ibraries. Mass spectrometry data serve as a central component, linking
xisting data—including spectral features, literature, and taxonomy—are
spectral data are generated. (3) These data are used to further refine
es within prioritized extracts are then ranked. (5) Semantic elevation
meaningful annotation and interpretation. (6) The resulting knowledge
ounds with substructures similar to known bioactive molecules—and
iscovery.

This journal is © The Royal Society of Chemistry 2025
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SPARQL (SPARQL Protocol and RDF Query Language) offers
a complementary approach to querying, particularly in the
context of knowledge graphs and linked data. By leveraging the
semantic structure of knowledge graphs, SPARQL enables
complex and relational queries that go beyond the scope of raw
MS data. For small molecules, the Integrated Database of Small
Molecules (IDSM106) offers an incredible gateway to different
small-molecules datasets also covering biological assays. It also
comes with fast structural107 and spectral108 similarity exten-
sions. For instance, researchers can query not only spectral data
but also metadata linking metabolites to biological sources,
experimental conditions, or known activities (see examples in
https://idsm.elixir-czech.cz/sparql).

SPARQL's exibility is particularly advantageous in large-
scale NELs studies, where integrating diverse datasets is
crucial for generating actionable insights. For example, a query
could retrieve all metabolites with similar spectral features to
a compound of interest, produced by a specic biosource, and
associated with a given activity. As knowledge graphs become
more widely adopted in metabolomics, SPARQL will be an
indispensable tool for navigating the interconnected data
landscape, facilitating both hypothesis-driven and exploratory
analyses.

2.4.1.1 Toward scalable query frameworks. The scalability of
querying in metabolomics depends not only on the robustness
of tools like MassQL and SPARQL but also on their integration
into broader workows. Combining the specicity of MassQL
with the relational power of SPARQL could provide a hybrid
approach, leveraging the strengths of each language to address
both raw data exploration and metadata-rich queries. Together,
these tools will be critical for advancing metabolomics into the
era of large-scale NELs studies, enabling researchers to manage
and analyze the ever-expanding volumes of data with precision
and efficiency.

2.4.2 Prioritization and decision-making. Inventa109 is
a computational workow that enables an optimal decision
making for extracts prioritization by pinpointing the structural
novelty through the calculation of a priority score. The latter
sums four components, including a feature component (that
measures the feature specicity and annotation), a literature
component (that reects the number of compounds reported in
the literature), the class component (that indicates whether
a chemical class is detected), and the similarity component
(that exploits multiple outlier-based machine learning algo-
rithms to highlight dissimilarity) together with their modu-
lating factors. As a proof of concept, Inventa was applied to
a collection of 76 taxonomically related extracts of the Celas-
traceae family and resulted in the prioritization of an extract
and the subsequent description of thirteen new beta-agarofuran
sesquiterpenes.

2.4.2.1 Rational library minimization. In a recent study
McCall et al. developed an innovative approach to rationally
minimize NELs by directly addressing cross-organismal
redundancy in NP production.102 This method leverages
a custom R code that processes the node table generated
through GNPS classical molecular networking workow. To
select extracts to be added to the rational library, the algorithm
This journal is © The Royal Society of Chemistry 2025
aggregates the features by scaffold (molecular family), then
chooses the extract that contains the most scaffolds. Then,
those scaffolds are deleted from the data set. Aer that, the
extract with the most scaffolds not already accounted for is
added to the rational library. This process iterates until
a desired percent of maximum diversity is reached or maximum
diversity. The authors applied their approach on a NELs of 1439
fungal extracts and reduced the size of the library to 216 extracts
(6.6 fold reduction) without decreasing bioactive hit rates.
Remarkably, this approach enables dramatic cost reduction
across all subsequent high throughput screening projects using
NELs.

