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Organ-on-chip (OOC) devices are an emerging New Approach Method in both pharmacology and

toxicology. Such devices use heterotypic combinations of human cells in a micro-fabricated device to

mimic in vivo conditions and better predict organ-specific toxicological responses in humans. One

drawback of these devices is that they are often made from polydimethylsiloxane (PDMS), a polymer

known to interact with hydrophobic chemicals. Due to this interaction, the actual dose experienced by

cells inside OOC devices can differ strongly from the nominal dose. To account for these effects, we have

developed a comprehensive model to characterize chemical–PDMS interactions, including partitioning into

and diffusion through PDMS. We use these methods to characterize PDMS interactions for 24 chemicals,

ranging from fluorescent dyes to persistent organic pollutants to organophosphate pesticides. We further

show that these methods return physical interaction parameters that can be used to accurately predict

time-dependent doses under continuous-flow conditions, as would be present in an OOC device. These

results demonstrate the validity of the methods and model across geometries and flow rates.

Introduction

Organ-on-chip (OOC) devices are a promising new approach
method for pharmacology and toxicology in which human
cells are cultured under microfluidic perfusion. Such devices
can reproduce human organ responses at a miniaturized scale
and thus have advantages over animal testing in terms of
cost, ethical concerns, and adaptability for high-throughput
screening;1–7 however, their small channel sizes yield large
surface-area-to-volume ratios, which exacerbate losses
resulting from chemicals interacting with the materials of the
channel walls. One key material used to fabricate OOC
devices is the elastomer polydimethylsiloxane (PDMS). This
material is transparent, flexible, biocompatible and relatively
low cost, which makes it ideal for prototyping OOC devices in
academic labs. As market demand for OOC devices has
grown,8 PDMS remains the bulk material in many
commercially available devices, e.g., those sold by Emulate9

and SynVivo.10–13 Other commercial OOC suppliers have
moved away from PDMS in favor of injection-molded
thermoplastics (ChipShop)14,15 or glass (Micronit),16 but even
in these devices, PDMS or another soft polymer is often
incorporated to make flexible membranes and valves.
Unfortunately, the use of PDMS in microfluidic devices has a

well-recognized drawback: PDMS tends to interact with and
sequester hydrophobic compounds.17–24 When that happens,
a compound's nominal inlet concentration is no longer a
reliable measure of its in-device chemical dose.

There are three strategies for dealing with this problem:
(1) avoid testing of hydrophobic chemicals; (2) mitigate the
interactions by modifying PDMS, by including a carrier in
solution, or by using a different elastomeric material; or (3)
measure and model the interactions to account for them and
predict time-dependent in vitro concentration profiles within
such devices. Here, we take the latter toxicokinetic approach.
We demonstrate relatively simple methods for measuring the
chemical–PDMS interaction parameters that govern
partitioning at water–PDMS interfaces and diffusion in PDMS
bulk. We measure these parameters for 24 compounds and
find that their values vary across several orders of magnitude.
Importantly, these microscopic parameters are independent
of geometry and flow rate, which makes the associated model
extensible to any user-defined geometry. We validate this
independence and extensibility by demonstrating the ability
of a 3D finite-element model to use the parameters measured
in static disk-soak and diffusion-through-membrane
experiments to accurately predict concentration profiles in
microfluidic channels at two different flow rates. These
methods and models are one key step in the larger task of
translating in vitro dose to equivalent in vivo organal dose,
i.e., in vitro–in vivo extrapolation (IVIVE).7,25

We have pursued this modeling approach because the
other two strategies are not always feasible. In some cases,
one can avoid testing hydrophobic chemicals, but that
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strategy is unworkable for many applications in
environmental toxicology: high hydrophobicity is a key
characteristic of many persistent organic pollutants. For this
study, we selected several such compounds: three
organophosphate pesticides or pesticide metabolites –

chlorpyrifos, paraoxon, and parathion – that have been the
subject of prior studies with an organ-on-chip neurovascular
unit26 or microphysiometer;27,28 a polycyclic aromatic
hydrocarbon, benzo[a]pyrene, previously studied both for its
ability to disrupt endocrine signaling in an endometrium-on-
a-chip device29,30 and as a component of cigarette smoke
extract (CSE) studied in a fetal membrane-organ-on-chip;31

and a pharmaceutical, amodiaquine, that has been studied
in a human-airway-on-a-chip.32,33 We complemented this set
of toxicants and drugs with four fluorescent dyes –

fluorescein, fluorescein-5-isothiocyanate (FITC), rhodamine
B, rhodamine 6G – that have been used in several studies as
tracers and/or analogs for PDMS interactions.33–35 Finally, we
included indole, which is fairly water soluble (3.56 mg mL−1),
relatively non-toxic, and serves as an excellent control that
interacts with PDMS quickly, but not prohibitively strongly.
As shown in Table 1, each of these ten chemicals has an
octanol–water coefficient above the log P = 1.8 threshold
where interactions with PDMS become a concern.22

As for mitigation strategies, several groups are working on
alternative materials,37,38 but PDMS has many properties –

low cost, flexibility, transparency, gas permeability, and
biocompatibility – that make it ideal for microfabricating
OOC devices;6,23 it thus remains the dominant OOC material.
Researchers have also evaluated mitigation techniques that
modify PDMS surfaces to somewhat limit chemical–PDMS
interactions. One popular approach is plasma oxidation,
which makes PDMS surfaces hydrophilic and eliminates
interactions with hydrophobic chemicals. Unfortunately, this
change is transient: PDMS will revert to an intermediate
value of hydrophobicity at a rate that depends on the degree
of initial oxidation and subsequent storage conditions.39–41

This partial, time-dependent reversion only complicates
attempts to account for and model interactions with
hydrophobic compounds. Finally, many researchers include
serum, purified serum transport proteins, or micelle-forming
detergents to serve as carriers in the culture medium. If any
of these are present in sufficient quantities, they can stabilize

the free concentrations of hydrophobic compounds.42,43

Nonetheless, some applications require the use of serum-free
or detergent-free media. Even when carriers can be added,
determining whether the free concentrations are stabilized,
and at what levels, requires modeling approaches with
additional parameters, complicating the picture.

