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Antibody-based therapeutics continue to be an important pharmaceutical development modality.

Crystallization of antibodies is important for structural characterization, but in addition has the potential for use

as a separation method and for use as a dosage form. Nevertheless, bringing about controlled crystallization of

an antibody remains a challenging task due to its large size, high degree of segmental flexibility, and the

intricacy of all the occurring interactions (e.g., protein–protein interactions, protein–solvent interactions, etc.).

Methods to predict important contact sites could help to develop such crystallization methods. However,

limited data and understanding have hitherto not allowed the development of such robust methods. This study

employs machine learning combined with in silico modelling of crystal structures using available experimental

structures to identify the crucial physicochemical features necessary for successful antibody crystallization in an

attempt to remedy that gap. The developed method can with good accuracy distinguish crystal-site residues

from non-crystal-site residues. A set of 510 descriptors is utilized to characterize each residue, which is treated

as a distinct data point. Moreover, new algorithms have been developed to design novel descriptors that

improve the model's predictive capabilities. Fragment antigen-binding (Fab) regions are investigated due to the

scarcity of full-length monoclonal antibodies (mAbs) crystal structures. The current findings show that the

extreme gradient boosting (XGBoost) algorithm effectively identifies crystal site residues, as evidenced by an

AUPRC value that is more than 3-fold higher than that of the baseline model. The top-ranked descriptors

indicate that crystal-site residues are primarily characterized by solvent-exposed residues with high spatial

aggregation propensity (SAP), signifying hydrophobic patches, and their immediate surface-exposed neighbors.

Moreover, these high SAP residues are often surrounded by other solvent-exposed residues that are either

polar, charged, or both. In contrast, residues not involved in crystal interfaces generally lack these essential

features, though some might be excluded due to specific crystal lattice arrangements. Additionally, reducing

the feature set from 510 to the top 15% in the XGBoost model yields similar performance while significantly

simplifying the model.
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Design, System, Application

Monoclonal antibodies (mAbs) are pivotal therapeutic agents; however, their inherent structural complexity and instability pose significant challenges for
crystallization, purification, and formulation. Effective prediction of critical contact sites is therefore crucial for advancing crystallization techniques. Despite this
need, the development of robust, universally applicable methods has been limited by insufficient data and an incomplete understanding of the underlying molecular
mechanisms. This study addresses these challenges by introducing a machine learning-based classification framework designed to identify structural features that
differentiate crystal-site residues from non-crystal-site residues. Using in silico crystal modeling of experimentally available Fab fragments, this approach systematically
analyzes residue-level properties to predict crystallization-prone regions. The study emphasizes structure-based descriptors over sequence-based features, providing
deeper insights into the spatial and physicochemical characteristics influencing crystallization. Antigen-binding fragments (Fabs) are employed as a proof-of-concept
due to their structural simplicity and availability, laying the groundwork for extending this methodology to full-length mAbs. Immediate applications include guiding
site-directed mutagenesis to enhance crystallization propensity and optimizing antibody engineering for structural studies. In the future, these insights can be
integrated into predictive tools for large-scale mAb development, facilitating progress in drug discovery, structural biology, and biopharmaceutical formulation. This
framework bridges computational and experimental approaches, offering a streamlined strategy to advance mAb research and applications.
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1 Introduction

Monoclonal antibodies (mAbs) are top-selling biopharmaceutical
products due to their high specificity, minimal side effects, and
ability to target a wide range of diseases, making them highly
effective therapeutic agents.1–19 For instance, Jay et al. recently
reported that ten top-selling drugs are protein biologics, whereas
five are monoclonal antibodies, representing at least 40% of the
drugs in development today.9 As invaluable research tools, mAbs
aid in understanding complex biological processes and are at
the forefront of personalized medicine, enabling treatments
tailored to individual patient profiles.5 Furthermore, innovations
such as bispecific antibodies and antibody–drug conjugates
continue expanding their therapeutic applications, underscoring
their crucial role in therapeutic and diagnostic fields.6,7

However, mAbs are inherently unstable due to both physical
and chemical degradation, especially since mAbs solutions
often need to be formulated as concentrations greater than 100
mg mL−1, which can also cause viscosity issues.20 Moreover,
mAbs' structural complexity leads to challenges with
production,21 including purification. Investigating mAb
structure is therefore important. Advanced techniques such as
X-ray crystallography (XRD), nuclear magnetic resonance
(NMR) spectroscopy, and cryo-electron microscopy (cryo-EM)
are critical for determining the three-dimensional structures of
mAbs at atomic resolution. These methodologies provide
insights into the conformational dynamics, binding
interactions, and functional mechanisms of mAbs.
Crystallization stands out as a crucial technique, not only in
structural biology (determination of 3D structures of proteins)
but also in replacing the traditional downstream processing for
mAbs, in addition to potential formulation as crystals.8–25

Despite its potential use in processing and product
development, mAb crystallization faces several challenges.18

The variability in mAb sequence and structure requires ad
hoc development of crystallization protocols mostly relying
on trial-and-error approaches, which leads to limited
predictability and lack of universality. Additionally, the large
molecular weight of mAbs (approximately 150 kDa)
complicates their organization into a crystalline lattice, while
flexible regions often result in inconsistent and
irreproducible outcomes.8–19 Identifying properties that
facilitate mAb crystallization would be important for creating
predictive models to streamline the process, saving time and
resources.

In the present work, a novel classification scheme is
introduced to identify key features that influence antigen-
binding fragments (Fab) crystallization through the
application of computational modeling and machine
learning. The method can also be used to differentiate
between crystal site residues and non-crystal site residues by
pinpointing critical structural features and predicting distinct
elements that characterize each residue type. Understanding
these differences provides valuable insights into the
processes involved in antibody crystallization. Antibody
fragments were investigated as a proof-of-concept due to the

abundance of their structures in the Protein Data Bank: only
four full-length structures of monoclonal antibodies have
been determined and deposited in the PDB: 1IGT (1997,
mouse IgG2), 1IGY (1998, mouse IgG1), 1HZH (2001, human
IgG1), and 5DK3 (2015, human IgG4).9 In addition, antibody
fragments can offer valuable scaffolding for proteins in the
early stages of drug discovery.26 The principles derived from
studying Fab fragments can be used to investigate the
crystallization behavior of full-length mAbs as similar
structural features are involved. Previous scientific
investigations have proposed binary classification approaches
to determine the critical properties necessary for protein
crystallization, typically based on sequence data.27–33 These
classification models were designed to distinguish
crystallizable proteins from non-crystallizable ones, thereby
identifying key features for crystallization derived from
protein sequence information. In contrast, in the present
study, the proposed approach emphasizes key structure-
based features and developing a predictive model to find
crystal-prone regions, thus uncovering essential structural
attributes. Successful crystallization sometimes depends on
protein engineering as a final option to create variants when
wild-type proteins fail to crystallize. However, even when
wild-type proteins do form crystals, engineering may be
required to modify crystal contacts and generate new crystal
forms, especially for high-resolution structures needed in
drug design to assess interactions between lead compounds
and the target protein.34 This study can also be applied to
site-directed mutagenesis to increase or decrease the
crystallization propensity.

