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Dimensional analysis meets AI for non-Newtonian
droplet generation†

Farnoosh Hormozinezhad,‡a Claire Barnes,‡b Alexandre Fabregat, a

Salvatore Cito a and Francesco Del Giudice *c

Non-Newtonian droplets are used across various applications, including pharmaceuticals, food processing,

drug delivery and material science. However, predicting droplet formation using such complex fluids is

challenging due to the intricate multiphase interactions between fluids with varying viscosities, elastic

properties and geometrical constraints. In this study, we introduce a novel hybrid machine-learning

architecture that integrates dimensional analysis with machine learning to predict the flow rates required to

generate droplets with specified sizes in systems involving non-Newtonian fluids. Unlike previous

approaches, our model is designed to accommodate shear-rate-dependent viscosities and a simple

estimate of the elastic properties of the fluids. It provides accurate predictions of the dispersed and

continuous phases flow rates for given droplet length, height, and viscosity curves, even when the fluid

properties deviate from those used during training. Our model demonstrates strong predictive power,

achieving R2 values of up to 0.82 for unseen data. The significance of our work lies in its ability to

generalize across a broad range of non-Newtonian systems having different viscosity curves, offering a

powerful tool for optimizing droplet generation. This model represents a significant advancement in the

application of machine learning to microfluidics, providing new opportunities for efficient experimental

design in complex multiphase systems.

Introduction

Non-Newtonian fluids exhibit both elastic and viscous
behavior, with flow characteristics that deviate from Newton's
law, τ = η, where τ is the shear stress, η is the shear viscosity,
and  is the shear rate.1 A key feature of these fluids is their
shear-rate-dependent viscosity, leading to behaviors such as
shear-thinning or shear-thickening.1 Non-Newtonian fluids
are ubiquitous in everyday products like toothpaste, creams,
detergents, and paints, making them equally prevalent in
industrial processes. Non-Newtonian liquids are often
encountered in the form of droplets,2–4 generated by
interactions with a non-miscible phase, typically oil. Droplet
formation involving non-Newtonian fluids is relevant to a
wide range of applications, including enhanced oil recovery,
renewable fuels, fluidized bed reactors,5 and in the

formulation of cosmetics,6 drug delivery systems,7 microgel
synthesis,8 and encapsulation technologies.9,10 Despite their
importance, understanding the mechanisms behind droplet
formation, even in simpler Newtonian cases, remains
challenging. Predicting the experimental conditions required
to generate droplets of a specific size before conducting
experiments is often unattainable.

While there is extensive research on droplet microfluidics
involving Newtonian liquids,2,3,11 far fewer studies address
the complexities of non-Newtonian fluids. Existing work has
focused on linking droplet size to experimental
parameters12–26 or analyzing the breakup dynamics of
viscoelastic filaments during droplet formation,27–30 often
considered a hallmark of viscoelasticity. A key takeaway
from these studies is the absence of a single master curve
or universal theory to describe droplet formation in non-
Newtonian fluids, even for specific geometries like flow-
focusing or T-junctions. Even attempts at using dimensional
analysis,31 where dimensionless parameters are employed to
describe the relevant forces taking place in the droplet
microfluidic processes, have not been successful at
providing a single master curve that can be used to design
droplet microfluidic experiments appropriately. This gap
also persists for Newtonian droplet formation, which has
led to the use of machine learning tools to predict the
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design and experimental conditions for generating
droplets.32 For example, Lashkaripour et al.33,34 developed
machine learning models to predict the microfluidic design
and experimental conditions necessary to produce droplets
of a specified size, while Chagot et al.35 used machine
learning to predict droplet generation conditions in the
presence of various surfactants. Other studies have similarly
leveraged machine learning to predict experimental
conditions for droplet formation in microfluidic
systems.36–42 However, these models are typically limited to
Newtonian fluids with constant viscosity and fail to account
for the rheological behaviour of more complex fluids,
restricting their broader applicability.

In this study, we introduce a novel hybrid machine-
learning architecture that integrates dimensional analysis
with machine learning to predict the flow rates required for
generating droplets of specified sizes in systems with non-
Newtonian fluids. It accurately predicts the flow rates Qd and
Qc needed for given droplet dimensions and fluid properties,
even when the viscosity curves deviate from those used in
training. Our model demonstrates strong predictive power,
achieving R2 values of up to 0.82 on unseen data and
maintains robustness across different microfluidic
geometries. The broader significance of our work lies in its
ability to generalize across a wide range of non-Newtonian
fluid systems, providing a powerful tool for optimizing
droplet generation. This model represents a significant
advance in the application of machine learning to
microfluidics, paving the way for more efficient experimental
design in complex multiphase systems.

Theoretical background

We provide a brief background about dimensional analysis
theory and its application to droplet microfluidics problems.