Given the above limitations of mitigation, we proffer mass
transport modeling as a ubiquitously applicable tool to
account for chemical–PDMS interactions within OOC devices.
This approach requires measurements of the microscopic
PDMS interaction parameters for a given chemical, but the
needed experiments are within the means of the typical
laboratory. Even without experiments, the parameters can be
estimated using quantitative structure–property relation
(QSPR) models.44,45 One can then use finite-element
modeling (FEM) to simulate a specific device, flow rate, and
time-dependent inlet concentration to determine dynamic in-
device concentration profiles.

Methods
PDMS preperation

PDMS Sylgard 184 (Dow Corning, Auburn, MI) was mixed in
a 10 : 1 mass ratio of elastomer base to curing agent. To make
PDMS disks, PDMS was cast in a 6 mm thick layer, which
was then cured overnight in a 67 °C oven. After curing, disks
were prepared with a 3 mm radius biopsy punch. These
PDMS disks were then annealed for 4 hours in a 200 °C oven
to stabilize mechanical properties.46 PDMS membranes were
spun out from small volumes of PDMS to 80 μm thickness
on a Laurell WS-400-6NPP Spin Coater (Laurell Technologies
Corporation, Lansdale, PA) using the procedure described by
Markov et al.41 and then cured. PDMS with microchannels,
measuring 21.1 mm in length, 1.5 mm in width, and 100 μm
in height, was made by casting 6 mm of PDMS over a SU-8
photoresist mold. The cast PDMS was then allowed to cure,
and annealed. For experiments, each block of PDMS with
microchannels was clamped onto a 2 inch by 3 inch
microscope slide.

Chemical preparation

Chemicals were acquired either as powders or liquids from
Sigma Aldrich (St. Louis, MO). Stock solutions were prepared

Table 1 Best-fit parameter values for the partition–diffusion model. Reported value of logP sourced from PubChem36

Chemical log P logKPW logKPD logDP (mm2 h−1) logDS (mm2 h−1) logH (mm h−1)

Rhodamine 6G 6.4 — — — — —
Benzo[a]pyrene 6.1 5.20 ± 1.22 −2.06 ± 0.82 −1.42 ± 0.30 −1.89 ± 0.26 −0.49 ± 0.17
Chlorpyrifos 5.0 6.25 ± 1.98 −1.21 ± 0.53 −1.51 ± 0.30 ≥3.56 0.04 ± 0.09
FITC 4.8 — — — — —
Parathion 3.8 4.39 ± 0.50 −1.92 ± 0.47 −1.40 ± 0.50 ≥3.56 −1.05 ± 0.14
Amodiaquine 3.7 −0.84 ± 0.63 — −1.29 ± 0.58 ≥3.56 ≥1.56
Fluorescein 3.4 — — — — —
Indole 2.1 −0.91 ± 0.03 −1.12 ± 0.26 −1.25 ± 0.09 0.56 ± 0.07 ≥1.56
Paraoxon 2.0 1.08 ± 0.03 — −1.96 ± 0.05 0.52 ± 0.23 ≥1.56
Rhodamine B 1.9 1.83 ± 0.10 — −3.44 ± 0.68 −1.16 ± 0.12 ≥1.56
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with 1× pH-7.4 phosphate buffered saline (PBS) (Thermo
Fisher, Waltham, MA) to near maximum solubility. For
chemicals with very low solubility in water, dimethyl
sulfoxide (DMSO) was added to increase solubility. DMSO
does not partition into nor interact with PDMS, making it a
compatible organic solvent.47 For experiments, stock
solutions were diluted in their respective mixed solvent to
obtain a peak UV-vis absorbance close to one. The
concentrations used in experiments were in the micromolar
range (Table S1†).

Measuring chemical loss to PDMS in disk-soak experiments

Disk-soak experiments were performed by monitoring loss of
chemical from solution over time while in contact with a
PDMS disk. Concentrations were estimated via UV-vis
absorbance spectra measured with a NanoDrop OneC UV-vis
spectrophotometer (Thermo Fisher, Waltham, MA).

Disk soak experiments were conducted with 2 mL of
chemical solution in type 1P disposable UV plastic cuvettes
(FireflySci, Northport, NY). Disks were gently placed on top of
this solution such that they floated with only the top surface
above the solution (Fig. 1A). Cuvettes were sealed with tight
fitting PFTE covers to prevent evaporation. These cuvettes
had spectra measured in the spectrophotometer at pseudo-
logarithmic times over 48 hours to record concentration loss,
while the remainder of the time they were left on a blot mixer
to ensure solutions remained well mixed. Simultaneously, a
cuvette of solution with no disk was monitored to control for
any chemical interaction with UV plastic. After 48 hours,
disks were removed, dried, and placed in cuvettes filled with

fresh solvent. These cuvettes were then sealed and monitored
for 48 hours to track chemical release from PDMS.

Measuring chemical diffusion through PDMS

Diffusion-through-membrane experiments were carried out
in aluminum devices fabricated in-house. Each device had
source and sink reservoirs that were separated by an 80 μm
thick PDMS membrane. To prevent leaks, the PDMS–
aluminum interface was sealed with high vacuum grease
(Dow Corning, Midland, MI). The source and sink were
loaded with 200 μL of either chemical solution or matching
solvent, respectively. A piece of Scotch tape was used to seal
the top of the reservoirs to prevent evaporation (Fig. 1B). For
chemicals with reasonable solubility and strong UV/vis
absorbance, concentrations for the source and sink were
measured from UV-vis absorbance spectra of 2 μL aliquots
using the attenuated total reflectance pedestal of the
NanoDrop OneC spectrophotometer. For chemicals with
weaker absorbance, the full 200 μL was removed from each
chamber, placed in a cuvette for measurement of its UV-vis
absorbance spectrum, and then returned to its original
chamber. For most chemicals, measurements were taken at
pseudologarithmic intervals over 24 hours. For those
chemicals that exhibited fast diffusion, measurements were
then repeated at ten minute intervals over 1 hour.