To the best of our knowledge, this is the first work
applying a classification strategy for crystal site residues
versus non-crystal site residues using machine-learning. The
employed methodology is used for all site residues from the
experimentally available Fabs through in silico crystal
structure modeling.

The manuscript is divided into the following sections:
section 2 (Results and discussion) explains the process of
generating the dataset for machine learning, the design of
the feature set, the key observations, the performance of
different machine learning algorithms, top-ranked features,
and inferences drawn from the obtained results. Section 3
(Summary and conclusions) summarizes the main results
and proposes a crystallization mechanism. Additionally,
future applications and perspectives for the current research
are also addressed. Lastly, section 4 presents a detailed
overview of all the methods and materials used during the
computational modeling and application of the machine
learning algorithms.

2 Results and discussions
1. Classification scheme and machine learning dataset
generation

To identify accurately the physicochemical features essential
for Fab crystallization through machine learning, a robust
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dataset derived from experimental observations is crucial.
Currently, there is no experimental classification of Fabs into
definitive categories such as crystallizable versus non-
crystallizable or easy-to-crystallize versus hard-to-crystallize.
To address this, we devised a strategy to create a tailored
dataset for Fab crystallization studies.

We classified each amino acid residue into two distinct
classes: crystal-site versus non-crystal-site. Residues located
in the crystal interfaces within the crystal lattice were
classified by their reduced solvent accessibility upon
interaction, as indicated by a non-zero buried surface area
(BSA) and a solvent-accessible surface area (SASA) of 50 Å2

or more. To ascertain the appropriateness of the selected
SASA cut-off, the SASA values of fully exposed residues (X)
within an alanine-X-alanine (ALA-X-ALA) tri-peptide
configurations were developed. In Fig. 1(a), the SASA values
of fully exposed residues (X) within an alanine-X-alanine
(ALA-X-ALA) tri-peptide residue values is shown. Based on
this, for the residues in the Fab's, we set an SASA threshold
of 50 Å2, which is also consistent with the literature that
shows that solvent exposure of a residue was indicative of
its likelihood being within the protein–protein interface.35–39

Mishra et al., suggested that residues were considered
surface-exposed if more than 50% of the solvent-accessible

surface area of their side-chains was exposed.39 Thus, the
more solvent exposure of a residue present in the protein–
protein interface, the greater the probability of its
involvement in the formation and stabilization of crystalline
interfaces (Fig. 1(b)). Also, see Fig. 2 for comprehensive
classification scheme implemented in the present study.
The residues within 12 Å of the Fab's center of mass,
despite having higher SASA values, were excluded from the
machine learning (ML) model to avoid false positives due to
their low likelihood of appearing at crystal sites, as these
residues were typically located deep within the core of the
Fab region (Fig. 2).

The structures of Fabs were obtained from the Protein
Data Bank (PDB)40 and were selected through the structural
antibody database (SAbDab).41 Fabs deposited as monomers
were specifically utilized, excluding those complexed as
dimers, trimers, tetramers, or other higher-order oligomers,
or with other antigens as asymmetric unit. Such choice was
driven by our intention to ensure that no potential surfaces
were obscured due to complexation or the formation of
interfaces. Then, the crystalline symmetric structures of these
Fabs were constructed in silico using online available software
PDBePISA (Fig. 2).42 Subsequently, crystal and non-crystal site
residues were identified.

Fig. 1 (a) The SASA values of fully exposed amino acid residues (X) within an alanine-X-alanine (ALA-X-ALA) tri-peptide configuration. It is assumed
that “X” is fully exposed due to the minimal side-chain bulk of alanine residues flanking it, allowing for an unobstructed exposure of the central
residue. A bold black line at 50 Å2 serves as a reference threshold, highlighting that all amino acids, including the smallest one, glycine (GLY),
exceed this threshold. This setup underscores the significance of the 50 Å2 threshold in evaluating protein–protein interactions and provides
insights into the structural determinants of protein crystallization, (b) a schematic depicting the interactions among the residues in Fab–Fab crystal
interface. Residues highlighted in sky-blue are less exposed, whereas those in red have higher solvent exposure. Notably, in the Fab–Fab crystal
interface, the more exposed residues interact with other with a higher probability than the less solvent-exposed residues, enhancing interface
stability. Further, the size of a residue significantly influences its SASA. Residues with extensive side chains (highlighted in violet) tend to have
higher SASA values, increasing their surface area for solvent interactions. This increased SASA enhances their likelihood of being present at the
interacting interface, as they occupy more space.
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This led to a dataset of 15 744 amino acids (Table
S1, ESI†). The classification resulted in 3719 amino acids
belonging to the crystal-site category (Fig. 2), the rest
are in other classes not (i.e., non-crystal-site category).
Despite the imbalance, the size is large enough for our
purposes.

To construct the machine learning model, a set of
features was developed for each residue, taking into
consideration both the residue itself and its neighboring
residues, to represent them numerically, as depicted in
Fig. 3. The overall approach of this work is illustrated in
Fig. 4.

2. Feature engineering

To build an ML model capable of detecting crystal-site
residues versus non-crystal-site residues, we considered
both the properties of each residue itself and the
surrounding physicochemical environment. This was
achieved by calculating feature values not only for the
residue in question but also for residues within a

certain distance from it (Fig. 3). Features included
aspects like hydrophobicity, hydrophilicity, charge, solvent
accessibility, hydrophobic patches, charge patches,
protrusion index, depth index, nature of amino acids,
etc.

