
Faraday Discussions
Cite this: Faraday Discuss., 2025, 256, 255

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
lu

gl
io

 2
02

4.
 D

ow
nl

oa
de

d 
on

 0
2/

11
/2

02
5 

00
:1

4:
31

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Discovery of highly anisotropic dielectric
crystals with equivariant graph neural
networks†

Yuchen Lou and Alex M. Ganose *
Received 10th May 2024, Accepted 23rd July 2024

DOI: 10.1039/d4fd00096j

Anisotropy in crystals plays a pivotal role in many technological applications. For example,

anisotropic electronic and thermal transport are thought to be beneficial for

thermoelectric applications, while anisotropic mechanical properties are of interest for

emerging metamaterials, and anisotropic dielectric materials have been suggested as

a novel platform for dark matter detection. Understanding and tailoring anisotropy in

crystals is therefore essential for the design of next-generation functional materials. To

date, however, most data-driven approaches have focused on the prediction of scalar

crystal properties, such as the spherically averaged dielectric tensor or the bulk and

shear elastic moduli. Here, we adopt the latest approaches in equivariant graph neural

networks to develop a model that can predict the full dielectric tensor of crystals. Our

model, trained on the Materials Project dataset of c.a. 6700 dielectric tensors, achieves

state-of-the-art accuracy in scalar dielectric prediction in addition to capturing the

directional response. We showcase the performance of the model by discovering

crystals with almost isotropic connectivity but highly anisotropic dielectric tensors,

thereby broadening our knowledge of the structure–property relationships in dielectric

crystals.
Introduction

Anisotropy refers to the directional non-uniformity of structures and physical
properties and is especially relevant when considering tensorial properties such
as elastic and dielectric tensors. Anisotropic materials can offer a tailored direc-
tional response to external stimuli that isotropic materials cannot, making them
indispensable in elds like electronics, energy, and quantum computing.1–3

Recently, the demand for novel materials that meet specic performance criteria
has surged.4 For example, barium titanate (BaTiO3) has been themain component
of ceramic capacitors for over 70 years, owing to its high dielectric constant at
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room temperature and chemical stability.5 However, in recent years, these tradi-
tional materials no longer suffice due to the evolving needs of the electronics
industry.6 Notably, advancements in dynamic random access memory (DRAM)
and light-emitting diodes (LEDs) require additional properties, such as unique
anisotropy.7 Another area of interest for anisotropic dielectric properties is in
birefringent crystals, which have found use in display technologies and medical
diagnostics.8 At the same time, novel use cases for anisotropic materials have
been proposed, including as dark-matter detectors.9,10 As a result, there is an
increasing demand to discover new anisotropic dielectrics.

When an electric eld is applied to a material, the charges separate and create
a net dipole moment that shields the electric eld. The strength of this shielding
is quantied by the dielectric response.11,12 When the frequency of the electric
eld is low, both ions and electrons can be displaced and respond to the oscil-
lation of the eld.13 The total response from both charge carriers is termed the
static dielectric constant, 3s. When the frequency increases, the ions become too
slow to respond to the oscillations and the ionic contribution to the dielectric
response decreases. The point at which the ions stop contributing and the
response is solely due to the electrons is termed the high-frequency or optical
dielectric constant, 3N. Unlike the dielectric response of liquids and isotropic
crystals, which can typically be described by a scalar, the dielectric tensor char-
acterises the full directional response of a crystal.

While traditionally dielectric tensors are measured experimentally, this
requires expensive and time-intensive synthesis and characterisation. Advance-
ments in computing power and ab initio simulations based on density-functional
theory (DFT) have enabled the routine calculation of dielectric tensors.14 In 2017,
Petousis et al.15 used high-throughput density-functional perturbation theory
(DFPT) to obtain the static and high-frequency dielectric tensors of 1056
compounds, with the results added to the Materials Project database.16 Despite
these advancements, the dielectric tensor dataset of the Materials Project only
constitutes a small fraction of the entire dataset. At the time of writing, there are
7277 dielectric tensors and more than 80 000 non-metallic materials. A primary
challenge is the computational expense of DFPT calculations, which can require
hundreds of CPU hours per structure. Furthermore, as DFT scales cubically with
the number of atoms, the simulation of larger cells can quickly become imprac-
tical. Consequently, building a complete database of dielectric tensors solely
using DFT calculations remains intractable.17

