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Modeling single-crystal electrodes as a network
of primary particles
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Predicting lithium-ion battery behavior is critical for advancing next-generation energy storage.

Conventional Doyle–Fuller–Newman models can simulate many materials, but they fail in phase-

separating single-crystal systems, such as lithium iron phosphate (LiFePO4, LFP), where the electrical

connectivity of primary particles limits charge transport. We redefine the electrode as a network of

reactive primary particles, each governed by validated electrochemical kinetics and interconnected

through tomographic-informed contact resistances. Without empirical tuning, the model predicts

voltage responses of LiFePO4 electrodes across temperatures, rates, loadings, and dynamic load

conditions using a single fitted physical parameter. It also captures and explains charge–discharge asym-

metries and hysteresis. By bridging particle-scale physics up to cell-level performance, while retaining

computational efficiency, this physics-based framework provides a foundation for the design, and

control of single-crystal electrode systems.

Broader context
Lithium-ion batteries, particularly those based on lithium iron phosphate (LFP), are among the most widely deployed technologies for energy storage,
supporting applications ranging from electric vehicles to grid stabilization. Accurate simulations are essential for optimizing performance, extending lifespan,
and facilitating integration with renewable energy sources. Yet, while LFP expanded in battery markets, its modelling lagged behind. The conventional Doyle–
Fuller–Newman framework, originally tailored to layered oxide spherical agglomerates, can reproduce single-crystal LFP behavior only by relying on extensive
empirical fits. This limits predictive power and applicability to new designs or operating conditions. In this work, we introduce a physically consistent and
computationally efficient modeling framework that incorporates microstructural information in a network of electrically connected single-crystal particles.
Unlike the DFN, this approach enables accurate predictions across a wide range of experimental protocols and temperatures without relying on empirical
adjustments and with minimal fitting parameters. By bridging the gap between microstructure and electrochemical behavior, our model not only advances
simulation accuracy for single-crystal LFP electrodes but also lays the foundation for modeling future battery chemistries with single-crystal architectures.

Introduction

Over the past decade, Li-ion batteries have rapidly evolved.
Advancements in every scale � from electrode to pack � have
significantly boosted the energy and power densities of these
batteries,1 as exemplified by the emergence of lithium iron
phosphate (LFP)-based batteries, now dominating the battery

market.2 At the electrode scale, architectures such as graded
porosity3 and multi-layered structures4 have been exploited
for improving long-range ion transport. At the particle scale,
electrodes can be manufactured with secondary agglomerated
particles or single-crystal primary particles,5 here termed single-
crystal electrodes (SCEs). Secondary agglomerates minimize the
internal surface area, thereby reducing electrolyte-induced
degradation,6 but they are prone to fracture;7 In contrast, SCEs
can avoid cracking-induced degradation,8 thereby improving cycle
life and power densities. Active materials with low ionic diffusivity,
such as LFP, are typically manufactured as nanometric single
crystals, achieving diffusion times on the scale of milliseconds9

and resulting in a reaction-limited process.10,11

Yet commercial SCEs fall short of these rate capabilities, indi-
cating the presence of additional limiting factors. Ionic transport
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in the electrolyte can limit high-loading electrodes (43 mAh cm�2),12

but thin high-power electrodes mitigate this issue. For the latter
case, the performance of SCEs composed of insulating materials
are impacted by the inter-particle electrical connectivity.13 This is
evident by their ability to reach 9-seconds discharge when very
high (63%) carbon loading is used14 and by the significant
improvements of LFP performances when carbon coating is
applied.15 The work of Li et al.13 shows that the reaction initiates
from particles connected to the carbon black (CB) and propa-
gates then towards the unconnected ones, demonstrating that
inter-particle electron transport, coupled with local reactions
with the electrolyte, is at the core of the reaction mechanism.
Additional evidence is provided by the significant performance
losses of LFP electrodes in cold conditions,16 compared to
layered oxide electrodes. The reason lies in the electrical con-
ductivity of the carbon coating decreasing sharply at low
temperatures,17 since the electrons hopping between metallic
sp2 and insulating sp3 domains introduce a macroscopic energy
barrier.17

Considering the growing importance of SCEs, especially
those based on LFP, it is necessary to develop reliable numer-
ical models to operate them in control-oriented tasks.18 While
data-driven approaches can be employed,19 they cannot extra-
polate beyond the data and provide little physical insight.
Physics-based modeling, in contrast, can predict battery per-
formances under new condition and accelerate electrode
development20 by optimizing CB content, thickness, and
porosity.21 However, despite advances in the characterization
of SCEs,5,13 these systems have not been comprehensively
modelled.