Dimensional analysis

Dimensional analysis is a powerful mathematical tool used to
simplify complex physical problems by reducing the number
of variables needed to describe the system.31 By leveraging
fundamental physical quantities like length, mass, and time,
it allows for the transformation of a large number of
parameters into a smaller set of dimensionless numbers that
capture the essence of the problem's physics. This reduction
provides a more manageable framework to analyze and
interpret experimental data and theoretical predictions. A
classic application of dimensional analysis in engineering is
pipe flow,43 where it is possible to reduce the full
characterization of the system to just three dimensionless
parameters: the Reynolds number, the relative roughness,
and the friction factor. These parameters allow for a
comprehensive description of how fluid flows through a pipe,
encompassing both the fluid's viscosity and the roughness of
the pipe's inner surface, without needing to consider every
individual physical property directly.

The foundation of dimensional analysis lies in the
Buckingham Pi theorem,31 which provides a systematic
approach to determine the number of dimensionless
parameters, but it does not yield the specific functional
relationship between them. For this reason, experiments or
simulations are required to explore and establish these
relationships. According to the Buckingham theorem, for a
system with N variables and D independent physical
dimensions (such as length, mass, and time), the number of
dimensionless groups is given by G = N − D. For example, in
the case of a Newtonian liquid flowing through a pipe, we
consider variables like the fluid density ρ, viscosity η, velocity
V, pipe diameter D, and pipe roughness ε, which generate a
wall shear stress τw. Here, N = 6 parameters and D = 3
independent dimensions (length, mass, time), resulting in
three dimensionless groups (G = N − D = 3) that fully describe
the system, i.e., the Reynolds number, the relative roughness,
and the friction factor. Importantly, the construction of these
dimensionless numbers is not unique, and while guidelines
exist to aid in their generation,43 no absolute recipe governs
their selection. Thus, the specific dimensionless quantities
may vary depending on the approach taken or the focus of
the analysis.

Dimensionless numbers in droplet
microfluidics

We focus on droplet microfluidics, applying dimensional
analysis to our specific system. Here, two immiscible liquids,
a dispersed phase and a continuous phase, meet at the
junction of a microfluidic device to generate droplets
(Fig. 1(a and b)). For instance, the dispersed phase can be an
aqueous solution while the continuous phase can be an oil
phase (Fig. 1a) or vice versa (Fig. 1b). The droplets generated
will have a characteristic length L and height H. Both the
dispersed and continuous phases flowing with flow rates Qd

and Qc, respectively, have their own density and viscosity,
denoted as ρd, ηd for the dispersed phase and ρc, ηc for the
continuous phase. In our experiments, one of these phases
(but not both) exhibits shear-thinning behaviour, where the
viscosity decreases with increasing shear rate.1 Additionally,
one of the phases will display non-Newtonian elastic
properties, quantified by its longest relaxation time λ. At any
given time, only one of the two phases, either the continuous
or the dispersed phase, exhibits viscoelasticity, but not both.
Since the two fluids are immiscible, they possess an
interfacial tension γ. The microfluidic device also has a
junction width w and a etching height h.

Given this system, there are N = 12 parameters and D =
3 independent dimensions (length, mass, time), which
means that the problem can be described by G = N − D =
12–3 = 9 dimensionless parameters. Based on previous
studies in droplet microfluidics,2–4 we have identified the
following dimensionless parameters that will be used to
describe the system.
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The Reynolds number, one for the dispersed and one for
the continuous phase, represents the ratio of inertial forces
to viscous forces:

Re ¼ ρUw
η

; (1)

where ρ is the fluid density, η is the fluid viscosity, U is the
fluid velocity, and w is the device width (Fig. 1a).

The capillary number, one for the dispersed and one for
the continuous phase represents the ratio of viscous forces to
interfacial forces:

Ca ¼ ηU
γ
; (2)

where γ is the interfacial tension.
The Weissenberg number quantifies the ratio of elastic to

viscous forces:

Wi ¼ λ ¼ λU
h

; (3)

where λ is the longest relaxation time and h is the etching
depth of the device.

The normalized droplet length and height are given as:

L
w

(4)

H
w

(5)

The viscosity ratio is defined as:

α ¼ ηd
ηc

; (6)

where the subscripts d and c refer to the dispersed and
continuous phase, respectively.

Finally, the flow rate ratio is:

q ¼ Qd

Qc
; (7)

where the symbol Q represents the volumetric flow rate. Taken
together the 9 dimensionless parameters can be used to describe
droplet generation experiments when one of the two phases is
non-Newtonian. Please note that, for shear-thinning liquids, we
used the actual viscosity values at the average shear rate in the
channel, eliminating the need to separately account for the zero-
shear viscosity and the degree of shear-thinning. Specifically,
each dimensionless parameter above is calculated using the
viscosity at the shear rate  = U/h, where h is the etching depth,
ensuring that we accurately computed the viscosity to reflects
the flow conditions within the channel.