Machine learning in the physical sciences has gained substantial interest in
recent years due to the availability of GPU resources and advances in computa-
tional algorithms. Machine learning can establish complex structure–property
relationships, make predictions of material properties, and generate novel crystal
structures.18,19 A key advantage of machine-learning models is their ability to
predict material properties orders of magnitude faster than conventional ab initio
calculations.17 Message-passing graph neural networks (MPGNNs) are a subset of
deep learning that operates on graphs composed of nodes and edges.20,21 This
capability is ideal for use in chemistry and materials science, since the data
structures encountered in these domains are typically point clouds, which are
incompatible with convolutional neural networks.22 Graphs are a natural repre-
sentation for crystals. For example, atoms can be represented as nodes and bonds
as edges. The features associated with nodes can encode information such as
256 | Faraday Discuss., 2025, 256, 255–274 This journal is © The Royal Society of Chemistry 2025
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atom type or formal charges, while the edge features can contain information on
the bond types or degree of conjugation.23–26 Such representations capture the full
geometric characteristics of materials and also remain intuitive and easily
comprehensible for humans.27

One example in the MPGNN domain is equivariant graph neural networks.28–30

These models utilise basis functions, such as spherical harmonics, to represent
features in a way that is guaranteed to transform predictably upon transformation
of the input structure.31–33 Equivariant models alleviate the need for expensive
data augmentation, which involves applying many rotations or translations to the
training set to ensure the model learns to recognise all orientations through brute
force. This approach also does not guarantee that the model will be consistent
when predicting on data with unseen transformations. Equivariant models
accurately interpret orientations within a unit cell regardless of its conguration,
which ensures the output adheres to the symmetry rules.28,34 Equivariant models
have been proposed to predict tensorial properties such as elastic tensors.35

However, for dielectric properties, most studies to date have predicted the scalar
polycrystalline dielectric constant.36–38 There are signicantly fewer works aimed
at predicting the full dielectric tensor. Grisa et al.39 employed Gaussian process
regression with irreducible spherical tensor representations to predict the static
dielectric constant of water. More recently, Falletta et al.40 developed an approach
to predict the dielectric response through automatic differentiation of the electric
enthalpy with respect to atomic positions and the electric eld, showcasing
excellent performance on a-SiO2. However, both studies rely on signicant
training data from ab initio molecular dynamics simulations, while the trained
models are only applicable to single systems.

In this paper, we develop an equivariant message-passing graph neural
network, AnisoNet, for predicting the dielectric tensors of crystals across the
periodic table. AnisoNet takes a periodic structure as input and predicts the full 3
× 3 dielectric tensor as output. AnisoNet is equivariant to the transformation of
the input structure, meaning the output transforms predictably upon rotation,
translation and inversion. Furthermore, equivariance enforces that the symmetry
of the output tensor is consistent with the symmetry of the input. To quantify the
degree of anisotropy of dielectric crystals, we introduce a new metric termed the
anisotropy ratio, ar. Our model achieves state-of-the-art performance in both the
prediction of the scalar dielectric constant and direction-dependent response. We
apply AnisoNet to the Materials Project dataset to discover novel highly aniso-
tropic dielectric crystals. The top 137 materials are validated using high-
throughput DFPT calculations, nding an average ar over 3.4 times larger than
that of the training dataset. Lastly, we obtain the full frequency-dependent
dielectric response of 5 candidates and discuss the structure–property relation-
ships that drive anisotropy in the solid state.

Methodology
Irreducible representation of the dielectric tensor

The dielectric tensor is a 3 × 3 symmetric tensor that fully describes the dielectric
response of amaterial. The diagonal terms represent the dielectric response along
the three Cartesian axes, and the off-diagonal terms describe the coupling
between the axes. The symmetry of the dielectric tensor follows 3ij = 3ji (in indicial
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 255–274 | 257
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notation, where i, j ˛ 1, 2, 3). As such, only 6 of the 9 components of 3 are
independent.41 As the dielectric constant describes the relative permittivity (with
the absolute permittivity given by k = 3 × 30, where 30 is the vacuum permittivity),
the minimum value of the independent components along the diagonal is 1.41 An
exception is metamaterials, which can possess negative dielectric constants due
to non-linear effects.42 However, in this work we are only concerned with dielectric
properties calculated through the linear response formalism, which cannot
describe such higher-order phenomena.43 As the values of the dielectric tensor
components depend on the choice of the coordinate system (i.e., the rotation of
the crystal in Cartesian space), it can be difficult to build predictive models for
tensorial properties. This can be handled through harmonic decomposition,
where the space of all dielectric tensors is factored into the direct sum of irre-
ducible representations of SO(3). As such, any dielectric tensor can be written in
the form

3 = h1(l) + h2(S) (1)

where l is a scalar, S is a second-rank symmetric traceless tensor, and the func-
tions h1 and h2 are constant for all systems. Crucially, each part in eqn (1)
transforms predictability with respect to SO(3) operations (rotations), thereby
enabling the development of machine-learning models that leverage the prop-
erties of equivariance.