Doyle–Fuller–Newman models (DFN)12,22 can achieve pre-
cise results with limited computational cost,23 making them
attractive for practical applications. Ionic transport in the
electrolyte is captured by adjusting diffusivity and conductivity
base on porosity and tortuosity.12,22 Similarly, electron trans-
port through the solid phase is modelled using Ohm’s law.24

The electrode is divided into discretized volumes, containing a
set of independent particles and having uniform electrolyte and
electrical potential. The local reaction rate depends on the
specified reaction kinetics and solid-state diffusivities. DFN
models perform reasonably well when applied to single-phase
diffusion-limited materials such as transition metal oxide,
especially if concentration-dependent diffusivities and reactiv-
ities are considered.3

Thomas-Alyea25 and Safari,26 expanded DFN models by
considering the limited electrical conductivity of LFP and the
role of CB-connectivity, enabling them to capture both constant
current and path-dependent voltage profiles of an LFP elec-
trode. However, empirical relations were necessary to fit the
data, and phase-separation kinetics was entirely neglected.
Materials such as LiFePO4,27 LiMnyFe1�yPO4,28 Li4Ti5O12,29 and
graphite30 have instead a thermodynamic driving force to
separate into Li-rich and Li-poor phases. Capturing this mecha-
nism is essential to capture the electrode-scale behaviour.
For this scope, multiphase porous electrode theory (MPET)31

has been developed by combining DFN and phase-field models,

i.e., computing the chemical potential starting from the free
energy functional and accounting for the energy penalty of
phase boundaries.24 Using this method, one can model charge–
discharge asymmetries in reaction kinetics,32 voltage hyster-
esis,33 active particle population dynamics,34 and Li-plating on
graphite.30 However, key morphological descriptions are neces-
sary, as exemplified by the case of graphite electrodes, where
hierarchical structures30 were considered necessary to achieve
an accurate fit of MPET simulations to experimental data.
Similarly, for LFP, the electrical connectivity of primary parti-
cles must be considered, as it plays a critical role in shaping the
electrode’s behaviour.

In response to these challenges, this study proposes a new
paradigm for modeling SCEs: instead of treating the electrode
as a collection of particles governed by Fickian diffusion, it is
modelled as a network of electrically connected nanoparticles
governed by Kirchhoff’s law. Reconstructing a commercial
electrode with focused ion beam scanning electron microscopy
(FIB-SEM),35 followed by segmentation and particle identifi-
cation, we abstracted the three-dimensional microstructures
into a network. The model incorporates inter-particle connec-
tivity,36 which governs the local voltage drop and, consequently,
the single-particle reaction rate. Furthermore, individual particles
are modelled using validated approaches,24 including coupled ion-
electron transfer kinetics (CIET)37 and phase-field modelling,38 all
integrated into a consistent modeling framework.

This fast and scalable approach is here applied to LFP, due
to its growing importance in the battery market.39 However, it is
adaptable to a broad range of single-crystal, reaction-limited
electrochemical systems. The resulting model bridges diverse
electrochemical protocols, including imposed current (CC) and
galvanostatic intermittent titration technique (GITT), across
varying temperatures, using only one fitting parameter, thereby
delivering both accuracy and versatility. Finally, by being firmly
rooted in physics and devoid of empirical equations, the model
effectively captures the internal mechanisms of SCEs, making it
a valuable tool for advancing electrochemical modeling.