Materials and methods
Sample preparation and characterization

We employed aqueous solutions of hyaluronic acid (HA, Sigma
Aldrich, UK) at different mass concentrations, as well as

Fig. 1 Schematic representation of the flow focusing microfluidic devices employed to generate droplets using a) hyaluronic acid (HA) aqueous
solutions as the dispersed phase and b) HA aqueous solutions a the continuous phase. Dimensions are not to scale. c) Viscosity curve as a function
of the shear rate  for the HA solutions employed in the microfluidic device in (a). d) Same as (c) for the microfluidic device in (b). The dashed lines
in (b and c) is the cross model fit (refer to the text for more details).
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mineral oil (Sigma Aldrich, UK) with varying concentrations
and types of surfactants, depending on the device
configuration. When the non-Newtonian liquid was in the
dispersed phase (Fig. 1a), we prepared HA solutions with
concentrations ranging from 1 wt% to 0.01 wt% to capture
varying degrees of elasticity and shear-thinning. The surfactant
type (Span 80) and concentration in the oil phase was held
constant at 1 wt%, following the conditions established in
previous studies.9 When the non-Newtonian liquid was used as
the continuous phase (Fig. 1b), two HA solutions were selected,
specifically 0.5 wt% and 0.05 wt%, while the dispersed phase
consisted of oil with either Tween 20 or Span 80 at different
concentrations, spanning a range of interfacial tension values.
The aqueous solutions were prepared by directly adding
polymer powder to water, followed by overnight stirring at
room temperature using a magnetic stirrer to ensure full
dissolution. Dilutions from the stock solution were used to
achieve the desired concentrations. For the oil phase, liquid
surfactant was added directly to mineral oil and stirred to
achieve homogeneity. From previous work,9 we observed that
low HA concentrations had little effect on the interfacial
tension between the mineral oil and Span 80 at 1 wt%.
Consequently, when the non-Newtonian phase was used as the
dispersed phase, we adopted the interfacial tension value of
3.63 mN m, in agreement with our previous work.9 When the
non-Newtonian phase was employed as the continuous phase,
interfacial tension was measured using a force tensiometer
(Sigma 702, Biolin Scientific) equipped with a du Nouy ring. In
this process, the lighter phase was poured on top of the ring
after immersion in the heavier phase. The force required to
break the ring from the interface was recorded using the
device's built-in microbalance and was used to calculate the
interfacial tension. In agreement with the observation9 that the
HA concentration did not significantly affect the interfacial
tension γ, we measured the interfacial tension between water
and mineral oil containing various types and concentrations of
surfactants, with results reported in Table 1.

The rheological characterization of the solutions was
performed using an Anton Paar MCR702 rotational rheometer,
equipped with a cone and plate geometry (50 mm diameter, 1°
angle), and measurements were conducted at 20 °C
(Fig. 1c and d). The viscosity curves showed a constant viscosity
at low shear rates, followed by a shear-thinning region, with
the degree of shear-thinning depending on HA concentration,
as expected based on previous literature.44,45 Minor

discrepancies between viscosity curves in Fig. 1a and b are
attributed to different operators preparing the solutions.

The viscosity curves were fitted using the cross model,1

assuming an infinite viscosity η∞ = 0:

η ¼ η0
1þ λð Þm ; (8)

where λ represents the characteristic relaxation time used to
estimate the longest relaxation time, η0 is the zero-shear
viscosity, and m is a parameter that characterizes the strength
of shear-thinning. We recognise that estimating λ via the
cross-model is a simplification compared to performing
small angle oscillatory shear measurements. However, this
approach has also been previously employed in the
literature45–47 and it is a valid approach to quantify the
elasticity of a fluid via a simple viscosity curve measurement.

Experimental setup

The experimental setup used in this study is similar to the
one employed in our previous work,36 and is summarized
below. For the experiments where the non-Newtonian phase
was in the dispersed phase, we used a commercial glass
microfluidic device with an etching depth of 100 μm (h = 100
μm and w = 105 μm) and a hydrophobic coating (Dolomite
Microfluidics, UK). In cases where the non-Newtonian phase
was in the continuous phase, we utilized a glass microfluidic
device with an etching depth of 190 μm (h = 190 μm and w =
195 μm) without any surface coating (Dolomite Microfluidics,
UK). This distinction is crucial for meeting the surface
wetting requirements necessary to generate either aqueous or
oil droplets, as discussed in previous studies.48

Flow rates were controlled using a syringe pump equipped
with two independent flow units and pressure sensors on
each flow stream (Dolomite Quad Pumps). The system was
fitted with Mitos Quad Pump Green syringe pairs (Dolomite
Microfluidics), providing a flow rate range from 5 μl min−1 to
1250 μl min−1. We monitored the overall pressure in the
microfluidic channels using the embedded pressure sensors,
allowing us to track pressure drop fluctuations throughout
the device. After setting the desired flow rate, we waited for
the flow to stabilize, defined by the point when pressure
fluctuations around the mean pressure drop remained
consistently within 10% of the overall value. Notably, larger
fluctuations were observed at higher polymer concentrations.