Direct optical measurement of diffusion in PDMS

For select fluorescent dyes, diffusion in PDMS was also
assayed via direct optical visualization. To do so, a 21.1 mm
long by 1.5 mm wide by 100 μm tall microchannel in PDMS
was filled with a solution of a fluorescent dye, and imaged
for three hours using a 1× objective on a Nikon Ti2 Eclipse
with X-light V2 spinning disk confocal microscope (Nikon
Instruments, Melville, NY). After this time, the microchannel
was emptied and dried. The walls of the dry channel were
then imaged for an additional 12 hours to follow the
diffusive spread of any dye that had previously partitioned
into the PDMS. The spatial profile of diffusing dye was fit to
a solution to the 1D diffusion equation to estimate diffusivity
in PDMS, DP.

Measuring chemical loss under constant pumped flow

To replicate chemical loss in a continually perfused PDMS
device, we measured chemical loss to PDMS in
microchannels perfused at constant flow rates of 5 or 10 μL
min−1. Perfusion was controlled by a Hamilton Standard
Infuse/Withdraw Pump 11 Pico Plus Elite Programmable
syringe pump (Harvard Apparatus, Hollison, MA) with 2.5 mL
Hamilton syringes (Hamilton, Reno, NV) coupled to the
microchannels using Tefzel tubing (McMaster-Carr,
Elmhurst, IL). Effluent was collected in 10 min intervals and
chemical concentration in each effluent sample was
measured via UV-vis absorbance using the pedestal of the
NanoDrop OneC spectrometer.

Fig. 1 Experimental setups. (A-left) Schematic of a disk-soak
experiment in which a disk of PDMS is floated in a cuvette containing a
chemical solution of interest; (A-right) an example pre-equilibrium
profile of chemical concentration in the solution and PDMS disk. (B-
left) Schematic of a membrane experiment in which a thin PDMS
membrane separates a source chamber loaded with a chemical
solution of interest and a sink chamber loaded with matching solvent;
(B-right) an example pre-equilibrium profile of chemical concentration
in source chamber, PDMS membrane, and sink chamber.
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Simulating experiments and fitting experimental data

Disk-soak, membrane and pumped-flow experiments were
simulated using the finite element modeling (FEM) software
COMSOL Multiphysics (COMSOL, Inc., Burlington, MA).
Disk-soak and pumped-flow experiments were simulated in
full three dimensions; simulations of membrane experiments
could be reduced by symmetry to just one dimension.

Data from disk-soak and membrane experiments were fit
to results from the FEM simulations to estimate chemical-
specific model parameters. To make these estimates,
simulations of both experiments were run across a uniformly
log-spaced grid of all model parameters. This set of 4802
simulations was used to construct a first-order interpolation
function, and the experimental concentration data were then
fit to this function. Construction of the interpolation
function and its regression against experimental data was
performed in Mathematica (Wolfram, Champagne, IL).

Results

We tested ten hydrophobic chemicals (log P ≥ 1.9) with both
disk-soak and membrane experiments to measure each
chemical's interactions with PDMS. Seven of these chemicals
were sufficiently water-soluble to make measurements
directly in phosphate-buffered saline (Fig. 2 and S1†). An
additional three were insufficiently water-soluble and
required the addition of ≥40% DMSO by volume (Fig. 3A).
These chemical's interactions were remarkably varied: some
did not partition into PDMS at any detectable level (e.g., FITC
in Fig. 2), but others partitioned very strongly, depleting the
concentration in solution by up to 80% (e.g., parathion in
Fig. 3A); with similarly wide variation, some chemicals
diffused through an 80 μm thick PDMS membrane as fast as
1–5 h (e.g., indole and paraoxon in Fig. 2), while others
needed 12–24 h or longer (e.g., amodiaquine and rhodamine
B in Fig. 2), and at least one bound to PDMS surfaces, but
did not diffuse into the PDMS bulk (rhodamine 6G, Fig. S3†).
Note that many of the membrane experiments reached final
equilibria in which the sum of the source and sink
concentrations was less than the initial concentration,
revealing that a substantial fraction of the chemical remained
in the thin PDMS membrane (e.g., parathion and benzo[a]
pyrene in Fig. 3A).

Parameterizing and modeling chemical–PDMS interactions

To be more broadly useful, measurements of chemical–PDMS
interactions must be parameterized with a model that can be
extended to other PDMS geometries and solution flow rates.
In prior work, we parameterized chemical–PDMS interactions
with a surface binding model, which fit disk-soak data well,22

but did so only for unrealistically large surface binding
capacities. This shortcoming strongly suggests that chemicals
diffuse away from the surface and into the PDMS bulk,
leading the model to make inaccurate predictions when this
diffusion becomes important – e.g., at long times when a

solution of interest is flowing through microchannels in a
large volumetric excess of PDMS.

To parameterize chemical–PDMS interactions in a more
accurate and physically realistic manner, we use a model that
includes both partitioning at solution–PDMS interfaces and
diffusion through bulk PDMS. This model uses two linked
variables to describe the concentration of a given chemical
species in solution, cS, and in PDMS, cP. The concentrations
evolve over time as described by the following partial
differential equations

∂cS
∂t ¼ DS∇2cS −∇⃑· cSv ⃑ð Þ (1)

∂cP
∂t ¼ DP∇2cP (2)

with boundary conditions imposed at the solution–PDMS
interface, ∂Ω:

n ̂·∇⃑cS ∂Ω ¼ − H
DS

KcS − cPð Þ
���� (3)

Fig. 2 Disk-soak and membrane experiment results for chemicals in
solutions of PBS. Left column shows disk-soak data and associated fits
(dashed). Right column shows membrane data from both source (filled)
and sink (empty) with associated fits (dashed). Since FITC demonstrates
no interaction, no fit is shown.
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n ̂·∇⃑cP ∂Ω ¼ þ H
DP

KcS − cPð Þ
���� (4)

In these equations, a chemical's interaction with PDMS is
characterized by four parameters: diffusion constants DS and
DP, which describe diffusivity of the chemical in solution and
in PDMS, respectively; a mass-transfer coefficient, H, also
referred to as an interfacial contact resistance, (units of
length/time48); and the PDMS–solution partition coefficient,
K. The velocity field v→(t; x, y, z) defines local flow rates in the

aqueous solution. These partial differential equations can be
solved numerically for any flow rate field and user-defined
solution–PDMS geometry.‡ The model is applicable as long
as its parameters remain concentration independent. We

Fig. 3 Disk-soak and membrane experiment results for chemicals with added DMSO cosolvent. (A – left column) Disk-soak data for each chemical
in mixed solvents at three different DMSO volume fractions, color-coded to match the three right columns with blue, green, and red running from
low to high DMSO fraction. (A – right columns) Source and sink data (closed and open symbols) from membrane experiments for each chemical at
the noted DMSO volume fraction. Fits shown as dashed lines. (B) Best-fit values of logK versus DMSO volume fraction and linear fits (dashed lines)
used to extrapolate to the PDMS–water partition coefficients, logKPW. (C) Best-fit values of logDP versus DMSO volume fraction. Legend in B
applies to B and C.