The structure-based features also include spatial
aggregation propensity (SAP)43–45 and spatial charge map
(SCM)43,45,46 to quantify the surface properties of
antibodies. SAP quantifies the surface-exposed
hydrophobicity of patches, while SCM assesses the exposed
charge of patches. Both these properties play a significant
role in facilitating antibody interactions.43–48 This led to a
set of 510 features, as summarized in Table 1 and
detailed in Tables S2–S10, ESI.†

Other structure-based features were also developed to
include neighboring residues that were adjacent to those
with higher SAP values, contingent upon certain
conditions. Residues exhibiting high SAP values were
typically found to be encircled by hydrophobic residues
and were predisposed to engage in hydrophobic–
hydrophobic interactions. Consequently, it has been

Fig. 2 The schematic overview of the classification approach is presented. The process begins with the creation of a repeating unit cell of Fab
fragment in silico using unit cell parameters and crystal symmetry operations found in crystallographic information files of Protein Data Bank.
Subsequently, unique interfaces (represented by red area) are identified by selecting interfacial residues (within red area) present in crystal
interfaces. Those residues are classified as crystal site amino acids (class 1) if they have a buried surface area (BSA) greater than 0 Å2 and a solvent
accessible surface area (SASA) is greater or equal to 50 Å2. Otherwise, they are categorized as non-crystal site amino acids (class 0). BSA refers to
the total surface area that becomes inaccessible to solvent in the interface during complexation. Residues within the black sphere (marked in red
in one of the Fab structures for enhanced visual clarity), surrounding the center-of-mass (COM) within a 12 Å radius, are shown to be excluded
from the classification due to their low likelihood of appearing at the crystal interface despite their high surface exposure. The 12 Å distance is
specifically chosen to ensure a symmetric selection of residues around the COM, thereby focusing on those with a higher probability of
contributing to the crystal lattice.
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demonstrated that when residues with elevated SAP values
approach each other within the FAB interface, their
immediate neighbors are also likely to be implicated in
the interface (Fig. 5(a)). Hence, the identification of
residues adjacent to those with high SAP values were
crucial. These features were termed as SAP-adjacent (see
Tables S8–S10, ESI†). More specifically, the residues that
met various SAP cut-off values, along with their adjacent
residues, were systematically identified. For example,
assuming the i-th residue maintains the SAP value, the
neighboring residues of the i-th residue were then
selected; specifically, the i + 1 and i − 1 residues, termed
as ‘nb’ residues. Additionally, residues within a certain
distance from the i-th residue, termed ‘nbh’, were also
chosen. Features were then established based on surface
exposure for both individual residues and pairs of
residues—such as (i and i + 1), (i and i − 1), and (i and
inbh). These were defined using the sidechain SASA values,
the overall SASA calculated for each residue, and the
fractional exposure (i.e., the ratio of each residue's
sidechain SASA to the standard sidechain exposure of that
residue in a fully exposed Ala-X-Ala tripeptide, as shown
in Fig. S1 in the ESI†). If the residues satisfied the
specified conditions (see Materials and methods section
and Tables S8–S10, ESI†), their corresponding feature
values were designated as ‘1’; otherwise, their feature
values were set to ‘0’. Consequently, the SAP-adjacent
features (see Materials and methods section and Tables

S8–S10, ESI†), being binary in nature, could only assume
two values, 0 or 1, indicative of the absence or presence
of a particular attribute, respectively. More specifically, as
per the SAP-adjacent feature, 1 represents residues that
were highly likely to be present in crystal sites, while 0
indicates those that were not. The summary of steps
followed is provided below:

(a) The i-th residue was selected based on its spatial
aggregation propensity (SAP),

(b) Neighbors of the i-th residue (both adjacent (nb) and
within a specified radius (nbh)) were identified,

(c) Surface exposure conditions were checked for each
pair: (i and i + 1), (i and i − 1), and (i and inbh), along with
their individual solvent accessible surface areas,

(d) Feature values for each residue were set to ‘1’ if they
met the conditions, and ‘0’ if they did not.

In the engineering of SAP-adjacent features, the
combinations of diverse conditions (see Materials and
methods section and Tables S8–S10, ESI†) relating to
sidechain SASA, fractional exposure, and overall SASA
were employed to produce same kind of feature but
with different binary values for each residue.
Furthermore, the amino acid types of the neighbouring
‘inbh’ residues at different distances from the i-th
residue were also varied to assess the impact of specific
amino acid characteristics in proximity to residues with
elevated SAP values (see Materials and methods section
and Tables S8–S10, ESI†).

Fig. 3 Schematic depiction of an amino acid residue, termed the ‘i-th residue’, and its surrounding environment within designated cutoff
distances. Features are computed for the i-th residue in isolation (at 0 Å radius) as well as in the context of neighboring residues encompassed
within specified radial cutoffs from 5 to 25 Å. For instance, as illustrated in the second part of the figure, the solvent-accessible surface area (SASA)
is calculated for a particular residue, indicated here as the i-th residue, marked in red. Alongside this, another feature is conceptualized by
computing the combined SASA of the i-th residue and all nearby residues, marked in green, that fall within a defined cut-off radius. Residues
colored in orange are excluded as they lie beyond the specified cutoff distance.
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3. Performance of ML models and feature importance
Different machine learning (ML) models were used for
classification, random forest (RF), extreme gradient
boosting (XGBoost), k-nearest neighbors (KNN), multi-layer
perceptron (MLP), and support vector machine (SVM).
Balanced accuracy, accuracy, and area under the precision-
recall curve (AUPRC) were employed as evaluation metrics.

AUPRC measures the trade-off between precision (accuracy
of positive predictions) and recall (ability of the model to
find all relevant positive instances) across different
threshold settings. Precision is the ratio between true
positive predictions and the total predicted positives, while
recall is the ratio between true positive predictions and
the total actual positives. AUPRC is particularly beneficial
for imbalanced datasets, thus thoroughly evaluating the
model's capacity to address class imbalance. It remains
sensitive to class imbalance by ensuring the model's
ability to identify and evaluate positive instances. For this
reason, AUPRC is a meaningful metric for comparing
models, particularly in applications where accurately
identifying the positive class is crucial.43,45 All the tested
ML models (RF, XGBoost, KNN, MLP, and SVM)
demonstrated significant improvements compared to the
baseline metrics of balanced accuracy (0.50), accuracy
(0.76), and AUPRC (0.24) values (Table 2), which highlights
their effectiveness in identifying crystal site residues. The
baseline AUPRC was equal to the number of positive
examples P over the total number of training data N [i.e.,
the proportion of positive examples in data (P/N)]. The
XGBoost model surpassed all the other ones with an
AUPRC of 0.77 (Table 2). This more than 3-fold increase

Fig. 4 The workflow diagram illustrating the step-by-step process adopted for the analysis of Fab fragments, prediction interface residues and
application of ML methodologies. The process starts with the retrieval of Fab structures from SAbDab: the structural antibody database and Protein
Data Bank (PDB), followed by building the repeating unit cell, extracting unique interfaces, and identifying residues involved in crystal site
interactions. To ensure accurate classification, residues favorably and prevalently involved in crystallization interfaces are identified based on
buried surface area (BSA) and solvent-accessible surface area (SASA). BSA must be greater than 0 Å2, while SASA should be at least 50 Å2.
Interestingly, residues within 12 Å of the Fab's center of mass, despite higher SASA values, are omitted from the ML model to minimize false
positives, given their low probability of being at crystal sites and typical location deep in the Fab core. This classification is crucial for the
application of machine learning methods. The diagram then showcases the sequence of operations leading up to the extraction of structural
features of Fab, the application of ML methods, and the subsequent estimation of top features. In step-6 (interface residue selection &
classification), protein–protein interface residues are represented. The blue color represents protein chains, while the yellow and red colors denote
interface residues.