The flow within the microfluidic channel was visualized
using an inverted microscope (Zeiss Primovert) coupled with
a high-speed camera (Photron Mini UX-50). The camera
operated at frame rates ranging from 100 fps to 2000 fps,
depending on the requirements of the experiment. All videos
were analyzed using an in-house MATLAB code to extract the
relevant parameters.

Results and discussion

We first present the results from the experiments and
compare them with the literature to gain confidence about

Table 1 Interfacial tension values for water and mineral oil at different
surfactant types and concentrations

Surfactant type and concentration Interfacial tension [mN m]

Span 80–0 wt% 25.06 ± 0.16
Span 80–0.03 wt% 9.07 ± 0.12
Span 80–0.3 wt% 4.51 ± 0.16
Span 80–1 wt% 3.91 ± 0.1
Tween 20–0.03 wt% 6.94 ± 0.48
Tween 20–0.3 wt% 2.49 ± 0.2
Tween 20–1 wt% 1.83 ± 0.02
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their reliability. We also show that a simplistic application of
the dimensional analysis considering the dimensionless

parameters as independent is insufficient to generate a single
master curve for the experimental data. For this reason, we

Fig. 2 a) Droplet height H as a function of the droplet length L for several hyaluronic acid (HA) concentrations used as the dispersed phase. The
coloured area is inaccessible to the droplet, being the downstream width of 290 μm. (b–d) Stability diagram for droplet formation as a function of
different dimensionless numbers. (e–g) Droplet length L normalised by the channel width w as a function of the capillary number of the
continuous phase Cac for different imposed volumetric flow rate and different hyaluronic acid concentrations in water. h) L/w as a function of a
combination of dimensionless parameters. The data follow a common trend but do not overlap on a single mastercurve.
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then introduce a hybrid machine-learning architecture that
can predict the experimental values of the flow rates required
to generate droplets of a given size, given specific fluid
properties of either the continuous or the dispersed phase.
We test the accuracy of the hybrid machine-learning
architecture on both holdout data from training data, and
completely unseen data from fluids having viscosity curves
that were not employed in the training.

Non-Newtonian fluids in the dispersed phase

We begin by discussing the formation of non-Newtonian
droplets using mineral oil as the continuous phase (Fig. 2).
In agreement with our previous study,36 we plotted the
droplet height H as a function of the droplet length L and
observed that most droplets formed were circular in shape
(Fig. 2a). The only exceptions occurred when the droplet
length exceeded the height, particularly for low values of the
flow rate ratio q or when the droplet size approached the
maximum width of the expansion area, which was 290 μm
for the device employed. We then proceeded to evaluate the
stability of droplet formation using a combination of
dimensionless numbers, namely Cad, Cac, Wid, and Red
(Fig. 2b–d). For a fixed value of Cac, an increase in Cad
resulted in unstable droplet formation (Fig. 2b). Similarly, for
a fixed Cad, larger values of Cac were required to stabilize
droplet generation, particularly with increasing polymer
concentration. Indeed, increasing the polymer concentration
led to higher fluid viscoelasticity, represented by an increase
in Wid, which required higher values of Cac to maintain
stable droplet formation (Fig. 2c). These results are
consistent with previous works. For example, Rostami and
Morini20,21 studied non-Newtonian droplet formation using
xanthan gum as the dispersed phase and observed that
droplet formation transitioned into a jetting or unstable
regime as Cad increased relative to Cac. This phenomenon
can be explained by the fact that higher values of Cad,
associated with increased Qd, necessitate larger values of Cac
and Qc to generate stable droplets.

Next, we studied the behavior of normalized droplet
length L/w as a function of Cac for different HA
concentrations (Fig. 2e–g). Regardless of the polymer
concentration—and consequently the degree of elasticity—we
observed a consistent decrease in droplet size with increasing
Cac. This finding aligns with previous studies that reported
similar observations.20,21,23,49

We then compiled all the data for normalized droplet
length across different polymer concentrations and examined
their scaling with respect to dimensionless numbers (Fig.
S1†). The droplet length scaled as L/w ∝ Ca−0.6c (Fig. S1a†),
which is in reasonable agreement with the L/w ∝ Ca−0.4c

dependence found by Shahrivar et al.9 Furthermore, we
observed a scaling of L/w ∝ q0.6 (Fig. S1b†), in agreement
with prior studies,9 and L/w ∝ Wi0.45d (Fig. S1c†). However,
when plotting L/w against α, Cad, Rec, and Red, no
meaningful overall correlation was found (Fig. S1(d–g)†). This

suggests that the influence of these parameters on L/w is less
significant than the impact of other variables.