The electrode as a network of connected reactive particles

Tomographic information of a commercial LFP electrode was
obtained using FIB-SEM (Fig. 1a). After segmentation,43 the
stack was divided in cubic sub-volumes, and the individual
particles were identified (Fig. 1b). Each sub-volume was
abstracted as network, by processing the particle–particle and
the particle-CB contact areas in adjacency matrices where each
pixel records the contact area between two particles or between
the particle and the CB phase (Fig. 1c). Using these matrices we
constructed a set of graphs42 where each node stores the
information on the particle’s size and active surface area. Each
edge represents relative contact areas, with CB treated as a
source node (Fig. 1d). The segmentation details and their
statistics are provided in the SI Methods, alongside the descrip-
tion of algorithms used for the construction of the networks
(Fig. S8).

The resulting networks can simulate the reaction kinetics of
the microstructure by enforcing current conservation at each
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node (Fig. 1g). Assuming that the primary electrical potential
losses occur at contact interfaces and that the particle’s surface
is equipotential, the inter-particle and CB contact conductance
(Gij and Gi–cb) are taken proportional to the contact areas.44,45

Considering the inter-particle contact areas remain constant
during cycling, the constitutive law of the discretized sub-
volume can be expressed for each particle i as:

Ii ji; msurf i ; melyte
� �

� Gi�cb ji � jcbð Þ �
X
iaj

Gij ji � jj

� �
¼ 0

where the Ii is the current consumed by the reaction, the second
term is the current delivered by the CB, and the summation
accounts for the current exchanged with adjacent particles.
In this framework, the electrical potential driving a particle’s
reaction (ji) reflects the influence of the surrounding particle
network and the CB potential (jcb). The electrical and ionic

potentials (jcb and melyte) depend on electron and ion transport
along the electrode thickness, where percolation is assumed,
integrating information about the depth of the simulated sub-
volume and the electrode’s porosity and tortuosity.46 These
assumptions might not hold true if the carbon coating is not
uniform along the particles’ surface; however, this is rarely the
case in commercial samples.

This framework can be combined with validated single
particle models to compute their surface chemical potentials
(msurfi

): 0D homogeneous particles;33 1D diffusion-limited
particles29 (Cahn-Hillard approach29) or 1D reaction-limited
particles28,38 (Allen-Chan formalism38) (Fig. 1f). This follows
established multiphase porous electrode theory models.31

Considering chemo-mechanical effects, which tend to suppress
phase separation within submicron-sized particles,38,47–49

we adopted the 0D approximation (Fig. S11), which reduces

Fig. 1 Multiscale model of single-crystal electrodes. (a) Volume reconstructed from FIB-SEM scans. (b) Segmented sub-volumes. Black particles
correspond to the reconstructed40 spherical nanoparticles of the CB particle phase, the green scale particles correspond to labelled LFP particles, and the
transparent regions correspond to the porosity. The segmentation procedure is presented in the Fig. S1–S7. (c) Example of adjacency matrix. The copper
scale refers to the inter-particle contact, and the greyscale on the diagonal to the particle-CB contact. The details on its construction are presented in
Fig. S8. (d) Network graphs obtained from the segmented sub-volumes, with node size proportional to the particle volume and the colour scale
representing the connection distance from the CB node. The graph layouts were plotted using the ForceAtlas2 algorithm41 of NetworkX,42 weighted by
contact area. The details are presented in Fig. S8. (e) Schematic of the coupled ion-electron transfer model used to simulate the reaction kinetics.
(f) Schematic representation of two limiting models that can be used to simulate single-particle reaction kinetics. (Top) Diffusion-limited behaviour
modelled by the Cahn–Hilliard Reaction (CHR), showing concentration gradients within the particle and uniform reaction along the surface. (Bottom)
Reaction-limited behaviour described by the Allen–Cahn Reaction (ACR), showing concentration gradients along the surface and uniform concentration
within the particle. (g) Schematic representation of the network conductance paths. The particle i with connection distance 1 (yellow) is connected to
the carbon black through a conductance Gi–cb and to the particle j with connection distance 2 (light green) through a conductance Gij. The particles react
with the electron and electrolyte reservoir with currents Ii and Ij, respectively. The electric current (orange lines), originating from the carbon black, is
consumed by the particles as expressed in the Kirchhoff’s law.
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the computational cost, while still capturing inter-particle
phase separation33 (Fig. S12). Furthermore, we describe the
reaction kinetics Ii using models validated by direct imaging of
lithium intercalation dynamics in both LFP single-crystal
particles32 and LFP porous electrodes,34 i.e., using the electron-
transfer-limited version of CIET37,48 (Fig. 1e). The complete
mathematical formulation appears in SI Methods.