Table 1 Overview of structural features included in the present study

Residue hydrophobicity (using BM scale)
Protrusion index49 (protrusion from Fab surface)
Depth index50 (distance from the closest point on the Fab surface)
Fractional exposure ‘or’ relative exposure (ratio of the sidechain SASA
of residues to the standard side-chain exposure of the residue in
Ala-X-Ala)
Net charge (residue net charge)
Charge of exposed residues (sum of partial charges of atoms with
SASA > 0)
SAP43–45,48 (measure of surface-exposed hydrophobicity of atoms)
SCM43,45,46,48 (measure of exposed charge patch)
SASA and side-chain SASA of various types of amino acids
Number of various types of amino acids
Various scales related to protein structural properties involved in
protein–protein interaction51

SAP_adjacent (pertaining to residues adjacent to hydrophobic
patches)
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in AUPRC showcased the exceptional ability of XGBoost to
handle the complexities of our data.

A built-in “Gini” importance was applied to the random
forest (RF) model as feature importance52 to interpret the
models better and identify the top-ranked features
(Table 3). This methodology probed Fab crystallization
patterns based on the top-most features and led to several
notable observations:

• (a) The surface-exposed residues were identified as
particularly important. The residues exposed on the surface
i.e., mainly those adjacent to hydrophobic residues and
possessing a high SAP, were frequently observed at crystal
sites.

• (b) The surface-exposed residues situated next to
those with a high SAP value also played an important role
in the formation of crystalline structures. Moreover,
including the properties of the surrounding surface-
exposed residues, whether polar, charged, or both, to
those with a high SAP, were deemed essential for the
integrity of the crystal sites.

• (c) Some residues, including those with crystal-site
properties, were still excluded due to the growth of the
crystal-lattice with specific symmetry and arrangements.

“Gain” importance of features (Table 3) was also
calculated for the XGBoost model.53 In addition to the
conclusions similar to those drawn from the RF model, the

Fig. 5 (a) Schematic depiction of the i-th residue characterized by a high SAP (representing hydrophobic patches) value (≥0.15 ‘or’ 0.20) and its
immediate neighboring residues, (i + 1)-th, (i − 1)-th and inbh. The term inbh denotes residues surrounding the i-th residue within radial distances of
5, 7, or 10 Å depending on the residue type. Consequently, a cluster is crafted around the i-th residue, epitomizing a hydrophobic patch,
seamlessly enveloped by its adjacent residues: (i + 1), (i − 1), and inbh. It is important to note that the residues with elevated SAP values are
commonly surrounded by hydrophobic residues, suggesting a tendency to participate in hydrophobic–hydrophobic interactions in Fab interfaces.
Thus, it is evident that when such residues with high SAP values converge within the Fab interface, the neighboring residues are also inclined to be
involved in the interface, as depicted in the bottom part of the figure. Here, for instance, the interactions between any two residues with higher
SAP values (colored red) are referred to as i-th to ‘i-th residue’ interactions. The neighboring (i + 1)/(i − 1) and inbh residues are represented in blue
and black, respectively, in the protein chain. Thus, during these ‘i-th residue’ to ‘i-th residue’ interactions, the neighboring residues of the protein
chain also come closer to each other in the interface to interact among themselves, (b) the “QGTTS” loop of L (light)-chain, colored in blue,
possesses hydrophobic patches characterized by high SAP value (white) exceeding 0.20. Additionally, it is encompassed by surface exposed polar
(green) and charged (yellow) residues.

Table 2 Comparison of different ML models in terms of accuracy,
balanced accuracy, and AUPRC

Model Accuracy (balanced accuracy) AUPRC

RF 0.84 (0.80) 0.72
XGBoost 0.86 (0.84) 0.77
SVM 0.85 (0.80) 0.72
KNN 0.83 (0.76) 0.69
MLP 0.84 (0.79) 0.70
Baseline 0.76 (0.50) 0.24
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XGBoost models' feature ranking analysis also emphasized
the importance of surface-exposed glycine residues at the
crystal sites as one of the top-most features. Glycine, being
the smallest amino acid, is commonly present in the flexible
regions of proteins, particularly within the loop regions, as
indicated by a previous study.54 It was also discovered that
the partially exposed glycine residues on the protein surface
in loop regions promoted the formation of crystal-packing
contacts.55 Thus, the underscored significance of glycine
might suggest that these flexible regions were actively
involved in the nucleation process.

In the study reported by Hasegawa et al.,56 the essential
role of a specific cluster in influencing the crystallization
propensity of certain structures was proposed. This cluster,
distinguished by five externally exposed negatively charged
residues situated on the complementarity determining region
(CDR), was identified as being crucial in steering the self-
assembly processes, resulting in augmented crystallization
tendencies. Their findings were suggestive of the idea that
the juxtaposition of a distinct negative electrostatic patch
with neighbouring exposed hydrophobic residues within the
fragment variable (Fv) domain might have been recognized as
a distinguishing feature for identifying IgG1 isotopes with a
heightened probability of crystallization. Similarly, Smejkal
et al.,57 proposed that hydrophobic patches, when
surrounded by charged residues, might have been
instrumental for the crystallization propensities of the Fabs.
Furthermore, it was posited by Jean-Philippe Julien et al.58

that the role of surface-exposed hydrophobic patches was not
merely peripheral but central to the antibody crystallization
mechanism. Electrostatic interactions also played an
important role. Additionally, hydrophobic patches on an
antibody's surface were frequently cited as significant
contributors to the propensity for Fab–Fab interactions.59–62

Other studies also indicated the importance of
hydrophobicity in crystallization.57,63–67 Hydrophobic
interactions were recognized to effect aqueous assemblies,

resulting in protein interactions.68–70 A contemporary study
concluded that the most hydrophobic protein patches
comprised a notable fraction of polar/charged atoms.68

Protein hot-spots were identified in several previous studies
as regions marked by a combination of hydrophobic and
polar residues.71–73

Our findings were consistent with the conclusions of R.
Lieu et al.74 which showed that the replacement of the
human kappa constant domain FG loop with a truncated
rabbit loop markedly enhanced the crystallization propensity
of Fab: 6WGJ. This loop was found to facilitate the
crystallization process through its β-sheet structured
interactions.74 In line with these observations, our molecular
modelling analysis indicated that the loop “QGTTS” exhibited
hydrophobic patches with elevated SAP values (Fig. 5(b)).
These patches were enveloped by surface exposed polar and
charged residues (Fig. 5(b)), a pattern consistent with our
model's feature significance results and other studies.56–76

Thus, our model, trained on the dataset, learns and captures
the key features of crystallization at the Fab interface.