Finally, we plotted L/w as a function of the combined
scalings, specifically L/w ∝ (q/Cac)

0.6Wi0.45d , and observed that,
while the data followed a common trend, no definitive
master curve could be established (Fig. 2h). This does not
indicate that the dimensionless numbers are inadequate for
describing the system; rather, it suggests that the functional
relationship governing droplet formation is more complex
than the scaling laws identified in this study.

Taken together, our results show a good agreement with
existing literature. However, a simple application of
dimensional analysis cannot fully capture the complexity of
non-Newtonian droplet formation. The lack of a clear master
curve suggests that the functional dependencies among the
variables are more intricate than those presented here. This
also means that we could not establish any simple
relationship that can guide users in identifying the values of
Qd and Qc required to generate droplets of a given L and H.

Non-Newtonian fluids in the continuous phase

We now discuss the formation of mineral oil droplets with
non-Newtonian HA as the continuous phase (Fig. 3). We
followed the same approach used in the study of non-
Newtonian droplets surrounded by mineral oil (Fig. 2). The
dynamics of droplet formation varied with the concentration
of HA in the non-Newtonian fluids, leading us to organize
the data according to the polymer concentration used.

Let us begin with the HA 0.05 wt% (Fig. 3(a–c)). We
primarily generated circular droplets (Fig. 3a), which is
consistent with our experiments using HA as the dispersed
phase. From the stability diagram featuring Cad as a function
of Cac, we observed that, for a constant value of Cac, an
increase in Cad led to instability in droplet formation. This
finding aligns with previous studies. For instance, Derzsi
et al.13 used a non-Newtonian, near-constant viscosity fluid
as a continuous phase and reported that for 10−3 < Cac <

10−2, increasing Cad resulted in a transition from droplet
generation to jetting. We also explored the influence of
continuous-phase viscoelasticity on droplet formation
stability, finding that despite large values of Wic > 1, the
droplet formation process remained predominantly stable
(Fig. 3c).

We further evaluated the functional relationship between
L/w and various dimensionless parameters across the entire
dataset for HA 0.05 wt% in the continuous phase (Fig. S2†).
Our results showed that L/w ∝ Ca−0.5c , L/w ∝ q0.3, L/w ∝
Wi−0.3c , L/w ∝ α−0.6, and L/w ∝ Re−0.2c . However, we could not
clearly identify a dependency on Cad. These trends are in
good agreement with findings reported in the literature. For
example, Chen et al.50 observed that L/w ∝ Ca−0.454c for a flow-
focusing configuration similar to the one used in our study,
closely matching our observed scaling. They also reported
L/w ∝ q−0.41, which aligns with our observations. Similar
trends have also been documented by Derzsi et al.13
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Fig. 3 a) Droplet height H as a function of the droplet length L for hyaluronic acid (HA) concentration of 0.05 wt% used as the continuous phase.
The coloured area is inaccessible to the droplet, being the downstream width of 390 μm. (b and c) Stability diagram for droplet formation as a
function of different dimensionless numbers for HA 0.05 wt%. d) Same as (a) for HA 0.5 wt%. (e and f) Same as (b and c) for HA 0.5 wt% g and
h) L/w as a function of a combination of dimensionless parameters for HA 0.05 wt% (g) and HA 0.5 wt% (h). The data follow a common trend
but do not overlap on a single mastercurve.
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For HA 0.5 wt% in the continuous phase, the overall
trends were similar to those observed for the HA 0.05 wt%
data, although there were some key differences. In terms of
droplet shape, while the predominant shape remained
circular, we noted a larger variation in droplet size compared
to the HA 0.05 wt% samples (Fig. 3d). Numerical studies by
Gupta and Sbragaglia16 did not report a significant change in
the standard deviation of droplet length, whereas
experiments by Ren et al.14 using a co-flow geometry found
increased variability in droplet size with shear-thinning
liquids, consistent with our findings. Regarding droplet
generation stability, we observed a trend similar to the HA
0.05 wt% data but with a more pronounced instability region
at larger values of Cad for a fixed Cac (Fig. 3e) and Wic
(Fig. 3f).

In terms of normalized droplet length as a function of
individual dimensionless parameters, we observed a similar
overall trend, but with slightly different scaling relationships

(Fig. S3†). Specifically, we found L/w ∝ Ca−0.84d , L/w ∝ q−0.54,
L/w ∝ Wi−0.31c , L/w ∝ α−0.5, and L/w ∝ Re−0.2c . The most
notable deviations appeared in the scaling with Cad and q,
though it is challenging to fully appreciate these differences
when considering the data more broadly. Despite the
differences in specific numerical values, the overall trends
were consistent with those for HA 0.05 wt%.