The obtained networks reveal the electrode’s microstruc-
tural properties (Fig. 2). Computing the shortest path from each
particle to the CB node defines its connection distance, i.e., the
minimal number of edges separating it from CB. Most particles
lie one or two edges away (i.e., having a connection distance of
1 or 2), while a few require three or four (Fig. 1d and 2a).
Particle size distribution plays a significant role in shaping
these statistics. Larger particles are more likely to directly
contact the CB phase (Fig. 2b) and exhibit more inter-particle
contacts (Fig. 2c). Therefore, they enhance the network’s con-
nectivity and ensure uniform current distribution. Hence,
despite relying solely on small particles, which might appear
advantageous for faster particle-level kinetics, they increase the
connection distance, thereby diminishing the electrode’s rate
capability. While a more uniform CB distribution might miti-
gate this, achieving it in practice is challenging and risks
disrupting the percolation network, which is essential for
electronic conductivity. This analysis, further detailed in the
Fig. S9 and S10, helps justify the choice of using a bimodal
particle size distribution, where smaller particles can fill the
larger voids of the larger particles and explores the connectivity
statistics of the SCEs, which must be considered in careful
electrode engineering.

Intercalation dynamics in single-crystal electrodes

To verify the model’s accuracy in predicting the electrochemical
response of real porous electrodes, we compared it with a set of
experimental measurements conducted on the sample charac-
terized in this work. All parameterization details, including
porosity and tortuosity implementation based on microstruc-
tural characterization, are provided in the SI (Fig. S13–S15 and
Tables S1–S3).

As a result of the precise characterization, the model
requires only one fitted parameter: the inter-particle conduc-
tivity s. This parameter, determining the utilizable capacity
(Fig. S16), is highly sensitive to the synthesis path and carbon
coating quality. The reduction to a single fitted parameter
enhances model identifiability, allowing for precise estimation
that only requires one cycle as a dataset. Finding s by solely
fitting the 2C discharge cycle of the 1 mAh cm�2 sample, the
model replicates constant current (CC) charge and discharge
across multiple C-rates (Fig. 3a), including the ones of a higher-
loading sample (2 mAh cm�2, Fig. S17). This also further
confirms the kinetically limiting factor lies in the local particle
wiring.

Beyond reproducing voltage responses, the model allows for
a detailed investigation of the internal dynamics. In agreement
with experiments13 the system initiate with full (de)lithiation of
the particles directly connected with the CB and gradually
expands deeper into the network (Fig. 3c). By defining as active
particles those within the spinodal range (0.15–0.85 filling
fraction), we observed the active particle population evolving
in distinct waves (Fig. 3d): first the particles having a connec-
tion distance of one or two, only after most of these particles
complete their reaction, the poorly connected particles are
activated. High-potential electrons from the CB are consumed
by the (de)lithiation of the nearest particles, preventing the
particles deeper in the network from participating. In other
words, the reaction evolves within the local networks, while not
being limited by the long range electronic or ionic transport
(Fig. S18 and S19). This is also validated by the similar capacities
achieved by both the 1 mAh cm�2 and the 2 mAh cm�2 samples
(Fig. S17).

By integrating the network framework with CIET32,48 reaction
kinetics, the model captures charge–discharge asymmetry at the
electrode level (Fig. 3a) and explains its origin through the lens of
electro-autocatalysis.34,50 The asymmetry arises from the concen-
tration dependence of the exchange current density, i0(c)37 (Fig. 3e).
During delithiation (charging), lithium removal increases i0(c),
accelerating ion extraction—an autocatalytic effect. During lithia-
tion (discharging), lithium insertion decreases i0(c), slowing the