Additional feature importance metrics were further
examined (Table S11, ESI†) for the XGBoost model, such as
“cover”53 and “total gain”,53 to robustly validate the
conclusions. Despite slight variations observed across
different metrics the main conclusions remained consistent.
Notably, the top features identified by these techniques were
similar to those of “gain” feature importances (Tables 3 and
S11, ESI†). Additionally, SHAP77 feature importance were
calculated for both XGBoost and RF models, reinforcing our
initial findings with consistent results (Fig. S2, ESI†). In
summary, all types of feature importance analyses yielded
similar and, consistent conclusions for both the XGBoost and
RF models, enhancing the robustness of the conclusions
drawn from these models.

It is important to emphasize that the performance of
machine learning models is inherently dependent on the
hyperparameters chosen during the training and testing

Table 3 Comparison of top six model descriptors and their importance for RF and XGBoost

RF

Feature names Importance

SASA_all_0 Å 0.033
SAP-adjacent-SC_0.15_10–10_10–10_10–10_7_polar-charged 0.025
SAP-adjacent-FE_0.15_5–5%_5–5%_5–30%_5_any-type 0.017
SAP-adjacent-FE_0.15_5–5%_5–5%_5–5%_7_polar-charged 0.016
SAP-adjacent-SC_0.20_10–10_10–10_10–10_7_polar-charged 0.015
SAP-adjacent-FE_0.15_5–5%_5–5%_5–10%_5-hydrophobic-charged-polar 0.014

XGBoost

Feature names Importance

SAP-adjacent-FE_0.15_5–5%_5–5%_5–5%_7_polar-charged 0.479
SASA_all_0 Å 0.077
SASA_gly_0 Å 0.012
SASA_hydrophilic_20 Å 0.006
SAP-adjacent-SC_0.15_10–10_10–10_10–10_7_polar-charged 0.004
Fractional exposure 0.003
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phases. These hyperparameters of each model play a critical
role in shaping the model's ability to generalize and
accurately predict outcomes. In the present study,
hyperparameter tuning was conducted for all the tested ML
models using “GridSearchCV”52 with details provided in
Table S12 of the ESI.† The dataset was divided into two
segments by stratified splitting to preserve the class
distribution: 90% for hyperparameter tuning and 10% for
validation. The 90% hyperparameter tuning portion
underwent a stratified 10-fold cross-validation, using the
AUPRC score as the evaluation metric to determine the
optimal hyperparameters. As we conducted hyperparameter
tuning exclusively on the 90% data, carefully ensuring that
the validation set remained completely unseen during this
process, thus preventing any data leakage. These best-
performing parameters were then applied to the previously
unseen 10% validation set to assess the model's
performance. The AUPRC scores of the optimal model using
the cross-validation closely matched those of the validation
set (Table 4), demonstrating consistent performance and
reducing the risk of overfitting, underscoring the reliability of
our conclusions.

Henceforth, the validated best-hyperparameters as
described in the “Materials and methods” section were
utilized to freshly retrain the model from scratch on the
entire dataset, employing a 10-fold stratified cross-validation
repeated 10 times on the full dataset to ensure the model's
robustness and generalizability. The comprehensive
performance metrics for various models obtained through
this methodology are detailed in Table 2. This approach
confirms good utilization of the dataset, thereby enhancing
the overall performance and reliability of the model,
especially given the imbalanced nature of the data.

4. Feature reduction and model performance

The ranking of “gain” feature importance of the XGBoost
model was calculated for the complete set of 510 features,
and only the top 6 ranked features are presented in Table 3
to explain the physical insights related to Fab crystallization
based on these most important features. However, to reduce
model complexity and improve interpretability, subsets of the
most important features were selected based on their “gain”
importance rankings. The top 1, 2, 4, 6, 10, 25, 50, 75, and
100 features were extracted incrementally, and the model's
performance was assessed for each subset using the area

under the precision-recall curve (AUPRC). It is important to
note that the XGBoost model was chosen because it
demonstrated the highest performance in predicting
crystallization sites.

The AUPRC values were analyzed for each subset, and it
was observed that the model's performance steadily improved
as more features were included. Notably, when the top 75
features (i.e., approximately the 15% of complete features)
were utilized, the AUPRC reached a value near 0.77, which
closely approximated the performance of the full 510-feature
model (AUPRC = 0.77, Table 2). This result indicated that
features beyond the top 75 contributed minimally to the
model's predictive power. The top 75 features are provided in
Table S13 of the ESI.†

The analysis demonstrated that a substantial reduction in
the feature set could be achieved without a significant loss in
performance. Using only the top 75 features (Table S13 in the
ESI†) provided several advantages, including reduced model
complexity, improved computational efficiency, and
increased interpretability. Moreover, by limiting the feature
set, the risk of overfitting to noise or irrelevant patterns was
minimized. The relationship between the number of top-
ranked features and the corresponding AUPRC values is
depicted in Fig. 6. Upon examining the top 75 features (Table
S13 in the ESI† including the top six features detailed in
Table 3), we observed that SAP-adjacent features consistently
appeared within this subset. Fractional exposure of amino
acids made a significant contribution to the model.
Additionally, the solvent-accessible surface area (SASA) of
amino acids—including both backbone and side chain
components—played a crucial role. Specifically, the SASA of
glycine, hydrophobic, non-polar-sulfur-containing, aliphatic,
hydrophilic, aromatic, polar uncharged with amide,
uncharged polar with hydroxyl group, small, long, and
negative amino acids were important in building the
classification model (Table S13 in the ESI†). Furthermore, the
number of specific amino acids was also a significant factor.
Counts of long, proline, hydrophilic, polar, very small,
negative, non-polar-sulfur-containing, glycine, aliphatic,
aromatic, small, and positive amino acids were influential
features. Additionally, the protrusion index and depth index
played important roles, along with exposed charge,
hydrophobic patches and charged patches, which were
crucial to the model's performance (Table S13 in the ESI†).
Overall, these findings highlight that both the local structural
environment and the specific properties of amino acids—
including their spatial arrangement, exposure, and type—are
key determinants in the model's predictive ability.