We also attempted to identify a potential master curve by
combining all the scaling relationships and using averaged
scalings across the different datasets. However, the data
exhibited significant deviations from the simple power-law
scaling identified by the best power-law fit (Fig. 3(g and h)),
with deviations notably larger than those observed for non-
Newtonian HA in the dispersed phase.

Taken together, our results are generally in agreement
with findings reported in the literature. However, a
straightforward dimensional analysis, assuming the
dimensionless parameters to be independent, is insufficient

Fig. 4 Schematic representation of the hybrid machine-learning architecture developed in this work. The users first input the variables related to desired
droplet length L and height H, together with a series of fluid properties, specifically ρd, ρc, ηd, ηc, and the surface tension γ. Only one of the two viscosity
curves is shear-rate dependent, either the continuous or the dispersed phase. The cross model is applied to estimate the longest relaxation time λ for the
shear-rate dependent viscosity. Then, the dimensionless droplet length L/w and height H/w are computed and combined with λ and γ as input parameters
to the first neural network where an initial prediction of the flow rate of the non-Newtonian phase Qt is obtained, where the superscript t stands for
‘temporary variable’. The flow rate of the non-Newtonian phase Q is then employed with the data input to evaluate a series of dimensionless parameters
that are then used, together with the viscosity curve η, as input parameters to the random forest algorithm to predictQd and Qc.
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to produce a unified master curve. As in the previous case,
we could not establish any simple relationship that can guide
users in identifying the values of Qd and Qc required to
generate droplets of a given L and H.

Design and performance of the hybrid machine-learning
architecture

One of the key challenges in droplet microfluidics, especially
with non-Newtonian fluids, is to identify the values of Qd and
Qc required to generate droplets having a specific length L
and height H. Since the simplistic dimensional analysis was
unable to provide a simple generalised tool to identify such
potential values of Qc and Qd, we developed a hybrid
machine-learning architecture based on dimensional analysis
to predict the experimental values of Qd and Qc for given
droplet length L, height H, and the viscosity curve of the non-
Newtonian phases (Fig. 4). This approach combines the
strengths of both neural networks and dimensional analysis
to account for the complex interactions between parameters
that the traditional approach could not capture. Under a
practical point of view, the hybrid machine-learning can
provide the values of Qd and Qc required to generate the
desired droplets using the desired liquids. To the best of our
knowledge, only one previous study51 has employed
dimensional analysis in conjunction with machine learning
for droplet generation in microfluidic devices, and this was
limited to Newtonian fluids. In their approach, the authors
used dimensionless parameters as both input and output
variables, with up to 12 dimensionless inputs to predict 2
dimensionless outputs. While their method achieved good
prediction accuracy, it may have been prone to
overfitting,52,53 as it required a large number of input
parameters to generate relatively few output values.
Moreover, from a user perspective, their method required
prior knowledge of specific dimensionless numbers to obtain
predictions, which can be inconvenient or even impossible in
many cases. In our study, the only known dimensionless
numbers are L/w and H/w, which correspond to the desired
droplet dimensions. However, knowing these alone is
insufficient for accurate predictions, as multiple values of the
flow rate ratio q can yield the same values of L/w and H/w.
Additionally, in our system, one of the fluids has a shear-rate
dependent viscosity, adding further complexity to the
problem. It is also challenging to hypothesize a value for Ca
for the non-Newtonian phase, as the viscosity is directly
influenced by fluid velocity due to its shear-rate dependence.
From a practical standpoint, the user typically knows the
physical properties of the two liquids, such as their viscosity
values, viscosity curves, densities, and interfacial tensions,
along with the device width w and the desired droplet size
values L and H. The goal is to predict the flow rates Qc and
Qd required to produce droplets of the specified size with the
given fluid combination. We designed our hybrid machine-
learning with these user requirements in mind, ensuring that
the system could effectively bridge the gap between known

physical parameters and the experimental conditions needed
for precise droplet generation.

Design. The hybrid machine-learning operates as follows.
Users first input variables related to the desired droplet
length L and height H, alongside a set of fluid properties,
specifically the densities ρd and ρc, viscosities ηd and ηc, and
the interfacial tension γ. It is important to note that only one
of the viscosity values—either for the continuous or the
dispersed phase—exhibits shear-rate dependence. For the
phase with shear-rate dependent viscosity, we apply the cross
model to estimate the longest relaxation time λ.