Fig. 2 (a) Distribution of volume fraction as a function of connection distance. The width of the violin represents the density of the specific volume
fraction across the sub-volumes. (b) Fraction of directly connected particles as a function of particle size with 100 nm bin size. The width of the violin
represents the probability density for the given size range (100 nm). (c) The contour plot shows the relation between particle size and number of contacts.
The line plots illustrate the probability density for the number of contacts and particle size distributions across various sub-volumes. The shaded areas (or
error bars) represent confidence intervals of �1 standard deviation.
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reaction—an autoinhibitory effect. During charging, the autocata-
lytic feedback accelerates the delithiation of particles directly
connected to the CB. Fewer particles are thus needed to sustain
the current (Fig. 3d) and are depleted, they become inactive
early in the charge process. Consequently, the system is forced
to rely on more distant particles (e.g., connection distance
three) earlier than it otherwise would. These deeper particles
are then less available in later stages, requiring higher over-
potentials, and thus limiting overall charge capacity (Fig. 3d).
In contrast, during discharge, the autoinhibitory effect slows the
lithiation reaction, and the reduced local current demand allows
electrons to bypass front-line particles and reach deeper ones with
limited potential losses, enabling greater capacity. These predictive
insights emerge only through the combined use of quantum-
informed reaction kinetics and the network-based transport form-
alism. As such, the model offers a physically grounded explanation
for charge–discharge asymmetry and provides a foundation for
optimizing operational protocols.

Our model also clarifies the poor correlation between parti-
cle size and degree of lithiation. Both nucleation theory47 and
the increased surface-area-to-volume ratio should improve the
rate capabilities of smaller particles. Despite this, both experi-
mental observation51 and our model show little correlation
between particle size and filling fraction (Fig. S20). The higher
average connectivity of bigger particles offset their kinetics and
thermodynamic disadvantages, leading to a more equilibrated
lithiation profile.

The uncovered mechanism is also key to understanding the
response observed under the GITT protocol (Fig. 3b). Despite
30-minute rest periods, a steadily increasing potential drop is
observed after each pulse. Our model explains this behaviour by
capturing the interplay between phase separation and electronic
connectivity. Initially, the particles are in equilibrium in the
delithiated state. During the first pulses, the lithiating particles
are those having stronger connectivity to the CB, allowing for low
overpotentials. During rest, the phase separation prevents

Fig. 3 Dynamics of lithium intercalation in a single-crystal electrode. (a) Comparison between the experimental and simulated voltage curves for 1C, 2C,
3C, and 5C for discharge (red) and charge (green). (1C = 1 mA cm�2). (b) Comparison between the experimental and simulated voltages for the GITT
protocol. Each pulse delivered 1C current and lasted 3 minutes. The resting time is 30 minutes. (c) Evolution of the particle network and its corresponding
microstructure during 2C discharge at different depths of discharge (DOD). The color scale shows the degree of lithiation of the particles. (d) Evolution of
the active particle population during a 2C discharge (red) and charge (green), divided by connection distance. Each percentage is calculated based on the
population having the corresponding connection distance. (e) Schematic representation of the autocatalytic/autoinhibitory reaction kinetics and its
effects on the active particle population dynamics.
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equilibration, inducing instead a mosaic arrangement of Li-
rich and Li-poor particles. In subsequent pulses, the reaction
front progresses deeper into the network, and activating poorly
connected particles requires increasingly higher overpotentials.
The same model properties are responsible for capturing
the thermodynamic hysteresis between charge and discharge,
without specialized algorithms53 (Fig. S21), and the kinetically
induced memory effect52 (Fig. S22 and S23).

Finally, the advantage of our network formalism becomes
particularly clear when compared to a conventional DFN
model.54 This model can be tuned by adjusting diffusivity
and bulk electrical conductivity to match capacity retention
under constant-current conditions (Fig. S24). However, signifi-
cant changes in bulk conductivity are required to account
for the performance difference between the 1 mAh cm�2

and 2 mAh cm�2 electrodes. Due to the missing physical
consistency, the DFN model lacks predictive transferability
for guiding electrode design. Assuming Fickian diffusion and
neglecting phase separation, this approach also prevents it
from capturing the system’s response under GITT protocols
(Fig. S25); a critical feature for battery control under dynamic
operating conditions.55 Other models, comprehending phase
separation but neglecting wiring effects, also fail in capturing
the voltage profiles (Fig. S26 and S27). In contrast, our network
model naturally captures these phenomena, enabling mechanism-
based predictions. This highlights the need for physically
grounded approaches that go beyond blind parameter fitting
and provide robust insights into performance-limiting
mechanisms.