The crystal symmetry will inuence the form of the dielectric tensor. In cubic
systems, the dielectric tensor assumes a diagonal form with only one independent
component repeated along the diagonal. This can be visualised as a sphere in
three dimensions, indicating the dielectric constant will be uniform in all
directions it is measured. In tetragonal, hexagonal, and trigonal systems, there
are two independent components, with one of the diagonal components different
from the other two. This corresponds to an obloid in three dimensions with the
principle components oriented along the Cartesian axes. For orthorhombic
systems, the tensor has three independent components on the diagonal with no
off-diagonal coupling. This can similarly be visualised as an obloid with three
principle components. Monoclinic and triclinic systems contain three indepen-
dent diagonal components with one and three non-zero components in the off-
diagonals, respectively. In this case, the three-dimensional representation is an
obloid with the principle components oriented away from the Cartesian direc-
tions. This is presented in Fig. 1 in tensor and three-dimensional form.

Materials project dielectric dataset

The dataset used in this work is obtained from the Materials Project (MP).16 The
Materials Project is an open-access database containing c.a. 154 000 materials at
the time of writing. The high-frequency dielectric tensors on the MP are calcu-
lated with density functional perturbation theory.44–46 During the dataset cleaning
process, we rst removed any repeating entries and dielectric tensors with any
diagonal elements less than 1. We further remove any entries with an average
polycrystalline dielectric constant greater than 15, as they are unrepresentative of
the bulk of the dataset. In this regime, the training points are very sparse, with
some outliers possessing extremely high dielectric constants up to 80 that can
skew the model training for smaller dielectric constants. We refer to this dataset
258 | Faraday Discuss., 2025, 256, 255–274 This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Tensor and three-dimensional visualisation of dielectric tensors by crystal system.
All tensors are symmetric about the main diagonal, with the lower triangular part omitted
for clarity. Grey circles indicate zero components, pink circles indicate non-zero
components, and pink circles connected by a line indicate that the two components are
dependent. The lower panels display the dielectric modulus surface in three dimensions.
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as the “MP-dielectric dataset” in the rest of this work. The nal dataset is relatively
small, containing 6706 non-repeating entries. The MP-dielectric dataset is split
randomly into training, validation, and test sets, with ratios of 80 : 10 : 10. The
training set is used to optimise the model parameters, and the validation set is
used to determine when to stop the training and for hyperparameter tuning, while
model performance is evaluated using the test set.

Aer pre-processing, the polycrystalline dielectric constant (3polyN ) is obtained
by taking the average of the three eigenvalues of the dielectric tensor. The
breakdown across crystal systems is presented in Fig. 2a. The dataset is somewhat
unbalanced, with over 3 times as many orthorhombic crystals present as hexag-
onal systems. The distribution of 3polyN across crystal systems is highlighted in
Fig. 2b, with each class displaying a roughly similar distribution of dielectric
Fig. 2 Crystal system distribution of the Materials Project dielectric dataset. (a) Number of
materials per crystal system. (b and c) Violin plot of polycrystalline dielectric constant
3polyN (b) and anisotropy ratio (c) across crystal systems. A large area of the violin indicates
a greater number ofmaterials with that value. The dashed lines in panels (b) and (c) indicate
the average value across the entire dataset.
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values. For each symmetry type, the histogram depicts a skewed distribution, with
a peak in frequency around 3.5 and long tails reaching up to an 3polyN of 15. The
average polycrystalline dielectric constant across the entire dataset is 4.74. To
evaluate how well our model captures anisotropy, we propose the anisotropy ratio
metric, ar, obtained as the ratio of the largest and smallest dielectric tensor
eigenvalues. A larger ar indicates a more anisotropic system, with an ar of 1
indicating a completely isotropic material. Fig. 2c displays the distribution of ar in
the training dataset sorted by crystal system. In all crystal systems, the distribu-
tion of the ar is heavily skewed towards 1 with long tails reaching up to around 4.
An exception is for cubic symmetry which, by denition, is isotropic and therefore
has a value of exactly 1. There are several outliers for each crystal system, with an
ar of up to 12. Most of these materials are two-dimensional (2D) layered materials.
The most anisotropic system of all is hexagonal, with an average ar of 1.28,
followed closely by triclinic at 1.27. The average anisotropy ratio across all
systems is 1.22.