‡ Similar models for mass and heat transport have been well described and
often have analytic or semi-analytic solutions for limited cases (e.g., for no flow
and infinite or semi-infinite domains). We proceed with numerical solutions,
but approximate analytic solutions can be derived under well-mixed solution
conditions (large DS) and certain simple geometries.48–50
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have observed break downs of the model at high
concentrations when the surface layers of PDMS become
saturated with chemical; under those conditions, the
apparent partition coefficient decreases with increasing cS.

In the case of membrane experiments, we extend the
model to consider concentrations in both the source and
sink chambers. The equations remain similar, but with two
solution concentrations, cS1 and cS2, representing the source
and sink respectively:

∂cS1
∂t ¼ DS∇2cS1

∂cP
∂t ¼ DP∇2cP

∂cS2
d∂t ¼ DS∇2cS2

and boundary conditions imposed on both the source-PDMS

boundary ∂Ω1 and PDMS-sink boundary, ∂Ω2:

n ̂·∇⃑cS1 ∂Ω1 ¼ − H
DS

KcS1 − cPð Þ n ̂·∇⃑cP
����

����∂Ω1 ¼ þ H
DP

KcS1 − cPð Þ

n ̂·∇⃑cP ∂Ω2 ¼ þ H
DP

KcS2 − cPð Þ n ̂·∇⃑cS2
����

����∂Ω2 ¼ − H
DS

KcS2 − cPð Þ

To fit this model to our experimental data, we first used
COMSOL Multiphysics to run a large set of finite-element
simulations based on the geometries of disk-soak and
membrane experiments and covering 4802 different
parameter combinations. These simulations were performed
over a log-scaled grid of the four parameters: logDS from
−2.44 to 3.56 (DS in units of mm2 h−1); logDP from −6.44 to
−0.44 (DP in units of mm2 h−1); logH from −4.44 to 1.56 (H in
units of mm h−1); and logK from −2.00 to 4.00. The numeric
model outputs were then used to construct first-order
interpolation functions for the average concentration in
solution as a function of time and model parameters, cSi(DS,
DP, H, K, t), where the subscript i denotes applicability to
either disk-soak or membrane experiments. The interpolation
functions were then regressed against experimental data to
estimate the best-fit parameters for each chemical–solvent
combination. The most tightly constrained parameter
estimates were obtained by fitting both disk-soak and
membrane data simultaneously using shared parameters.
When data from disk-soak experiments was fit separately,
regression yielded reasonably constraints for the product
K
ffiffiffiffiffiffi
DP

p
, but not for the individual parameters K and DP. The

simultaneous fits relieved this degeneracy.
Of the seven sufficiently water-soluble chemicals tested

here, four partitioned into and diffused through PDMS. The
data and fits for these four chemicals are shown in Fig. 2,
with the best-fit parameters compiled in Table 1. Three of the
four (rhodamine B, paraoxon, and indole) partitioned
favorably into PDMS (KPW ≈ 68, 12 and 8.1, respectively),
while amodiaquine partitioned quite weakly (KPW ≈ 0.14). A
different set of three (indole, paraoxon, and amodiaquine)
diffused through PDMS at similar rates with DP = 0.01 to 0.06
mm2 h−1, while rhodamine B diffused much slower (4 × 10−4

mm2 h−1). Note that even the fast-diffusing chemicals have

diffusion constants in PDMS that are two orders of
magnitude slower than those in water.

Modification of chemical–PDMS interactions by cosolvent

When a chemical of interest is poorly soluble and not
spectroscopically detectable in pure PBS, its solubility can be
increased by adding a cosolvent such as DMSO; however,
adding cosolvent also affects the partitioning of a chemical
between the now mixed solvent and PDMS. We thus explored
whether this effect can be accounted for using an extension
of the log-linear solubility model of Yalkowsky:51

log Sm = (1 − f )log Sw + f log Sc (5)

where Sw, Sc, and Sm, are the solubility of a chemical in
water, neat cosolvent, and a mixed solution, respectively; and
f is the mole fraction of cosolvent in the mixed solution.
Since the partition coefficient of a compound between two
media, A and B, is related to its solubility in these media,

logKAB = log SA − log SB

one can derive an equivalent log-linear model to describe the
partition coefficient in mixed solvent:

logKPM = (1 − f )logKPW + f logKPC (6)

where KPW, KPC, and KPM are the partition coefficients
between PDMS and water, neat cosolvent, or mixed solvent,
respectively. logKPM should thus be a linear function of the
cosolvent fraction. Given that this model is derived from
Yalkowsky's log-linear model, we expect it to perform well for
classes of chemicals described well by the original model,
which assumes an ideal, non-volatile solution.

To test the validity of the log-linear model, we conducted
disk-soak and membrane experiments for indole at four
DMSO volume fractions from 10% to 70% (Fig. 3A and B).
The plot of logKPM versus f appears linear, and the
extrapolation back to 0% DMSO yields logKPW = 0.76 ± 0.14.
The agreement between this extrapolated value and that
measured directly in pure PBS, 0.91 ± 0.03, confirms the
applicability of the log-linear model.