The effect of temperature

Temperature-dependent tests provide a final validation for
our model. This is obtained by including an Arrhenius-like
temperature dependence of the electrical conductivity (s(T) B
e�Es/kBT), originating from the conduction mechanism of the
amorphous carbon coating.17 Adjusting the previously mea-
sured activation energy17 to 0.32 eV, by fitting the 2C discharge
at 10 1C, the model closely matches the experimental data for
multiple C-rates at 10 1C and extrapolates the �5 1C behaviour

(Fig. 4a). Moreover, the difference between the GITT response
at 25 1C and �5 1C is also captured, further supporting the
model’s validity (Fig. 4b). Although electrolyte conductivity
already varies with temperature,56 we show in Fig. S28 how
accounting for s(T) is necessary to reproduce the low-
temperature data. Moreover, we show the active particle popu-
lation is not significantly affected by the temperature change
(Fig. S29). Two counteracting factors – the increase in charge
transfer resistance and the decrease of electrical conductivity –
play opposite roles. Finally, the obtained activation energy is
distant from that of the LFP bulk conductivity (B0.5 eV)57

further proving the contact resistance to be the limiting factor.
While electrolyte engineering is still important, these findings
direct the attention to enhancing carbon coatings or introdu-
cing carbon nanotubes to improve low-temperature perfor-
mance of SCEs.58

Conclusions

Modeling of Li-ion batteries can play a crucial role in optimiz-
ing their performance and lifespan.2 Despite its importance,
existing porous electrode theories have deficiencies that render
them unreliable for SCE. Unifying microstructural imaging,
network science, and first-principles kinetics, we present a
framework that integrates the microstructural information into
a reduced-order formalism. After abstracting the microstruc-
ture into a network of electrically interconnected particles, we
found that the relationship between the particle size distribu-
tion and the CB volume fraction can shape the network’s
properties.

Moreover, validated models describing single-particle beha-
viour are integrated with the network framework, creating a
robust, physics-based simulation. By grounding the model on
the system’s physics, the unknown parameters can be accurately
found using a limited dataset, enabling reliable predictions. The
resulting model demonstrates exceptional generalization across
various experimental conditions, including varying protocols, tem-
peratures, and electrode loadings. The critical role of integrating
both network abstraction and phase separation into the model
becomes particularly evident in intermittent current scenarios,

Fig. 4 Effect of temperature on the kinetics of single crystal electrodes. (a) Comparison between the experimental and simulated voltage curves for
0.5C, 1C and 2C discharges at 25 1C, 10 1C and �5 1C. (b) Comparison between the experimental and simulated voltage curves for the GITT protocol.
Each pulse delivered1C current and lasted 3 minutes. The resting time is 30 minutes.
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such as GITT, where conventional DFN models fail to predict the
electrode’s dynamics. By accounting for phase separation, the
model preserves inter-particle heterogeneity during open-circuit
conditions, while the network ensures that the multi-particle
lithiation sequence is faithfully respected. This physics-informed
approach allows the model to accurately predict voltage responses
based on both state of charge (SOC) and prior cycling history.
Combined with its limited computational cost (B0.5 minutes for a
constant current simulation), these capabilities make the model
highly effective in predicting voltage responses under real-world,
dynamic input conditions.

Better accuracy and predictivity are coupled with a deeper
fundamental understanding. Beyond long-range electron trans-
port, the CB spatial distribution has a drastic influence on the
local dynamics (Fig. S30 and S31) and the low-temperature
performance of LFP electrodes (Fig. 4). This framework, when
coupled with microstructure generation,40,59 can also predict
and optimize the effects of porosity, particle size, and CB
volume fractions. For example, an increase in porosity, if
leading to a decrease in inter-particle connectivity, might result
in unexpected performance losses. Additionally, this framework
can be expanded in future studies. For instance, the concept of a
particle network could be used to investigate degradation mechan-
isms by including dynamic detachment36 of particles during
cycling. Moreover, other chemistries, such as Ni-rich or Na-based
cathodes, could be modelled in the same fashion as they can show
signs of electrical wiring limitations.44,60,61

In conclusion, this modeling approach holds broad application
potential, spanning solid-state batteries, emerging chemistries,
and, more generally, reaction-limited electrochemical systems.
Through this study, we have laid a strong foundation for the
development of more efficient and reliable energy storage
solutions, addressing the increasing demands of modern tech-
nology and advancing sustainable energy applications.