2.4.2.2 FERMO. A recently redesigned and updated tool that
supports reproducible prioritization of samples and metabolite
features based on bioactivity or other types of phenotypic
information is FERMO.110 The main contribution of FERMO is
bringing together the heterogeneous data types required to
jointly assess during the prioritization process. By eliminating
metabolite features that are unlikely to be relevant for your
study, i.e., because they are of known structures or unlikely to be
correlated to bioactivity, a reduced set of metabolite features
remains for further validation. Currently, FERMO uses lters
based on novelty, uniqueness, specicity, and phenotype-
association. By design, scalability was accounted for by sepa-
rating the FERMO core code for data integration and metric
calculation from the subsequent visualization through a dash-
board that is also embedded in an online web application
(https://fermo.bionformatics.nl). Doing so, a user could run
FERMO on a larger set of metabolomics proles with
associated metadata and activity data, without the direct need
to visualize all data in a dashboard. For example, a selection
of the metabolite features could be extracted from the
resulting tables based on a set of lters or thresholds, for
example on feature abundance (see also Sections 2.2.3 and
2.2.4). Another limitation on the running time of FERMO is
the size of the MS library used for annotations: with the
current matchms-based implementation of performing mass
spectral comparisons, adding annotations from the large GNPS
public library (containing half a million reference spectra) may
take a while (several hours) to complete; hence, a smaller
(approximately hundreds to a few thousand of spectra) focussed
(i.e., with relevant molecules for the samples type) library is
currently recommended. As library matches form an integral
part of the FERMO novelty score, future work will aim to tackle
this scalability issue by implementing novel solutions as also
described in this review. Finally, FERMO's output can be stored
and shared with the scientic community in a reusable format
as a starting point for future exploratory data analysis studies.

2.4.2.3 MS2DECIDE. MS2DECIDE111 is a white-box recom-
mendation tool that prioritizes candidate spectra by integrating
complementary annotations from three engines—GNPS,
SIRIUS, and ISDB-LOTUS—via a decision-theoretic function
that integrates expert knowledge in NPs. For each spectrum, the
three engines each propose a best-match structure with an
associated similarity/condence score; pairwise Tanimoto
coefficients among these structures add three more metrics.
These six values feed into the expert-tuned function to produce
Nat. Prod. Rep.
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a “knownness” score, which ranks candidates by their likeli-
hood of novelty. Although its model currently relies on a single
expert input (potentially introducing bias), MS2DECIDE offers
transparent, customizable reasoning and lays the groundwork
for hybrid approaches that combine multiple expert insights
with automated optimization.

2.4.2.4 msFeaST. The experimental design of a meta-
bolomics study typically gives rise to several relevant compari-
sons between sample groups to answer the research question(s)
at hand for which various statistical approaches are available
and used in the metabolomics eld. In NELs exploration, these
are typically related to bioactivity and structural novelty.
Current metabolomics discovery workows mostly perform
statistical analysis as one of the nal steps to prioritize the
relevant metabolite features. A recent tool, however, integrates
statistical analyses and metabolite grouping, the results of
which can be loaded in an interactive dashboard. As such,
msFeaST offers a complementary workow to molecular
networking and FERMO.112 In the overview, metabolite features
are displayed as nodes on a chemical map. In that map, drawn
based on mass spectral embeddings computed based on a mass
spectral similarity score of choice (i.e., modied cosine52 or
MS2DeepScore64,65), the size of the nodes is proportional to
statistical input: i.e., the log 2-fold change between two speci-
ed groups based on the provided metadata, or the p-value that
is associated with the feature-set testing, a group-based statis-
tical approach. The larger the node, the more relevant it may be
for the differentiation between the two groups, giving the user
a clue on which parts of the chemical map to focus on for
further analyses. In NELs exploration, areas in the chemical
landscape with larger nodes could correspond to metabolite
feature groups with bioactivity using metadata that contains the
outcome of performed bioassays. What makesmsFeaST unique,
is its novel approach of grouping the features using the simi-
larity matrix, and its integrated networking capabilities by
interactively showing which metabolite features would be con-
nected in a molecular network if one would be constructed.
However, such approaches come with limitations in scalability,
due to several reasons related to humans and computers. For
example, if the chemical landscape in the form of a mass
spectral embedding goes beyond 5–10 thousand features, it is
very difficult for humans to keep the oversight, and for inter-
active dashboards to remain responsive when the user queries
it. This has to do with the visual limits of intake of humans on
the one hand, and the requirement that all the information and
sub panels are lined on the other hand.113 Therefore, dedicated
choices in sample set selection and feature thresholding (as
discussed in Sections 2.2.3 and 2.2.4), i.e., to reduce noise, are
recommended before using tools such as FERMO andmsFeaST.

3. Concluding remarks/outlook

The exploration of NELs sits at the intersection of multiple
disciplines—from analytical chemistry and computational
biology to pharmacognosy, data science, and ecology. Realizing
the full potential of these rich biochemical resources requires
a deeply multidisciplinary approach, supported by
Nat. Prod. Rep.
a commitment to open science and community-driven knowl-
edge sharing. Initiatives like ENPKG3 exemplify this vision:
creating interoperable, reusable, and openly accessible knowl-
edge infrastructures that allow diverse communities to collab-
oratively build and rene understanding. This strategy will be
the way forward for unlocking the full potential of NP research
in the data-driven era and we encourage developments in this
direction. In the same spirit, the future of MS-based meta-
bolomics for NELs exploration must embrace open, extensible
platforms where data, tools, and annotations are treated as
shareable, evolving assets—catalyzing reproducibility, collective
intelligence, and global collaboration.