Model details and architecture

AnisoNet is an equivariant message-passing graph neural network23 built on the
e3nn47 and PyTorch48 libraries. AnisoNet takes a periodic crystal graph as input
and performs several message-passing steps, before outputting the irreducible
representation of the dielectric tensor, which is trivially converted to its Cartesian
form via eqn (1). The basic framework for our approach has been widely used in
materials science to predict properties such as elastic tensors, energies, and
charge densities.35,49,50 A schematic of the model architecture is presented in
Fig. 3. Atoms are represented by nodes, with node features F and attributes A.
Node features are continuously updated during the message-passing steps,
whereas attributes remain xed throughout. Initial node features are generated
from a 118-long vector (where the Z-th component is the atomic mass of the Z-th
Fig. 3 High-level overview of the architecture of AnisoNet. Blue boxes indicate blocks
with trainable weights, green boxes indicate model inputs, and purple boxes are model
features.
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element), which is passed through an embedding layer. The node attributes are
generated using a similar approach, but using a one-hot encoding scheme
(employing 1s rather than the atomic mass). The same embedding layer is used
for both node features and attributes, as previously employed by Chen et al.51 We
found this approach to yield better performance than using either separate
embeddings or the same vectors for both features and attributes. A cutoff of 5 Å is
employed for graph edge construction, taking into account periodic boundary
conditions. An edge vector, rij, between two nodes i and j is represented by its
length ‖rij‖ and unit vector r̂ij. The edge length is projected onto 15 equally spaced
Gaussians and embedded using a linear layer, while the edge unit vector is pro-
jected onto spherical harmonics up to the maximum rotational order dened by
themodel hyperparameter lmax. Through hyperparameter tuning, we identied an
optimal lmax of 3 for AnisoNet.

Our implementation broadly follows the design of Tensor Field Networks28 and
NequIP,29 along with the work of Chen et al.51 In contrast to other graph neural
networks for molecules and materials that employ scalar features,34,52–54 in Ani-
soNet the atom features are a series of scalars, vectors, and higher-rank tensors.
Together, the features can be seen as a geometric object comprising a direct sum
of irreducible representations of the SO(3) group.55 As previously discussed,
geometric features have the benet that they act as an inductive bias that reduces
the amount of training data by avoiding data augmentation and improves model
performance.56 Furthermore, as in the case of this work, they are naturally suited
for constructing physical tensors such as the dielectric constant.

With each message passing step t, the node features are updated using an
equivariant interaction function. The message-passing operation L in AnisoNet is
dened as

LL3

acm3

�
rij ;Fjcmi

�
:¼

X

m1 ;m2

C
L3 ;m3

L1 ;m1 ;L2 ;m2

X

j˛N ðiÞ
Rl1 ;l2

c

�krijk
�
Ym1

l1

�
r̂ij
�
Fl1
jcm1

; (2)

where C is the Clebsch–Gordon coefficient, which determines if two spherical
harmonics have the correct symmetry to interact, j˛N ðiÞ represents the set of
neighbours of node i, R denotes a learnablemultilayer perceptron (MLP) acting on
the radial basis projection of the edge length, Y is a spherical harmonic basis
function, c is the channel index, and m is the index for a degree-L spherical
harmonic taking the values m = −l,., l. The coefficient C is nite if two features
possess the correct symmetry to interact and zero otherwise. The message passing
is a generalised tensor product that interacts geometric features in a rotational
equivariant manner, dened by the outer product of two vectors, followed by
harmonic (or Wigner) decomposition.55

Following Chen et al.,51 in all but the last message passing step, the node
features are passed through a gated non-linearity. A ReLU non-linearity is applied
to scalar features, while each tensor feature is associated with an additional scalar
feature, which is itself passed through a ReLU and used to scale the tensor.
Following the nal message passing step, the node features are pooled to obtain
the nal dielectric irreducible representation output as

3 ¼ 1

N

XN

i

Fi; (3)
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where N is the total number of atoms in the structure. The output of the model
consists of one scalar and one symmetric traceless tensor, denoted as 0e + 2e in
e3nn notation. The nal message passing step will only use l = 0 and l = 2
features to construct the output, while precedingmessage passing steps will make
use of all features up to lmax.

Scalar dielectric model architecture

As a comparison to AnisoNet, we trained an additional model with the output
irreducible representation set to 6 × 0e. In this case, the model predicts the 6
independent terms of the dielectric tensor separately. We refer to this model as
the “scalar model”, as it aims to demonstrate the effect of equivariance on model
performance. Unlike AnisoNet, the scalar model does not have the inductive bias
constraining the symmetry of the output. For example, by construction, the
equivariant model cannot produce a non-cubic dielectric tensor given a cubic
input structure. In contrast, the scalar model has no such restrictions and, as we
shall demonstrate, oen predicts dielectric tensors with multiple independent
components even for cubic systems. We note that equivariance is only broken in
the nal read-out stage, with equivariance still retained in preceding message-
passing steps. As part of model testing, we train a scalar model with lmax = 0.
This can be seen as a fully invariant (rather than equivariant) model, since
equivariance is not enforced at any stage of the network. The optimal lmax for the
scalar model was identied as 2 through hyperparameter tuning.