3 Summary and conclusions

In this work, a large set of collective features was developed,
which included hydrophobicity, hydrophilicity, charge,
solvent accessibility, hydrophobic and charged patches, etc.
Machine learning was used to identify the most relevant
physicochemical properties that impact the crystallization of

Table 4 Comparison of AUPRC scores using best hyperparameters on
cross-validation (90% data) and validation set (remaining unseen 10%
data) for XGBoost, RF, SVM, MLP, and KNN methods

Method Cross-validation set Validation set

XGBoost 0.76 0.77
RF 0.72 0.70
SVM 0.71 0.74
KNN 0.69 0.66
MLP 0.70 0.73
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Fab regions and can be computed for the energy-minimized
Fab structures. A novel two-step data-driven model was
constructed to identify crystal site residues. In the first step,
each Fab residue was categorized either as a crystal-site or a
non-crystal-site residue based on its surface accessibility by
using experimentally available Fabs. This classification was
achieved by constructing repeating unit cells using in silico
modelling to identify the crystal interfaces and separating
interface residues from non-interface residues. In the next
step, machine learning algorithms were used to analyse
classified Fab residues and, consequently, to identify the
physicochemical properties that differentiate crystal-site
residues from non-crystal-site residues during crystal lattice
formation. Ultimately, the most relevant factors in Fab
crystallization were determined based on these properties.
We applied machine learning to a substantial dataset and
found that the XGBoost algorithm achieved an AUPRC more
than three times higher than the baseline. We retained
similar performance by reducing the feature set to 15% of
the original size, demonstrating the model's efficiency.
Analysis of the top-ranked features revealed that surface-
exposed hydrophobic residues with higher SAP scores—often
adjacent to polar, charged, or both residues and captured
through binary SAP-adjacent features—are the most critical
factors for predicting crystallization sites. These features
collectively represent essential structural attributes like
hydrophobicity, accessible surface area, charge, and polarity.
Additional influential factors included solvent-accessible
surface area (SASA) metrics, amino acid counts, and other
structural indices such as the protrusion index, depth
indices, hydrophobic patches, and charged patches. Overall,

our findings show that the model's predictive power is
strongly shaped by both the surrounding structural
environment and the distinct characteristics of amino acids,
specifically their spatial positioning, surface exposure, and
chemical nature. Thus, the present ML model can potentially
be extended to predict crystallization behaviours in larger
proteins, such as full-length monoclonal antibodies.
Moreover, this framework holds promise for further
refinement through alternative classification strategies, fine-
tuned feature sets, model simplification, and the
incorporation of additional data points, enhancing its
applicability to broader macromolecular crystallization
studies. By complementing traditional experimental
methods, it can accelerate the crystallization process for
protein engineering efforts. Crystallization propensity in
macromolecules can also be modulated via sequence
modifications at crystal or non-crystal sites, and such
modifications based on crystallization site detection may also
impact antibody aggregation and viscosity. The current ML
model suggests that the physicochemical properties
influencing Fab crystallization, such as solvent accessibility,
SAP, charged residues, hydrophobicity, charge patches, also
play a critical role in antibody aggregation45 and viscosity.43,45

Since these properties collectively regulate protein–protein
interactions, our model may serve as a complementary
framework for studying these interconnected phenomena.
Establishing these interdependencies necessitates a well-
structured experimental approach, incorporating systematic
mutational analyses, biophysical characterization, and high-
throughput screening to validate predictive models and
derive definitive correlations.

Fig. 6 The left panel shows the AUPRC values for models trained with varying numbers of top features ranked by “gain” importance, ranging from
1 to complete 510 features. As the number of features increases, the AUPRC improves, reaching a plateau near 75 features, after which additional
features contribute minimally to model performance. The right panel zooms in on the range of 1 to 10 features, illustrating the sharp increase in
AUPRC between the top 1 to 6 features, highlighting the significance of early feature inclusion. The colour bars on each panel reflect the
corresponding AUPRC values for each model. In all cases, the repeated stratified K-fold cross-validation was employed, dividing the data into 10
folds and repeating the process 10 times.
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4 Materials and methods
1. Antibody structure modelling

A dataset comprising 40 Fab structures (previously crystallized
and deposited in the Protein Data Bank (PDB)40) was used. The
structural antibody database (SAbDab)41 was used to identify
relevant Fab entries in the PDB. Fabs listed as monomers,
excluding those in complexes like dimers, trimers, tetramers,
or antigens were specifically chosen. This ensured that no
crystallization sites were overlooked due to complex formation.
The missing residues within each Fab structure were modelled
or filled using a modelling approach implemented through the
MODELLER software.78 Subsequent to themodelling phase, we
generated the coordinates of hydrogen atoms and disulfide
bridges for each structure. This was performed using the
PSFGEN plugin of the visual molecular dynamics (VMD)79 tool.
The partial charges on each atom were calculated employing
the CHARMM36m80,81 force field. The protonation states of the
histidine amino acids were calculated using the PROPKA3
tool82 on the PDB2PQR83 server. The resulting Fab structures
were then energy minimized, ensuring no unrealistic overlaps
or clashes between atoms in protein structures using NAMD.84

2. Classification of fab residues

After constructing the Fab minimized structure, the repeating
unit cell for each fragment was generated using unit cell
parameters and crystal symmetry operations. This process was
guided by detailed unit cell parameters available in the
crystallographic information files (CIF files) and was executed
using the PDBePISA online software.42 Unique interfaces were
then identified by isolating interfacial residues present in
crystal interfaces. These residues were categorized based on
their solvent accessibility characteristics: residues with a
buried surface area (BSA) greater than 0 Å2 and a solvent-
accessible surface area (SASA) of at least 50 Å2 were classified as
crystal-site amino acids (class 1). In contrast, residues not
meeting these criteria were designated non-crystal-site amino
acids (class 0). We analysed the SASA values of fully exposed
residues within alanine-X-alanine (ALA-X-ALA) tri-peptide
configurations to validate the selected SASA cut-off. We found
that a SASA threshold of 50 Å2 was suitable, as it allowed all
amino acids, including the smallest one, glycine (GLY), to
partake in protein–protein interfaces. The BSA values,
representing the solvent-accessible surface area buried upon
interface formation, were sourced from PDBePISA.42 In
contrast, SASA values were computed utilizing a custom tcl
script via the VMD79 interface.

3. Machine learning methods

Five machine learning classification methods were employed:
support vector machine (SVM), random forest (RF), K-nearest
neighbours (KNN), multilayer perceptron (MLP), and extreme
gradient boosting (XGBoost).52,53,85,86 The optimized
hyperparameters for these methods were as follows:

(a) RF was configured with n_estimators = 300,
min_samples_split = 5, class_weight = {0 : 1, 1 : 1}, max_depth
= none, criterion = ‘entropy’,

(b) XGBoost was tuned eval_metric = ‘logloss’,
colsample_bytree = 0.8, learning_rate = 0.1, max_depth = 10,
n_estimators = 500, subsample = 1, scale_pos_weight =
(number of neg)/2 × (number of pos), reg_alpha = 0,
reg_lambda = 10, gamma = 0.1,

(c) SVM was implemented using an ‘rbf’ kernel with
parameters C = 40.0 and gamma = 0.001, class_weight = none,

(d) KNN was implemented using algorithm = ‘auto’,
metric = ‘manhattan’, n_neighbors = 41, p = 1, weights =
‘distance’,

(e) MLP was implemented using max_iter = 5000,
activation = ‘relu’, alpha = 0.01, early_stopping = false,
hidden_layer_sizes = (200), learning_rate_init = 0.001, solver
= ‘adam’.