We then conducted disk-soak and membrane experiments
across a range of DMSO fractions for three poorly soluble
compounds—benzo[a]pyrene, chlorpyrifos, and parathion
(Fig. 3A). We fit the data in each mixed solvent to the
partition–diffusion model, and used the log-linear model to
estimate the partition coefficient expected in pure PBS
(Fig. 3B). With the caveat that the log-linear model likely only
provides an order-of-magnitude estimate of logKPW, we used
it to extrapolate the PDMS–water partition coefficient for
each of the poorly soluble chemicals (Fig. 3B), and present
these values as logKPW in Table 1. For each of the poorly
water-soluble chemicals, the PDMS–water partition
coefficients were estimated to be in the range of 400 to 2000,
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which is one to two orders of magnitude greater than those
of the water-soluble chemicals. The corresponding estimates
in pure DMSO, logKPD = logKPC, are also presented in
Table 1 to allow interpolation to any DMSO fraction.

To estimate the other model parameters, we simply report
the mean of their values obtained at various cosolvent fractions
(Table 1). This approach seems very reasonable for diffusivity
in PDMS, DP, which should be independent of any cosolvent
present in the solution phase. Consistent with this expectation,
estimates ofDP in different mixed solvents do not show any
clear trend with DMSO fraction (Fig. 3C). The average value of
DP for these chemicals is fairly consistent, around 0.035 mm2

h−1. As shown in Fig. 4, the extrapolation for chemicals tested
in high DMSO fraction places looser constraints on logDP and
logK than direct tests in aqueous solution.

As for the diffusivity in solution, DS, one might expect a
dependence on cosolvent. As has been shown by Miyamoto
and Shimono, the diffusivity in a solvent of small
hydrophobic molecules can be well modeled by the Stokes–
Einstein equation

DS ¼ kBT
6πrηS

where kB is the Boltzmann constant, T is the temperature, r

is the simple Van der Waals radius, derived from the Van der
Waals volume of the molecule species, and ηS is the viscosity
of the solution.52 As DMSO is more viscous than water,
increasing the fraction of DMSO in solution should decrease
diffusivity in mixed solution. However, no such dependence
is apparent in the estimated values (Fig. S2A†). This is likely

due to the artificially fast diffusion in solution caused by
manually mixing our experiments. Finally, for the mass-
transfer rate, H, the estimates hint at a relationship with
DMSO fraction (Fig. S2B†), but the data we have collected is
too sparse to make any definitive claims and we thus report
only the mean values.

Direct imaging of diffusion in PDMS

To validate the estimates of DP obtained from fits to the 3D
partition–diffusion model, we directly imaged the diffusion
of fluorescent dyes into bulk PDMS. If a dye is distributed
with an initial 1D fluorescence profile u(x, 0) that is well
approximated by a Gaussian of 1/e2-width σ0, then its
subsequent time-dependent profile under Fickian diffusion
with no-flux boundary conditions is given by

u x; tð Þ ¼ u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2 tð Þp exp − x2

2σ tð Þ2
 !

(7)

where

σ(t)2 = 2DPt + σ0
2 (8)

To match these conditions, we loaded microchannels with
dye solutions, allowed the dye to diffuse into the channels'
PDMS walls for three hours, emptied the microchannels, and
then imaged the diffusive spread of preloaded dye further into
the PDMS bulk – without the complicating effects of further
partitioning. For each dye, at each time t, we fit the
fluorescence intensity profile to eqn (7) to estimate the
Gaussian square width, σ2. We then used a linear fit of σ2(t) to
eqn (8) to estimate DP. Among the four dyes in our test set, only
rhodamine B and 6G bind to or partition into PDMS. We
directly imaged the diffusion of both. Rhodamine 6G does not
measurably diffuse beyond the PDMS surface, but rhodamine
B clearly does, spreading from a width of ∼50 μm to ∼150 μm
over 12 h (Fig. 5A and B and S7†). When measured in this
direct manner, we estimate the diffusion constant of
rhodamine B in PDMS as logDP = −3.907 ± 0.004 (in mm2 h−1;
Fig. 5C), which agrees with the best-fit value found indirectly
via disk-soak and membrane experiments, logDP = −3.44 ±
0.68. In similar agreement, the inability of rhodamine 6G to
diffuse further into PDMS matches its inability to diffuse
through a thin PDMS membrane (Fig. S1†).

Loss of indole during continuous flow in microchannels

To illustrate the applicability of the 3D partition–diffusion
model across geometries and flow rates, we used COMSOL
Multiphysics to simulate continuous pumped flow of an
indole solution through rectangular PDMS channels and
compared the results with data from matching experiments.
In this case, the parameters for indole were obtained from
disk-soak and membrane experiments (Table 2) and used
without modification to directly simulate the first three hours
of continuous flow of indole through microchannels at two

Fig. 4 Fitted values of logDP and logKPW with corresponding error
ellipses for four chemicals measured directly in aqueous solutions
(amodiaquine, indole, paratoxon, rhodamine B) and three measured in
solutions with DMSO (benzo[a]pyrene, chlorpyrifos, and parathion).
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flow rates, Q = 5 and 10 μL min−1. These microchannels were
originally used as a microfluidic supply network for cell
chambers in a thick tissue bioreactor.34 As shown in Fig. 6A
and S7,† the partitioning and diffusion of indole into PDMS
creates two gradients within the device—one longitudinal
along the flow direction and one perpendicular to it. The
stronger perpendicular gradient is readily apparent in
Fig. 6A. We imaged similar gradients of fluorescent dyes in

statically filled channels in Fig. 5, but we cannot directly
image the indole gradient inside the device. The longitudinal
gradient is more subtle but readily measurable. As shown in
Fig. 6B, this gradient is time-dependent: at the earliest time
point, the indole concentration decreases by approximately
60% over the length of the channel, but this drop becomes
shallower over time. We cannot sample the concentration
along the length of the channel due to limitations on
experimental sampling volume: the microchannel only
contains 3.2 μL of fluid. Instead, since the inlet
concentration is fixed, we can compare the model's predicted
gradients against experiments by measuring the
concentration at the channel outlet (i.e., at z = 21.1 mm). In
these matching experiments, an indole solution was pumped
through a microchannel at the same flow rates, and effluent
was collected in bins across the duration of the experiment.
For the higher flow rate, the simulations slightly
underestimate the experimental outlet concentrations in the
first hour, but are a good match at longer times; for the lower
flow rate, the simulations and experiments are a good match
at all times (Fig. 6C). This agreement illustrates the
physicality and wide applicability of the model and the
methods presented here for inferring its chemical-specific
model parameters.