Once this preliminary information is provided, the model
computes the dimensionless droplet length L/w and height
H/w and combines these with λ and γ as input parameters for
the first neural network. This approach is selected because
neural networks excel at identifying complex, non-linear
relationships within datasets, even when the number of input
parameters is relatively small. This network then generates
an initial prediction of the flow rate of the non-Newtonian
phase, denoted as Qt, where the superscript stands for
‘temporary variable’. The challenge in this task lies in the fact
that the same set of input parameters can result in multiple
possible output combinations. To address this, we generate a
temporary estimate for Qt (i.e., either Qt

c or Q
t
d) that can later

inform additional model constraints. Subsequently, this
predicted flow rate of the non-Newtonian phase Qt is used,
along with the initial input data, to calculate a series of
dimensionless parameters. These parameters, together with
the viscosity curve η, serve as input to a random forest
algorithm, which refines the prediction and provides the final
values of Qd and Qc, based on the training dataset. For the
training dataset, we employed the dimensionless numbers
associated with the experimental data described in the
previous sections. Random forests are well-suited for this task
due to their ability to handle uncertainty and noise in the
input data. Random forests are robust to noisy or irrelevant
features, as each decision tree in the ensemble focuses on
different subsets of the data. This is particularly important
because the dimensionless parameters used to guide the
model are based on the initial estimate of Q from the first
neural network, which may contain uncertainty. By
aggregating the results of multiple trees, random forests can
‘vote’ on the most likely outcomes for Qc and Qd, which helps
further mitigate the effect of any uncertainty in the inputs.
The final output is an estimate of Qc and Qd that is optimized
to produce the required droplet sizes based on the input
parameters and fluid characteristics. The model is trained on
data from a variety of viscosity curves (Fig. 1(c and d)) and a
single geometry channel. This two-step process is both
flexible—able to discard irrelevant information—and robust,
capable of capturing the complex relationships between the
fluid properties and the resulting flow rates. Overall, this
hybrid neural network–random forest approach combines the
strengths of both models: the neural network's ability to
detect complex relationships and the random forest's
robustness to noisy or uncertain input parameters.
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Performance of the hybrid machine-learning architecture.
We now proceed to describe the accuracy of the hybrid

machine-learning architecture in different conditions. In
agreement with previous works,36 we evaluated the accuracy

Fig. 5 a) Flow rate ratio predicted by the hybrid network as a function of the same ratio from the ground truth holdout data, meaning 20% of the
entire dataset with HA concentration as in Fig. 1(c and d). The correlation is R2 = 0.71 for HA in the dispersed phase and R2 = 0.82 for HA in the
continuous phase. b) Viscosity curves for HA concentrations in the dispersed phase, unseen by the network, meaning that no training dataset was
provided on those concentrations. c) Flow rate ratio predicted by the hybrid network as a function of the same ratio from the ground truth data
for the unseen HA concentrations in the dispersed phase. The correlation is R2 = 0.8 for HA 0.0178 wt% and R2 = 0.46 for HA 0.178 wt%. d)
Viscosity curve for a PEO concentration on the continuous phase, unseen by the network. e) Flow low rate ratio predicted by the hybrid network
as a function of the same ratio from the ground truth data for PEO unseen curves in the 190 μm and 100 μm devices. The correlation is R2 = 0.83
in the 190 μm device and R2 = 0.48 in the 100 μm device.
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by using the flow rate ratio rather than the independent
values of the flow rate. In fact, the droplet size depends upon
the ratio between the two flow rates rather than their
individual value.2 We first present the results related to the
accuracy of the hybrid machine-learning architecture with
respect to the holdout data (Fig. 5a). The holdout data
represent 20% of the entire experimental dataset used to
train the algorithm. This test evaluates whether the algorithm
can accurately predict data that were not included in the
training process but still fall within the range of the training
data. This procedure is standard practice in machine
learning applications for droplet microfluidics.33–36 We
observed an excellent correlation for the holdout data, with
R2 = 0.71 for data where HA (the non-Newtonian phase) was
in the dispersed phase, and R2 = 0.82 for data where HA was
in the continuous phase.

Next, we tested our hybrid machine-learning architecture
on a new set of data, involving fluids with viscosity curves
that differed from those used during training. For the HA in
the dispersed phase, we evaluated the network's performance
on two HA concentrations: a shear-thinning 0.178 wt% and a
negligible shear-thinning 0.0178 wt% (Fig. 5b), with their
viscosity curves lying between those used for training. In
other words, this test was an interpolation of viscosity curves,
but these specific curves had never been seen by the hybrid
machine-learning architecture during training. For the 0.0178
wt% data, we observed a strong correlation with R2 = 0.80
across the entire dataset (Fig. 5c). Interestingly, the data for q
= 1 deviated more significantly from the predictions. We
speculate that this deviation is due to an insufficient number
of training data points at q = 1, where the droplet typically
occupies the entire cross-section of the downstream area of
the device. In previous studies,33–36 it was consistently
observed that the droplet size is generally smaller than the
width of the downstream area. For the 0.178 wt% data, the
correlation was R2 = 0.46, primarily due to discrepancies in
data at q > 0.3 (Fig. 5c). We believe that this limitation is
related to the scarcity of data for viscosity curves exhibiting
shear-thinning behavior. At such relatively high
concentrations of HA, we encountered numerous instabilities
in droplet formation (Fig. 2), particularly when Qc was
comparable to Qd. Nevertheless, our network was able to
deliver relatively accurate predictions for smaller droplets,
which were generated at lower values of q.