Model training and hyperparameter optimisation

Training and hyperparameter tuning of AnisoNet were performed on nodes with
either 4 Nvidia GTX 1080Ti or 2 Nvidia TitanX. We used the AdamW optimizer57 to
minimise the mean-squared error (MSE) between the predicted and target
dielectric irreducible representation. Notably, neither the dielectric tensor
eigenvalues nor anisotropy ratio were involved in the loss computation during
training. Instead, the polycrystalline (spherically averaged) dielectric tensor and
ar were computed at the end of training. An exponential decaying learning rate
scheduler with an exponential factor of 0.98 was employed. This enables the
model to reach convergence and prevent overtting and oscillations of validation
loss. Tensor products and irreducible representation-related computations were
performed using the e3nn library.47 To obtain the optimal parameters for Ani-
soNet, we rst performed Bayesian optimisation with the optuna library58 before
a grid search was applied around the optimal parameters identied. The ranges of
Table 1 The ranges considered for hyperparameter tuning during Bayesian optimisation
with the Optuna58 package and grid search

Hyperparameter BO Grid search

Learning rate 0.0001–0.5 0.002, 0.003, 0.004, 0.005
Embedding length 8–96 16, 32, 48, 64
Number of gate layers 1, 2, 3, 4 1, 2, 3
Irrep multiplicity 16–64 16, 32, 48
Maximum rotational order
lmax

1, 2, 3, 4 1, 2, 3

262 | Faraday Discuss., 2025, 256, 255–274 This journal is © The Royal Society of Chemistry 2025
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model parameters considered by optuna and the grid search are presented in
Table 1.
High-throughput density functional theory calculations

Ab initio calculations were performed using the Vienna ab initio Simulation
Package (VASP),59,60 a planewave density functional theory package. Calculations
were orchestrated in a high-throughput mode using the atomate2 soware,61 with
workows written and executed using the jobow62 and jobow-remote63

libraries. The calculations follow the Materials Project16 input settings to ensure
consistency with the original dataset using the MPStaticSet and MPNonSCFSet
classes in the pymatgen library.64 This includes the PBE exchange-correlation
functional46 and a planewave energy cutoff of 520 eV. To achieve sufficient
accuracy, we increase the k-point mesh sampling to 200 Å−3 and use a tighter
energy convergence criterion of 1 × 10−5 eV. The high-frequency dielectric
constant was obtained from density functional perturbation theory (DFPT).65

Optical absorption was calculated through the frequency-dependent microscopic
polarisability matrix as implemented in VASP.65
Results and discussion
Polycrystalline dielectric constant

AnisoNet predicts the full 3 × 3 dielectric tensor. To test the performance of the
model, we rst evaluate it on the polycrystalline dielectric constant, 3polyN . As
detailed in the Methodology, this is obtained by taking the average of the
eigenvalues of the dielectric tensor. We nd the predictions of the model agree
well with the values calculated using DFPT, with a mean absolute error (MAE) of
0.311 (Fig. 4a). The average dielectric constant across the test dataset is 4.6, giving
a percentage error of 6.6% (the performance on the training and validation sets is
presented in Fig. S1 of the ESI†). For most materials discovery tasks, this error is
relatively small and comparable to the variation seen across different exchange-
Fig. 4 Performance of AnisoNet at predicting the polycyrstalline dielectric constant,
3polyN , on the Materials Project dielectric test set. (a) Heatmap of reference vs. predicted
dielectric constants, where a darker colour indicates more materials. (b) Comparison of
equivariant (0e + 2e) and scalar (6 × 0e) models across crystal systems. The dashed lines
represent the average MAE for both models.
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correlation functionals.66 The errors are relatively uniformly distributed across
the entire range from 1 to 15, albeit with increased deviation from DFT for
systems with higher dielectric constants. This is expected due to the unbalanced
training dataset, with less than 5% of samples possessing dielectric constants
greater than 10. The MatBench67 dataset and leaderboard have emerged as
standard benchmarks for machine learning in materials science. The perfor-
mance of AnisoNet is comparable to the best-performing graph neural network,
CoGN,68 on the MatBench dielectric dataset, with an MAE of 0.309. However, we
note the MAE values are not strictly comparable, since we do not use the same
training dataset and MatBench uses a different nested cross-validation scheme to
avoid bias due to the choice of test set. A further critical distinction of AnisoNet is
its ability to predict the complete dielectric tensor, as opposed to just a scalar
value, as is common among all properties listed on the MatBench leaderboard.
Regardless, we nd our model achieves suitable accuracy for materials discovery.