Although a complete 3D FEM simulation can be run for
any user-specified device, simple geometries can be modeled
almost as well using a simpler heuristic approach. As derived
in the ESI,† this heuristic model can be applied to a straight
channel of uniform cross section to approximate its
longitudinal gradient of solute concentration as

c(z) = c0e
−z/λ(t) (9)

where z is distance along the channel and λ is a time-
dependent decay length related to the cross-sectional
perimeter P, the volumetric flow rate Q, and the solute-
specific product K

ffiffiffiffiffiffi
DP

p
:

λ tð Þ ¼ Q
PK

ffiffiffiffiffiffi
πt
DP

r
(10)

For practical channel lengths and times long enough to
establish near steady-state behavior (>30 minutes), this
heuristic model can estimate the fraction of chemical
concentration lost into PDMS to within 10% error (Fig. S4†).

Comparing molecular properties to interaction parameters

To investigate the link between PDMS interaction parameters
and molecular properties, we measured interaction
parameters for an additional fourteen chemicals. Three of
these chemicals (ethofumesate, hexazinone, and imazaquin)
were selected due to their use in an earlier study of
chemical–PDMS interactions.22 Two (bromophenol blue and
acridine orange) were chosen due to their hydrophobicity
(Table S2†) and to survey potential future fluorescent probes
of diffusion in PDMS. The remaining nine chemicals were

Fig. 5 Direct imaging of fluorescent dye diffusion into bulk PDMS. (A)
The fluorescence intensity profile of rhodamine B spreads diffusively
into PDMS over 12 h. (B) In contrast, the fluorescence intensity profile
of rhodamine 6G is essentially static over 12 h, indicating a lack of
diffusion into PDMS. (C) For rhodamine B, the Gaussian square width,
σ, grows linearly, with linear regression yielding a best-fit value of DP

(as labeled, in units of mm2 h−1) that agrees with that found indirectly
in Table 2. For rhodamine 6G, the Gaussian square width does not
measurably change with time.

Lab on a ChipPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
m

ar
zo

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
6/

10
/2

02
5 

21
:0

3:
15

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4lc00840e


Lab Chip, 2025, 25, 2017–2029 | 2025This journal is © The Royal Society of Chemistry 2025

selected based on their prioritized inclusion in EPA's 2014
Update to the TSCA Work Plan for Chemical Assessment.53

Among the fourteen, eleven showed interactions with
PDMS. The fitted interaction parameters for this expanded set
are listed in Table 2. Four of the chemicals partition favorably
into PDMS (logKPW > 0), but seven surprisingly have logKPW

≤ 0, implying unfavorable partitioning into PDMS despite
relatively fast diffusion through PDMS (DP = 0.04 to 0.36 mm2

h−1). This latter class of chemicals would not be significantly
depleted from solution in a disk-soak experiment, but would
move rapidly across thin PDMS membranes. Interestingly,
this class is enriched for chemicals that have a log P value
below the previously reported PDMS-interaction thresholds of
log P > 1.2 (ref. 24) or 1.8.22 Key molecular properties of all
chemicals are listed in Table S2.†

When the interaction parameters for all 24 chemicals
(Tables 1 and 2) are compared to key molecular properties,
two trends emerge (Fig. 7): logKPW is positively correlated
with log P; and logDP is negatively correlated with molar
mass. There is no apparent correlation between logDP and
log P and a weakly positive corelation between logKPW and
molar mass.

Extremely hydrophobic chemicals in microfluidic channels

Although indole served as a good test of our modeling
approach, specifically because it partitions modestly into
PDMS and thus has interesting flow- and time-dependent
behaviors, many organ-on-chip users have greater concerns
about the bioavailability of extremely hydrophobic
compounds. We thus simulated constant flow at 10 μL min−1

through the same microfluidic channel as above for two
additional sets of chemicals: a group of seven polychlorinated
biphenyls (PCBs), with previously reported values for logKPW

and logDP;
44,45,54 and a group of seven polybrominated

diphenyl ethers (PBDEs), with previously reported values for
logDP (ref. 55) and with x logKPW values estimated using a
QSPR model developed by Zhu et al.45 All of these chemicals
diffuse through PDMS at a similar rate as indole (logDP =
−0.61 to −1.24 compared to −1.25) but partition into PDMS

several orders of magnitude more strongly: logKPW = 4.43 to
8.67 compared to 0.91 (compiled in Table S3†).

Simulations based on these parameters show that PCBs
and PBDEs would partition strongly out of a microfluidic
channel and would diffuse quickly and deeply into the
surrounding PDMS. As long as the inlet concentration was
sufficiently dilute to realize full partitioning at the device's
water–PDMS surfaces, then the bulk PDMS would continue
sequestering more and more of these compounds for over a
full week of simulated flow (Fig. S5A†). Even at such long
times, over 98.7% of each PCB or PBDE is predicted to be lost
from solution as it flows through the channel (Fig. S5B and
C†). Such extremely hydrophobic compounds are not likely to
be compatible with PDMS-based devices without additional
modifications either to the polymer or the solution.

Discussion

We first investigated the PDMS interactions of ten chemicals,
all reasonably hydrophobic (log P ≥ 1.9), but otherwise
varying in structure and properties. Seven of these that
interact with PDMS, and we fully characterized their
interactions in a manner appropriate for 3D finite-element
modeling. We then performed additional experiments with
one chemical (indole) to confirm that such modeling
accurately predicts time- and flow-rate-dependent doses in a
PDMS-based microchannel. The agreement between model
and experiment is good and confirms the validity of the
overall approach.

Within this initial set of chemicals, the two key interaction
parameters – the PDMS–water partition coefficient, KPW, and
the diffusion constant in PDMS, DP – each vary over several
orders of magnitude. A mapping of these results into DP–K
parameter space is shown in Fig. 4. Notably, we find that six
of these seven chemicals have DP values within the same
order of magnitude (0.01–0.1 mm2 h−1). Interestingly, this
range matches that for self-diffusion of PDMS chains.56 In
this initial test set, rhodamine B stands alone as a slow
diffusing outlier (4 × 10−4 mm2 h−1), and we confirmed its
slow diffusion by direct imaging.