Methods
Coin cell preparation and cell cycling

The single-crystal LiFePO4 coated electrodes were acquired from
CustomCellss in two loadings: 1 mAh cm�2 and 2 mAh cm�2. The
electrodes were cut into disks of 12.7 mm diameter and dried
under vacuum at 80 1C overnight prior to cell assembly. The coin
cells were assembled in an Argon glovebox using the LFP electro-
des, a 25 mm thick Celgard 2500s separator, and a 250 mm thick,
15.4 mm diameter Li metal counter electrode. 1 M lithium
hexafluorophosphate (LiPF6) in ethylene carbonate (EC) :dimethyl
carbonate (DMC) (1 : 1 vol%) was used as the electrolyte. The
assembled coin cells were cycled using a LANHEs battery tester
inside a climate-controlled climate chamber. Prior to testing, the
cells underwent two formation charge–discharge cycles at 0.1C,
where 1C corresponds to either 1 mA cm�2 or 2 mA cm�2,
depending on the electrode. The rate performance was evaluated
as follows: the cells were charged and discharged at the target
C-rate until reaching the cutoff voltage (4.0 V for charge and 2.6 V
for discharge), followed by a 1-hour rest period. Subsequently, the

cells were charged and discharged at 0.5C until the cutoff voltage
was reached, and then they were held at this voltage until the
current decreased to C/20. This second step ensured that the
electrodes reached fully (de)lithiated states, facilitating parameter-
ization of the simulations. The same protocol was applied at all
tested temperatures. The GITT protocol also followed the same
procedure, with 20 pulses at 1C (1 mAh cm�2) lasting 3 minutes,
followed by a 30-minute rest.

Electrode characterization

The electrode’s weights and thicknesses were measured by
scraping a region of the electrode, flattening the remaining
Al, and measuring their weights and thicknesses. The values
were subtracted from the weight and thickness of the coated
sample. The thickness was found to vary from 28 mm to 31 mm
across the samples, and the weight was found to vary accord-
ingly. The stated electrodes’ composition by weight is 90% LFP,
5% carbon black, and 5% binder. These electrodes have a net
weight of 9.2 mg and a thickness of 30 mm, leading to the
estimation of the volume fractions: 27% porosity, 60% active
material, 6.3% carbon black, and 6.7% binder. The 1 mAh cm�2

LFP electrode was used to acquire the scanning electron
microscopy (SEM) and the focused ion beam scanning electron
microscopy (FIB-SEM) images. SEM images were acquired
using a JEOL JSM-IT700HR FE-SEM setup in backscattered
electron detection mode (acceleration voltage: 5 kV). 3d
volumes were created using a dual-beam FIB-SEM (FEI Helios
G4 CX). To ensure a smooth sliced surface, a thin (0.5 mm) Pt
layer was deposited on the top surface using Pt-GIS installed in
the FIB-SEM. An auto slice & view software (ThermoFisher
Scientific) was used to automate the alignment, slicing, and
acquisition of the high-resolution SEM images. For the FIB-
SEM characterization, two different regions of the electrode
were scanned to ensure local inhomogeneities could be cap-
tured. Volumes of 4.5 mm � 1.8 mm � 1 mm and 4.5 mm �
2.7 mm � 1.7 mm were scanned by slicing different parts of the
electrode material, and a slicing distance of 50 nm. Details
about the segmentation,43 microstructure characterization,46

particle identification algorithms,40 sub-volume post-processing,
and relative statistics can be found in the SI Methods.

Computational methods

The model’s equations were implemented, expanding upon the
existing MPET software,31 and can be found in the SI Methods.
The simulations run on a 13th generation Intel Core i9.
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