To understand the impact of equivariance on model performance, we trained
an analogous model with the output irreducible representation set to 6 × 0e. In
this case, the model predicts six scalars, corresponding to the six independent
components of the dielectric tensor. We compare the performance of the scalar
and equivariant (0e + 2e) models in Fig. 4b as a function of crystal system. The
scalar model performs marginally worse than AnisoNet, with an MAE of 0.336.
The errors are relatively consistent across crystal symmetry, with the scalar model
having slightly larger errors for all systems except for cubic space groups. The
similar accuracy of both models indicates that the main contribution to the good
performance stems from the invariant features, such as composition and edge
length.
Anisotropic dielectric tensor

While the polycrystalline dielectric constant is sufficient to describe the response
of isotropic materials, most crystals are inherently anisotropic and thus the
dielectric response will be dependent on the direction it is measured. Anisotropy
results from a crystal’s structure, including the Bravais lattice type and arrange-
ment of the atoms. As Neumann’s principle states,69 the symmetry operations of
any physical property must include the symmetry operations of the point group of
the crystal exhibiting that property. To investigate the ability of our model to
capture anisotropic properties, we evaluate AnisoNet on the anisotropy ratio, ar
metric, dened as the quotient of the smallest and largest eigenvalues of the
dielectric tensor. By denition, the minimum possible ar is 1 for isotropic
systems, with most materials in our dataset possessing values between 1–5. The
distribution of ar is heavily skewed towards 1, with over 90% of materials
exhibiting an ar of less than 1.56.

AnisoNet achieves an MAE of 0.078 for the 671 materials in the test set, rep-
resenting a percentage error of 5.96% (the performance on the training and
validation sets is presented in Fig. S2 of the ESI†). This indicates relatively good
performance, especially considering that ar was not directly employed in the loss
function during model training. Despite this, ar can be derived from the dielectric
irreducible representation on which the model was trained, thereby enabling the
model to learn this property indirectly. In Fig. 5a, we visualise the performance of
our model against the DFPT reference values. The predictions show signicantly
264 | Faraday Discuss., 2025, 256, 255–274 This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Performance of AnisoNet at predicting the anisotropy ratio, ar, on the Materials
Project dielectric test set. (a) Heatmap of reference vs. predicted values, where a darker
colour indicates more materials. (b) Comparison of equivariant (0e + 2e) and scalar (6 ×
0e) models across crystal systems. The dashed lines represent the average MAE for both
models.
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larger deviations above an ar of 2. Through analysis of these errors, we nd the
large discrepancies are largely caused by the difficulty of our model in predicting
large dielectric tensors due to the imbalanced nature of the training set. An
alternative approach to constructing a less sensitive anisotropy metric could be to
use the difference between the largest and smallest eigenvalues. However, for
many technological applications such as emerging dark matter detectors,10 the
relevant property of interest is the differential anisotropy along the crystal axes. As
such, we believe our metric is more appropriate for materials screening.

To elucidate the impact of equivariance on predictions of anisotropy, we
compare against the scalar 6 × 0e model. In contrast to the polycrystalline
dielectric constant, for the anisotropy ratio, the scalar model performs consid-
erably worse across all crystal systems (Fig. 5b). The MAE of the scalar model is
0.147, almost twice that of equivariant AnisoNet. Our results highlight the diffi-
culty of learning tensorial properties compared to invariant scalars for traditional
machine-learning approaches. While for AnisoNet, the errors are typically smaller
for more symmetric systems due to the inductive bias provided by symmetry, the
scalar model displays no such trend, with the largest MAE of 0.217 seen for
triclinic space groups. Notably, the MAE on cubic systems is 0.108 for the scalar
model but exactly zero for AnisoNet due to symmetry constraints. We stress that
the scalar model is still internally equivariant up to the nal readout stage and is
able to capture angular features due to the use of spherical harmonic descriptors
(lmax of 2) for the edge feature vectors.
Impact of angular features on model performance

To further understand the impact of the angular resolution on model perfor-
mance, we train a series of models with increasing lmax (from 0 to 4) for both the
equivariant and scalar models. The full results are presented in Table 2. The
equivariant model outperforms the scalar model across all lmax values. As previ-
ously discussed, the difference is marginal for 3polyN (average improvement of 8%)
but more noticeable for ar (average improvement of 58%). This reinforces our
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 255–274 | 265
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Table 2 Impact of maximum rotational order lmax on model performance. Mean average
error (MAE) of equivariant (0e + 2e) and scalar (6 × 0e) models on the polycrystalline
dielectric constant (3polyN ) and anisotropy ratio (ar). The best model performance is high-
lighted in bold

lmax

3polyN MAE ar MAE

Equivariant Scalar Equivariant Scalar

0 — 0.439 — 0.184
1 0.327 0.390 0.130 0.168
2 0.335 0.336 0.095 0.147
3 0.311 0.345 0.078 0.149
4 0.340 — 0.087 —
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conclusion that invariant features are the dominant factor driving the predictions
of the polycrystalline dielectric constant.