Table 2 Best-fit parameters for additional chemicals

Chemical logKPW logDP (mm2 h−1) logDS (mm2 h−1) logH (mm h−1)

Ethofumesate 1.48 ± 0.03 −1.67 ± 0.08 ≥3.56 ≥1.56
Acridine orange 1.28 ± 0.04 −4.29 ± 0.09 ≥3.56 −1.54 ± 0.16
Diacetone alcohol 1.20 ± 0.02 −1.77 ± 0.33 ≥3.56 −0.81 ± 0.16
Cyclohexanol 0.75 ± 0.19 −1.77 ± 0.20 ≥3.56 ≥1.56
N-Nitrosodiphenylamine 0.00 ± 0.07 −0.44 ± 0.15 1.20 ± 0.67 0.56 ± 0.23
Benzyl alcohol 0.00 ± 0.03 −0.52 ± 0.18 0.56 ± 0.11 0.57 ± 0.17
pentaerythritol −0.83 ± 0.08 −0.47 ± 0.05 ≥3.56 ≥1.56
N-Nitrosodimethylamine −1.00 ± 0.05 −0.44 ± 0.08 ≥3.56 1.35 ± 0.15
Hexazinone −1.83 ± 2.16 −1.29 ± 2.09 ≥3.56 ≥1.56
1,2,3-Benzotriazole −1.95 ± 0.05 −0.44 ± 0.10 ≥3.56 ≥1.56
Glutaraldehyde −1.97 ± 1.68 −1.40 ± 1.65 ≥3.56 ≥1.56
Colchicine — — — —
Bromophenol blue — — — —
Imazaquin — — — —
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In our methods, we chose to measure concentration in
solution using UV-vis spectroscopy, a convenient and accessible
method for most laboratories. One drawback of this approach
is that poorly water soluble chemicals with low molar
absorptivity may have maximum concentrations below the
limit of detection. For these cases, we developed and validated

an approach in which measurements are taken for mixtures
with high cosolvent fractions and then extrapolated to 0 and
100% cosolvent using a log-linear relationship. One can use the
same log-linear relationship to estimate the relevant PDMS-
interaction parameters in solutions in regimes more
compatible with the biological requirements of cells, e.g.,
0.1–5% DMSO by volume. We applied these methods for two
chemicals, benzo[a]pyrene and chlorpyrifos, that are
extremely hydrophobic and poorly soluble in water (solubilities
of 1.62 μg L−1 and 1.4 mg L−1, respectively, at 25 °C). We found
that the extrapolated partition coefficients agree with those
previously reported using more sensitive but less accessible
detection methods: logKPW = 5.20 ± 1.22 versus 5.27 ± 0.44 for
benzo[a]pyrene; and logKPW = 6.25 ± 1.98 versus 4.31 ± 0.50 for
chlorpyrifos.45 This agreement gives us confidence in the
validity and usefulness of the log-linear extrapolation.

This method of extrapolation was also used for a third
chemical, parathion, but for a different reason. Parathion is
sufficiently soluble in water (20 mg L−1 at 25 °C) that its
concentration could be measured using UV-vis spectroscopy;
however, in experiments with little or no cosolvent (up to 20%
DMSO by volume), parathion partitioned so strongly into PDMS
that it reached a saturating concentration of approximately 3.2
mM or one parathion molecule per 520 nm3 of PDMS (Fig.
S3†). We avoided this saturation regime by using higher DMSO
fractions and extrapolating back to estimate a partition
coefficient in pure aqueous solution: logKPW = 4.39 ± 0.50. This
estimate is significantly higher than those from prior studies
on parathion: logKPW ∼ 3;57,58 however, careful review of the
methods from previous studies suggests that they were
operating in the saturation regime and thus measured a lower
effective partition coefficient. Based on the results here, a
saturating concentration of parathion in PDMS can be reached
when an adjacent pure aqueous solution has a concentration
as low as 0.13 μM. Thus, the log-linear extrapolation is also

Fig. 6 Modeling the distribution of indole as a solution flows through
a microfluidic channel. (A) Cross-section of predicted concentration
profiles at 15 and 120 min after flow starts; flow rate Q = 5 μL min−1.
The microchannel horizontally spans the bottom of each profile with
flow from left to right. (B) Longitudinal concentration profiles taken
along the center of the channel. As time increases, the longitudinal
gradient decreases. (C) Comparison of model predictions for indole
concentration at the outlet, z = 21.1 mm (dashed lines) with
continuous flow experiments (solid lines with shaded regions
representing ± one standard deviation); N = 3 for each flow rate.

Fig. 7 Correlations of PDMS-interaction parameters with select
chemical properties. (Top) The PDMS–water partition coefficient (logK)
generally increases with increasing logP, i.e. increasing hydrophobicity,
and with increasing molar mass. No relationship is observed with
H-bond donor count. (Bottom) Diffusivity in PDMS (logDP) generally
decreases with increasing molar mass. No relationship is observed with
logP or H-bond donor count.
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useful for identifying the limits where linear water–PDMS
partitioning breaks down.

All of the chemical–PDMS interaction parameters above
were measured in specific geometries under no-flow
conditions. To evaluate whether these parameters remain
valid descriptors for different geometries and non-zero flow
rates, we performed additional experiments in which a
chemical solution flowed continuously through a PDMS
microchannel. Indole was chosen for this test based on its
combination of good water solubility, moderate partitioning,
and quick diffusion through PDMS. When the relative indole
concentration was measured at the microchannel outlet
(Coutlet/Cinlet), it agreed well with the predictions of finite-
element models that applied the previously determined
PDMS-interaction parameters to this new geometry under
two different flow rates. The PDMS-interaction parameters
from static experiments can thus be used in a finite-element-
based, toxicokinetic model to predict in-device
concentrations under continuous perfusion.