Given the significant class imbalance in the dataset, the
repeated stratified K-fold cross-validation was employed,
dividing the data into 10 folds and repeating the process 10
times to ensure robustness in our model evaluations. As
evaluation metric, the average AUPRC (area under the
precision-recall curve), average balanced accuracy, and average
accuracy values were employed, which were averaged across all
folds and repetitions. The AUPRC is especially advantageous
for imbalanced datasets, providing a comprehensive
assessment of the model's ability to handle class imbalance. In
our study, we aim to identify the key features that predict
crystal site residues, distinguishing them from non-crystal site
residues. Therefore, AUPRC is an essential metric for our
research. A higher AUPRC value signifies superior
performance, particularly in imbalanced datasets where
traditional metrics like accuracy may be misleading. AUPRC is
notably valuable for the positive class because it emphasizes
precision and recall, metrics that are directly pertinent to
positive predictions. It remains sensitive to class imbalance,
ensuring that the model's capability to correctly identify
positive instances is accurately assessed. This makes AUPRC an
important metric for comparing models, especially in scenarios
where accurately identifying the positive class is critical.43,45

The baseline evaluation metric AUPRC was 0.24, while the
model demonstrated a baseline accuracy and balanced
accuracy of 0.76 and 0.50, respectively. Prior to training the
machine learning models, features were rescaled and
normalized to have a mean of 0 and a standard deviation of 1.

To search through the predefined hyperparameter space
systematically and identify the most optimal set for all five ML
methods, the “GridSearchCV” method was utilized.52 The
evaluation metric for best hyperparameter employed here was
the AUPRC score, indicating the relevancy of model. During
this grid search, 10% of the whole data was reserved for the
validation set (using stratified splitting). The remaining 90% of
the whole data was subjected to stratified 10-fold cross-
validation for hyperparameter tuning. In this cross-validation
process, the training data was divided into ten parts or folds.
In each iteration, nine folds were used as training data, while
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the remaining fold was used for testing. This process ensured
that each fold served as the test set at least once. The
“stratified” approach was employed to ensure that each fold
retained the same class proportion observed in the original
training dataset, an essential consideration for imbalanced
datasets. Once this iterative process was concluded, the
hyperparameter combination that produced the highest AUPRC
across all iterations was identified as the best. The model,
fitted with these optimal hyperparameters, was subsequently
tested on the 10% validation set, which had been set aside and
not involved in the hyperparameter tunning using cross-
validation to assess the model's performance. In this phase,
the efficacy of the model was evaluated on previously unseen
validation data. It was observed that the AUPRC value for the
best hyperparameter set of a particular method was notably
close to the AUPRC value of the validation set, signalling
consistent performance between the training, testing, and
validation stages, and the minimization of the potential risk of
overfitting. After identifying the best hyperparameters, the
model was retrained freshly from scratch on the entire dataset
using the stratified 10-fold cross-validation technique with 10-
time repetitions to ensure its robustness, generalizability, and
to validate our conclusions. This approach maximizes dataset
utilization, considering the imbalance nature, thereby
improving the overall performance and reliability of the model.

To determine the importance of each feature, we used
several metrics for our models. For the RF model, we used its
built-in feature importance metric. For the XGBoost model,
we evaluated feature importance using metrics such as gain,
cover, and total gain. The precision of the results was
ensured by avoiding features with high cardinality (i.e., those
with a large number of unique values) that might have
yielded biased outcomes in gain, cover, or total gain-based
feature importance calculations. Since such features were
absent from our dataset, thus allowing to avoid any potential
bias in the results. Furthermore, the SHAP77 (SHapley
Additive exPlanations) feature importance was calculated
from the test data for both models to validate our model.
Note that feature importance was not evaluated for SVM (with
“rbf” kernel), because it does not readily offer such
interpretable measures. Additionally, feature importance was
not evaluated for the KNN and MLP models due to its
inferior performance compared to the other models. Model
training and analysis were conducted using Scikit-learn.52

4. Antibody surface analysis (calculation of SAP and SCM)

The spatial aggregation propensity (SAP), which quantifies the
degree of surface-exposed hydrophobicity, along with the
spatial charge map (SCM), that calculates the charge
distribution in consideration of surface exposure. Fundamental
equations for the calculation of SAP and SCM can be found
elsewhere, where SAP and SCM values were calculated for each
atom, i, for each residue.43–48 The features used in the present
study for spatial aggregation propensity and spatial charge
map were determined using the following equations:

SAP all 5 ¼
X
R¼5A°

SAP ið Þ

SAP ¼
X
R¼5A°

SAP i ×H SAP ið Þ
������

������

SAP 10 ¼
X
R¼10A°

SAP i ×H SAP ið Þ
������

������

SCM pos ¼
X
R¼10A°

SCM i ×H SCM ið Þ
������

������

SCM neg ¼
X
R¼10A°

SCM i ×H –SCM ið Þ
������

������
SCM all ¼

X
R¼10A°

SCM ið Þ

The parameter ‘R’, representing the distance cutoff, is defined

in the fundamental equations used for calculating SAP and
SCM. An elaborate definition and explanation can be found in
these foundational equations.43–48

5. SAP-adjacent feature analysis

If the i-th residue retains a specific SAP value, then its
immediate neighbouring residues—the i + 1 and i − 1, referred
to as ‘inb’ residues—were systematically selected. Moreover,
residues located within a predefined proximity to the i-th
residue, known as ‘inbh’, were also identified. A set of
conditional terms, predicated on the degree of surface exposure
as indicated by the sidechain SASA values and fractional
exposure (ratio of the residue's sidechain SASA to the standard
sidechain exposure of the residue in Ala-X-Ala), were applied to
each pair: (i and i + 1), (i and i − 1), and each (i and inbh). The
overall solvent accessible surface area of individual residues
was also examined. Feature values were set to ‘1’ for residues
satisfying the given conditions, and to ‘0’ for those that did
not. The details of steps are provided below:

1. Residue selection:

residueselected ¼ yes; SAPresidue ≥ cut‐off1
no; otherwise

:

�

2. Initialization of variable i: i = residueselected.
3. Setting variables inb: inb = {i + 1, i − 1}.
4. Setting variables inbh: inbh = {residue|distance (i, residue

≤ d)}.
5. Checking conditions for (i and i + 1), (i and i − 1) and

each (i and inbh) pairs:
(a) Conditions for (i and i + 1) pair: SC SASA of i ≥ cut-off2

and SC SASA of i + 1 ≥ cut-off2.
(b) Conditions for (i and i − 1) pair: SC SASA of i ≥ cut-off2

and SC SASA of i − 1 ≥ cut-off2.
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(c) Conditions for each (i and inbh) pair: SC SASA of i ≥
cut-off2 and SC SASA of inbh ≥ cut-off3.