As datasets grow in volume and complexity, signicant
challenges remain in scaling both data acquisition and
computational interpretation. Despite the expansion of NP-
oriented spectral repositories like GNPS, microbeMASST, and
plantMASST, or structural ones like COCONUT,114 LOTUS,98 or
NPAtlas,115 these resources still represent only a narrow window
into the immense chemodiversity of NPs.

To address these limitations, future methodologies must
integrate scalable computational strategies with high-quality
experimental design. Scalable NELs analysis offers trans-
formative potential: enabling the construction of global chem-
ical atlases, revealing biosynthetic patterns116 across
ecosystems, and accelerating the discovery of molecules with
pharmaceutical, agricultural, or ecological relevance. The inte-
gration of metabolomics with genomics,117 biosynthetic
pathway prediction,118 and phenotypic proling104,110 will
further strengthen efforts to assign function to the molecular
dark matter of nature.

The strive for robust, high-resolution data acquisition strat-
egies that maximize spectral quality and coverage will be crit-
ical. Limitations in chromatography—such as peak capacity
and scan speed—must be addressed alongside rigorous pre-
processing, to ensure downstream tools operate on meaningful
signals. In large-scale studies, where sample numbers and
molecular features multiply rapidly, these foundational
considerations are critical for ensuring scalable and reproduc-
ible insights.

On the computational side, continued innovation in spectral
matching, annotation algorithms, and interactive data
summarization will be key. Community-driven efforts like
GNPS, ReDU,119 as well as more centrally built platforms like the
Molecules Gateway69 are already demonstrating how open
infrastructure and automated workows can scale annotation
and analysis across thousands of samples. At the same time,
spectral libraries must grow not only in size, but in sophisti-
cation—supporting rich metadata integration and enabling
annotation inheritance across molecular families. Mass spec-
tral embeddings or foundational molecular networks represent
promising directions for organizing and contextualizing this
knowledge more effectively. This will both help the community
to better map biochemical diversity, even when more and larger
datasets are being generated, and to better assess novelty across
samples and features. The latter will be essential to guide our
attention to the most relevant and promising NPs for further
research.
This journal is © The Royal Society of Chemistry 2025
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Once a few thousand metabolite features have been selected
to sieve through, interactive visualization becomes feasible, and
an (online) dashboard can function as a central place to interact
with all the heterogeneous data that is available for those
features. This allows for, i.e., on-the-y adjustment of lter
settings, and when all panels of the dashboard are linked and
updated, this will facilitate the selection of NELs metabolite
features for further validation. Especially with the multi-
facetted datasets to be considered, visualization is key during
the decision-making process to ensure that parameter settings,
lters, and thresholds have the desired effects whilst mini-
mizing any unwanted side-effects.

Finally, the soware infrastructure that powers meta-
bolomics must evolve with the same attention to scalability and
openness. Modular design, transparent documentation, and
community-maintained pipelines are vital for long-term
sustainability and innovation. These principles not only
support technical robustness, but also echo the broader goals of
projects like Wikifunctions (https://www.wikifunctions.org/
wiki/Wikifunctions:Main_Page): creating a world where
functional knowledge is openly available, composable, and
interoperable across contexts.

In summary, building a scalable and collaborative future for
NELs metabolomics will require coordinated progress across
data generation, analysis, soware development, and commu-
nity governance. By embracing open science, multi-
disciplinarity, and shared infrastructure, we can transform how
we explore, understand, prioritize, and utilize the extraordinary
chemical diversity encoded in the natural world.
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A. M. Echavarren, M. Frédérich, T. Gaslonde, M. Girardot,
Nat. Prod. Rep.
R. Grougnet, M. S. Kirillova, M. Kritsanida, C. Lémus,
A.-M. Le Ray, G. Lewin, M. Litaudon, L. Mambu,
S. Michel, F. M. Miloserdov, M. E. Muratore,
P. Richomme-Peniguel, F. Roussi, L. Evanno, E. Poupon,
P. Champy and M. A. Beniddir, Sci. Data, 2019, 6, 15.

76 S. A. Agnès, T. Okpekon, Y. A. Kouadio, A. Jagora, D. Bréard,
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M. Drexler, P. Šácha, P. C. Dorrestein, D. Petras,
L.-F. Nothias, V. Veverka, R. Nencka, Z. Kameńık and
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