Such FEM approaches have practical utility. They can be
used to model in-device concentration profiles that cannot be
measured directly due to the limited (few-μL) volume of a
microchannel, e.g., the expected gradient of increased
absorption/adsorption at the channel inlet compared to its
outlet. These models can also be used to predict in-device
bioavailability of compounds, such as we have done for PCBs
and PBDEs. In this latter case, modeling showed that the
extreme hydrophobic partitioning and rapid diffusion of these
compounds in PDMS allows their continuing sequestration
even for week-long exposures. It is just not possible to saturate
the PDMS bulk, and thus keep more of the compounds in
solution, on reasonable time scales for experiments.

With this approach validated for flow-through
experiments, we measured PDMS-interaction parameters for
an additional set of fourteen chemicals. Three of these
showed no interaction with or penetration into PDMS –

colchicine, bromophenol blue, and imazaquin. The
remaining eleven all diffused through a PDMS membrane.
Interestingly, seven of these eleven had logKPW ≤ 0, implying
unfavorable partitioning into PDMS, and yet had large DP

values from 0.04–0.36 mm2 h−1. This set represents a new
and interesting class of chemicals: those that partition weakly
into PDMS but diffuse through it quickly. Such chemicals
pose a particular complication for microfluidic devices,
namely cross-talk between parallel channels. Further, since
several members of this chemical class had modestly positive
or even negative log P, it suggests that the previously stated
thresholds of log P ≤ 1.2 (ref. 24) or 1.8.22 do not necessarily
limit chemical–PDMS interactions.

Using the combined set of 20 interacting chemicals, we
can also look for correlations between chemical–PDMS
interaction parameters and chemical properties (Fig. 7).
Overall, logKPW is positively correlated with both log P and
molar mass; and logDP is negatively correlated with molar
mass. Despite earlier work suggesting a link between
chemical loss into PDMS and hydrogen bond donor count,22

the data presented here do not have any such correlation.
These results are not surprising: they merely suggest that
more hydrophobic chemicals partition more favorably into
PDMS, and that smaller molecules diffuse more quickly
through PDMS. Nonetheless, our results do suggest that the
interaction parameters behave as expected, and that a
sufficiently large dataset could be used to build quantitative
structure–property relationship (QSPR) models.

On the other hand, one has to be careful in using simple
read-across methods to predict chemical–PDMS interactions
based on analogs: chemicals with similar molecular
properties can display markedly different interactions with
PDMS. In our test set, we have three chemical pairs that are
reasonably similar to one other: fluorescein and FITC;
rhodamine B and rhodamine 6G; and parathion and
paraoxon. A fourth pair, FITC and amodiaquine, are not
structurally similar, but FITC has been used previously as an
analog to estimate amodiaquine's PDMS-interaction
parameters.33 In the case of fluorescein and FITC, the
molecules share a similar structure, and neither show any
interaction with PDMS. In the case of rhodamine B and
rhodamine 6G, the molecules are members of the same dye
family with almost identical masses and structures; however,
rhodamine B partitions into and diffuses through PDMS,
while rhodamine 6G only binds to the PDMS surface. In the
case of paraoxon and parathion, the molecules only differ by
a single atom replacement of sulfur for oxygen. Despite this
similarity, paraoxon partitions into PDMS much more weakly
than parathion; the two compounds have partition
coefficients that differ by two orders of magnitude. Finally, in
the case of amodiaquine and FITC, the two compounds have
very different structures, but share similar molecular weights
and log P values. Based of these similarities, the fluorescent
dye FITC has been previously used as an analog for
estimating the PDMS interactions of amodiaquine.33 Here,
we measured the interactions directly for both compounds:
FITC shows no interaction with PDMS in either disk soak,
membrane, or optical diffusion experiments, but
amodiaquine does partition into and diffuse within PDMS.
Read-across methods may become better as we learn more
about the molecular structure properties that determine
chemical–PDMS interaction parameters, but analogs based
solely on log P and molar mass are insufficient.

Ultimately, we have developed easily adoptable methods
to determine chemical–PDMS interaction parameters from
simple, static experiments. These parameters can then be
used in finite-element models to calculate chemical
concentration profiles for any user-defined channel
geometry and flow rate. In fact, for simple geometries, the
full finite-element models are well-approximated by
heuristic models. Further, since our measured PDMS-
interaction parameters are in good agreement with those
previously reported (when such reports exist), one could
reasonably take previously reported values of KPW and DP

for other chemicals and apply them to 3D finite-element
models to estimate in-device concentrations for any
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particular microfluidic device. Finally, recognizing that there
is a strong push to replace PDMS with other materials, the
same methods and model structure could be applied to
alternative-material devices if the interaction parameters
were measured for the new material.

Conclusions

We have developed methods to characterize the chemical–
PDMS interaction parameters needed to model the
distribution of a chemical of interest when an aqueous
solutions is in contact with PDMS. We have measured these
physical parameters for 24 hydrophobic chemicals, and
confirmed the validity of these measurements through both
direct observation of diffusion in PDMS and accurate
predictions of time-dependent chemical loss in a PDMS-
based microfluidic device. We find that partition coefficients
and diffusion constants in PDMS can vary by orders of
magnitude, and although there are trends with log P, with the
number of hydrogen-bond donors, and with molar mass, one
must exercise caution when using chemical analogs to infer
PDMS-interaction parameters. With the battery of
experiments and models presented here, one can measure
chemical–PDMS interactions, even for highly hydrophobic
compounds, and predictively model the time-dependent
spatial distribution of a chemical of interest throughout the
channels and PDMS bulk of a microfluidic device.

Abbreviations

DMSO Dimethyl sulfoxide
FEM Finite element model(ing)
FITC Fluorescein-5-isothiocyanate
IVIVE In vivo–in vitro extrapolation
OoC Organ-on-chip
PBDE Polybrominated diphenly ether
PBS Phosphate buffered saline
PCB Polychlorinated biphenyl
PDMS Polydimethylsiloxane
QSPR Quantitative structure–property relation

Definitions

cS Concentration in solution
cS1 Concentration in source
cS2 Concentration in sink
cP Concentration in PDMS
DS Diffusivity in solution
DP Diffusivity in PDMS
H Mass-transfer coefficient
K Partition coefficient
KPW PDMS–water partition coefficient
KPC PDMS–cosolvent partition coefficient
KPM PDMS–mixed solution partition coefficient
KPD PDMS–DMSO partition coefficient
f Volume fraction in solution
σ Gaussian square width
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