6. Collection of pairs that met criteria set in step 5.
7. Check SASA (≥50 Å2) for each residues collected in

step 6.

8. Set feature value (FV):

FV ¼ 1; residues collected from step 7 residues with SASA≥50 A°
2

� �
0; otherwise for rest of the residues of FAB

:

(

Steps 1 to 8 were sequentially executed, where “FV”
represents the “feature value” of the respective residues.
Here surface exposure of residues is calculated based on SC
SASA (which represents sidechain solvent accessible surface
area). Cut-off1 was varied from 0.15 to 0.20. The distance
“d” was varied from 5 to 10 Å, cut-off2 was varied from 5 to
10 Å2 and cut-off3 was varied from 10 to 75 Å2 to generate
different binary value SAP-adjacent (specifically termed SAP-
adjacent-SC) features for each residue of FAB. Additionally,
the types of amino acids constituting the ‘inbh’
neighbouring residues were altered to evaluate the influence
of distinct amino acid properties near residues with high
SAP values. The various types of ‘inbh’ (neighbouring)
residues are considered as “any type residues”,
“hydrophobic-polar-charged”, “polar-charged”, “hydrophobic-
charged”, “specific hydrophobic (ILE, LEU, TRP, ALA, VAL,
and PRO)-polar-charged”, and “charged”.

Furthermore, the surface exposure of residues was
determined by calculating their fractional exposure (FE),
defined as the ratio of a residue's solvent accessible surface
area (SASA) of side-chain to the standard side-chain exposure
of the residue in an Ala-X-Ala tri-peptide. This calculation
contributed to the generation of a distinct set of SAP-adjacent
(specifically termed SAP-adjacent-FE) binary features. The
details of steps are provided below:

1. Residue selection:

residueselected ¼ yes; SAPresidue≥ cut‐off1
no; otherwise

:

�

2. Initialization of variable i: i = residueselected.
3. Setting variables inb: inb = {i + 1, i − 1}.
4. Setting variables inbh: inbh = {residue|distance (i, residue

≤ d)}.
5. Checking conditions for (i and i + 1), (i and i − 1) and

each (i and inbh) pairs:
(a) Conditions for (i and i + 1) pair: FE of i ≥ cut-off2 and

FE of i + 1 ≥ cut-off2.
(b) Conditions for (i and i − 1) pair: FE of i ≥ cut-off2 and

FE of i − 1 ≥ cut-off2.
(c) Conditions for each (i and inbh) pair: FE of i ≥ cut-off2

and FE of inbh ≥ cut-off3.

6. Collection of pairs that met criteria set in step 5.
7. Check SASA (≥50 Å2) for each residues collected in

step 6.
8. Set feature value (FV):

FV ¼ 1; residues collected from step 7 residues with SASA ≥50 A°
2

� �
0; otherwise for rest of the residues of FAB

:

(

It should be noted that the algorithm steps for SAP-
adjacent-FE were executed similarly to those for SAP-
adjacent-SC. The cut-off1 was set at 0.15. The distance
parameter “d” ranged from 5 to 7 Å, cut-off2 was consistently
set at 5%, and cut-off3 varied from 5% to 40%. This approach
was employed to generate a similar, yet distinct, set of binary
value features for each residue of FAB. Furthermore, the
amino acid types of the ‘inbh’ neighbouring residues were
varied as before, enabling the assessment of the impact of
unique amino acid characteristics in proximity to residues
with elevated SAP values.

Moreover, our investigation extended to further
refinement in residue selection. In the initial stages, along
with parameters such as SAP and side chain (SC) SASA, the
overall solvent accessible surface area (SASA) of residues (≥50
Å2) was also considered to generate a specific set of binary
features (specifically termed SAP-adjacent-overall). The details
of steps are provided as follows:

1. Residue selection:

residueselected ¼ yes; SAPresidue ≥ 0:15

no; otherwise
:

�

2. Initialization of variable i: i = residueselected.
3. Setting variables inb: inb = {i + 1, i − 1}.
4. Setting variables inbh: inbh = {residue|distance (i, residue

≤ d)}.
5. Checking conditions for (i and i + 1), (i and i − 1) and

each (i and inbh) pairs:
(a) Conditions for (i and i + 1) pair: SC SASA of i and i + 1

≥ 10 Å2 and SASA of i and i + 1 ≥ 50 Å2.
(b) Conditions for (i and i − 1) pair: SC SASA of i and i − 1

≥ 10 Å2 and SASA of i and i − 1 ≥ 50 Å2.
(c) Conditions for each (i and inbh) pair: SC SASA of i and

inbh ≥ 10 Å2 and SASA of i and inbh ≥ 50 Å2.
6. Collection of pairs that met criteria set in step 5.
7. Set feature value (FV):

FV ¼ 1; residues collected from step 6

0; otherwise for rest of the residues of FAB
:

�
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The distance parameter “d” was set at 5 Å. Also, the types
of amino acids constituting the ‘inbh’ neighbouring residues
were diversified, as previously done, to facilitate the
evaluation of how distinct amino acid properties affect
nearby residues with high spatial aggregation propensity
(SAP) values.

6. List of software

The missing residues within each Fab structure were filled by
MODELLER.75 NAMD software was used to minimize the
initial Fab structures.84 Charges were calculated by
charmm36m forcefield.80,81 The features were calculated
using Python and a custom TCL script using the VMD
interface. The BSA (buried surface area) was taken from the
PDBePISA.42 Machine learning was performed by the Scikit-
learn library in Python.52,87 Visualization of Fabs was done
using UCSF ChimeraX,88 VMD,79 and Pymol.89–91 Figures and
snapshots were prepared by Matplotlib, VMD79 and
Xmgrace.92

Abbreviations

AUPRC Area under the precision-recall curve
BSA Buried surface area
CDR Complementarity-determining region
CIF Crystallographic information files
EM Electron microscopy
Fv Variable fragment
FV Feature value
FE Fractional exposure
FAB/Fab Fragment antigen biding region
IgG1 Immunoglobulin G1
IgG4 Immunoglobulin G4
KNN k-Nearest neighbours
mAbs Monoclonal antibodies
MLP Multi-layer perceptron
ML Machine learning
NMR Nuclear magnetic resonance
PDB Protein Data Bank
RF Random forest
SAbDab Structural antibody database
SAP Spatial aggregation propensity
SASA Solvent-accessible surface area
SCM Spatial charge map
SVM Support vector machine
SC SASA Sidechain solvent-accessible surface area
SHAP SHapley Additive exPlanations
VMD Visual molecular dynamics
XGBoost Extreme gradient boosting
XRD X-ray crystallography
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