Both models show a similar trend with increasing lmax. The mean average
errors initially fall due to the greater ability of the models to capture ner angular
features. However, at larger lmax, the model errors begin to increase due to the
greater number of model parameters that lead to undertting with the relatively
small dataset size. This trend is found for both equivariant and scalar models and
across both the polycrystalline dielectric constant and anisotropy ratio tasks.
Notably, we nd that an lmax greater than or equal to 2 is essential for the
equivariant model to achieve good performance for the anisotropy ratio. This is to
be expected, since the irreducible representation of the Cartesian dielectric tensor
(0e + 2e) contains an l = 2 component.
Discovery of highly anisotropic dielectric crystals

Crystalline materials with anisotropic dielectric properties are of interest as
optical bre sensors, in linear optical devices, and in advanced optical commu-
nication (due to their birefringence),70 along with a host of exotic applications
such as dark matter detectors9,10 and beyond Moore’s law computing.71 We
applied AnisoNet to search for materials with large ar. To begin, we ltered the
Materials Project16 for structures with the following criteria: (i) an energy above
the hull of less than 50 meV per atom, to select thermodynamically stable
candidates; (ii) exclusion of materials purely consisting of noble gases or
hydrogen, due to the lack of these elements in the training set (in our testing,
these systems led to unphysical predictions with eigenvalues less than 1); (iii)
structures with less than 40 sites in a unit cell, to enable validation of candidates
with DFPT calculations; (iv) a band gap greater than 0.5 eV, since the dielectric
response is extremely sensitive in narrow gap semiconductors; and (v) the
exclusion of any materials that already exist in the MP-dielectric dataset. Aer
ltering, we obtained a set of 18 835 structures, for which we obtained the
dielectric tensor using AnisoNet. An analysis of the predicted polycrystalline
dielectric constants along with the impact of chemical composition are provided
in Section S2 of the ESI.† To understand the impact of structural connectivity on
the dielectric anisotropy, we calculated the dimensionality of each structure using
the robocrystallographer72 and CrystalNN packages.73 Fig. 6a illustrates the
distribution of ar with respect to dimensionality. Structures with three-
266 | Faraday Discuss., 2025, 256, 255–274 This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Novel anisotropic materials discovered via high-throughput density functional
perturbation theory calculations. (a) Distribution of anisotropy ratio with respect to the
structural dimensionality calculated using robocrystallographer.72 The dashed lines indi-
cate the average for each dimensionality class. (b) Histogram of anisotropy ratio for the
training dataset and new materials calculated.
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dimensional (3D) connectivity exhibit the lowest anisotropy, with an average ar of
1.1. Notably, over 80% of the materials in our dataset are 3D, making the iden-
tication of any anisotropic 3D materials particularly valuable. In contrast, 2D
and 1D materials display the greatest degree of anisotropy, with average anisot-
ropy ratios of 1.5 and 1.3, respectively, as expected due to the presence of layers or
ribbons in the structures.

We select all materials with an ar greater than 2.5 for validation using high-
throughput DFPT calculations using the atomate2 package.61 This amounts to
137 structures, mostly comprising 2D candidates (107 materials) with fewer 3D
(23 materials), 1D (5 materials), and 0D (2 materials) structures. Almost all of the
2D structures are transition metal dichalcogenides containing tungsten or
molybdenum. Furthermore, upon closer inspection, many of the 3D materials
could also be classed as pseudo-two-dimensional, since they contain layered
components with intercalated spectator ions, such as lithium or sodium. Fig. 6b
presents a histogram of ar for the calculated materials in comparison to the
training dataset. Over 95% of the new discoveries have a calculated ar of over 2,
with an average value of 3.9 in contrast to an average of 1.2 for the structures in
the training data. This highlights the effectiveness of AnisoNet in searching for
highly anisotropic dielectric properties. The dielectric tensors for all identied
crystals are provided in Table S1 of the ESI.†