We then repeated the analysis for the configuration where
the continuous phase was an unseen non-Newtonian fluid. For
this, we used an aqueous polyethylene oxide (PEO) solution
with a molecular weight of 4 MDa at 0.4 wt%. This viscosity
curve represented an extrapolation beyond those used during
training (Fig. 1d), as its zero-shear viscosity was lower than that
of any HA solution used for training. We first assessed the
accuracy of the hybrid machine-learning architecture in the
190 μm device used during training and observed a correlation
of R2 = 0.83. This result is surprisingly good, given that the
viscosity curve differed significantly from those in the training
dataset. We further tested the network's accuracy using a

different channel with an etching depth of 100 μm. This
approach is justified by the fact that our hybrid machine-
learning architecture incorporates dimensional analysis, which
should enable it to describe different geometries and operating
conditions. We observed a correlation of R2 = 0.48, with better
accuracy at lower values of q, consistent with the observations
described earlier. We also speculate that incorporating the
channel height h into the training could enhance the quality of
the predictions. Although h is implicitly represented in a series
of dimensionless parameters (such as those involving U and ),
we cannot discount the possibility that treating h as an
independent training parameter might lead to improved model
predictions. Future research should aim to clarify this aspect.

Our approach is also expected to be superior to the use of
simple empirical models. Empirical models typically focus on
a limited number of variables and may not account for the
interaction between a broader set of parameters, such as
fluid properties (e.g., shear-dependent viscosity, relaxation
time, interfacial tension) and operational conditions (e.g.,
flow rate and geometry). Neural networks, on the other hand,
can effectively handle high-dimensional inputs, learning the
complex relationships between multiple parameters and their
combined influence on the output, an approach that is
unmanageable with traditional empirical methods. This
capability is particularly relevant when considering the
failure of the master curve, as it suggests that the traditional
dimensional analysis used may not have captured the full
complexity of the system.

Taken together, the hybrid machine-learning architecture,
which combines a neural network followed by a random
forest applied to a set of dimensionless parameters, was able
to provide accurate predictions regardless of the viscosity
curve for both cases of a non-Newtonian dispersed phase and
a non-Newtonian continuous phase. Additionally, we found
that our network could predict with good accuracy the
experimental conditions required to generate droplets in a
device having an etching depth of 100 μm, different from the
one provided during the training.

Conclusions

In this study, we addressed the limitations of traditional
dimensional analysis in capturing the complex relationships
governing non-Newtonian droplet formation in microfluidic
systems. Our development of a hybrid machine-learning
architecture, which integrates dimensional analysis, enabled
accurate predictions of flow rates Qd and Qc for specified
droplet length L, height H, and the viscosity curves of non-
Newtonian phases. This approach effectively combined the
strengths of machine learning and dimensional analysis,
overcoming challenges that arise from shear-rate dependent
viscosities and the variability of flow conditions. Unlike
previous work that applied dimensional analysis with
machine learning to Newtonian fluids,51 our method extends
these capabilities to non-Newtonian fluids, making it more
versatile and robust. We validated our model through
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rigorous testing. For holdout data representing 20% of the
experimental dataset, the hybrid machine-learning
demonstrated excellent predictive accuracy, achieving R2 = 0.71
for scenarios with HA as the dispersed phase and R2 = 0.82 for
HA in the continuous phase. Additionally, when applied to new
datasets with different viscosity curves not included in the
training set, the model showed strong interpolation capabilities.
For instance, with a shear-thinning HA concentration of 0.0178
wt%, we achieved an R2 = 0.80. However, predictions for higher
concentrations like 0.178 wt% were less accurate (R2 = 0.46),
likely due to the limited data for strongly shear-thinning fluids
and the presence of droplet formation instabilities. Even when
tested with a new channel with an etching depth of 100 μm, the
hybrid network delivered reasonable predictions (R2 = 0.48),
especially at lower values of q. Overall, our hybrid machine-
learning provides a novel solution that can accurately predict
the flow conditions required for generating droplets with
various fluid properties. This versatility sets our model apart
from previous approaches that either required more extensive
knowledge of dimensionless numbers51 or were restricted to
Newtonian systems.33,34 Our findings suggest that integrating
machine learning with dimensional analysis is a powerful
approach to tackle complex fluid dynamics problems, opening
avenues for more efficient and precise control of droplet
generation in microfluidic applications.
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