We further select 5 materials for which we obtain the full frequency-dependent
dielectric constant. These include NaV2O4, which has the highest ar of 7.74 in our
dataset. The crystal structure, presented in Fig. 7, contains edge-sharing VO6

octahedral layers separated by interstitial sodium ions. The optical absorption
spectrum exhibits giant anisotropy, with the absorption in the directions parallel
to the VO6 sheets quickly reaching 105 cm−1, while the perpendicular direction
has an absorption close to zero. K4(NiO2)3 is a 1D material containing edge-
sharing NiO4 square-planar polyhedra separated by potassium counter ions.
The optical absorption spectrum shows a complex directional dependence that
varies with excitation energy, with strong anisotropy observed at energies of 0.9
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 255–274 | 267
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Fig. 7 Crystal structures and optical absorption spectra for a selection of highly anisotropy
materials identified by our screening.
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and 2.5 eV. Finally, Ba2Cu2O5 is predicted to adopt a complex structure containing
edge-sharing square-planar Cu2O6 dimers and edge-sharing BaO6 octahedra, with
an ar of 1.97 (the largest for a 3D connected material in our dataset). At energies
close to the band gap, the absorption is relatively isotropic, but gains signicant
anisotropy for shorter wavelengths. These results highlight the potential of
discovering materials with high optical anisotropy using the high-frequency
dielectric constant as a proxy.
Conclusion

In this work, we developed AnisoNet, an equivariant graph neural network to
predict the full dielectric tensors of crystalline materials. The predictions of
AnisoNet will always be consistent with the input structure symmetry, therefore
eliminating unphysical tensors such as anisotropy for cubic materials. To quan-
tify the degree of anisotropy, we introduced a metric termed the anisotropy ratio.
We demonstrated that AnisoNet has comparable performance to state-of-the-art
models whilst also being able to capture the full directional response. AnisoNet
was applied to screen the Materials Project dataset for highly anisotropic
dielectric crystals, through which we identied 137 materials with large anisot-
ropy ratios, some of which possessed three-dimensional connectivity. Our results
highlight the efficiency of equivariant graph neural networks for the discovery of
novel materials with tailored tensorial properties.

To date, most property prediction machine-learning models have focused on
scalar targets, such as the 13 properties listed on the MatBench dataset.67 As we
have discussed in this work, an understanding of tensorial properties is oen vital
for assessing technological function. This will become increasingly important as
the eld of machine learning in materials moves away from predicting bulk
properties towards understanding the impact of interfaces, surfaces, and other
extended defects. Indeed, these inherently anisotropic structural perturbations
are oen responsible for the functional behaviour of practical devices. As it
stands, it is not yet clear which machine-learning models are best suited for
capturing this anisotropy. A future direction for the eld may be to develop new
268 | Faraday Discuss., 2025, 256, 255–274 This journal is © The Royal Society of Chemistry 2025
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tensorial benchmark datasets so that the most suitable model architectures can
be selected for these tasks.

Our work screened the Materials Project dataset to identify compounds with
anisotropic dielectric tensors. We note that this is only the rst step toward
functional materials discovery. Cheetham and Seshadri74 proposed three criteria
for evaluating machine-learning predictions of new materials: novelty, credibility,
and utility. Here, we go some way to identifying the utility and novelty of the
proposed compounds, considering the anisotropic dielectric properties of our
shortlist were previously unstudied. However, a number of our top candidates
(including Ba2Cu2O5) are hypothetical compounds, with no experimentally re-
ported crystal structures. Accordingly, a conrmed “discovery” will require future
work to assess the synthesizability and dynamical stability of our candidates,
along with conrmation of the predicted dielectric tensors.

An obvious limitation of AnisoNet is the use of a cutoff radius of 5 Å when
constructing the graph. Lower-dimensional structures containing weak van der
Waals with large separations between structural components are oen of interest
for their anisotropic properties. Indeed, our work indicated that 80% of materials
with large predicted ar are 2D or quasi-2D structures. As AnisoNet will not be
capable of distinguishing large gaps or voids if the separation is larger than the
cutoff, alternative graph construction methods may yield better results, such as
graph rewiring as developed by Di Giovanni et al.75 However, such an approach
must be adapted to ensure that the equivariant properties of the network are
retained. Furthermore, the training dataset for AnisoNet was limited to high-
frequency dielectric tensors, while the ionic contribution was not considered.
This presents a major limitation for functional materials discovery, since in high-
k dielectrics the large dielectric response is oen driven by the ionic contribution.
The full static dielectric tensor is more challenging to accurately predict, as it
relies on the vibrational properties of the system and is therefore not simply
a static quantity. Reliably capturing these contributions requires alternative
model architectures, such as the unied differentiable framework proposed by
Falletta et al.,40 which formulates the dielectric response as the derivative of the
generalised potential energy. Future work may focus on applying this approach to
train universal models for both high-frequency and static dielectric tensors
applicable for the entire periodic table.
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