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Uncertainty in the era of machine learning for atomistic
modeling†

Federico Grasselli,∗,a,b Sanngyu Chong,c Venkat Kapil,d,e, f Silvia Bonfanti,g,h Kevin Rossi∗,i, j

The widespread adoption of machine learning surrogate models has significantly improved the scale
and complexity of systems and processes that can be explored accurately and efficiently using atom-
istic modeling. However, the inherently data-driven nature of machine learning models introduces
uncertainties that must be quantified, understood, and effectively managed to ensure reliable predic-
tions and conclusions. Building upon these premises, in this Perspective, we first overview state-of-
the-art uncertainty estimation methods, from Bayesian frameworks to ensembling techniques, and
discuss their application in atomistic modeling. We then examine the interplay between model ac-
curacy, uncertainty, training dataset composition, data acquisition strategies, model transferability,
and robustness. In doing so, we synthesize insights from the existing literature and highlight areas
of ongoing debate.

1 Introduction
Tycho Brahe, 16th century Danish astronomer, is credited for the
“great care he took in correcting his observations for instrumental
errors”,1 introducing the concept of measurement-theory incon-
sistency in astronomy, thus turning it into an empirical science.
Since then, the ability to assess instrument and model errors as
well as quantify the uncertainty and confidence intervals when
making predictions has become a pillar of the scientific method
and, in fact, discriminates between what is scientific and what is
not.

In many cases, chemists and materials scientists draw conclu-
sions based on incomplete or uncertain information, as it is often
the case when dealing with expensive, time-consuming, often-
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times noisy measurements. Uncertainty quantification (UQ) pro-
vides a framework for systematically incorporating uncertainty in
this scientific process, thereby enhancing the reliability, robust-
ness, and applicability of experimental and theoretical results. In
the context of materials science, chemistry, and condensed mat-
ter physics, researchers optimize materials and properties while
accounting for uncertainties, variations, and errors in their mea-
surements and theories (e.g., via replication and sensitivity anal-
ysis). This improves the reliability and validity in the models of
physical phenomena and design of novel materials and processes.

Nowadays, machine learning and artificial intelligence meth-
ods are emerging as a key tools for accelerating the design,
engineering, characterization, and understanding of materials,
molecules, and reactions at interfaces In the context of atomistic
modeling, machine learning facilitates the development of pre-
dictive models and interatomic potentials that can simulate mate-
rial behavior with high accuracy and reduced computational cost
compared to traditional methods. Incorporating UQ into these
machine learning models is crucial for assessing the reliability of
predictions and understanding the limitations of the models. By
quantifying uncertainties, researchers can identify areas where
the model’s predictions are less certain, guide the selection of
new data points for training (active learning), understand how
to train robust models, and make informed decisions about the
deployment of these models in practical applications.

In this perspective, we examine how the integration of machine
learning and UQ enhances the predictive capabilities of atomistic
simulations and ensures that inherent uncertainties are systemati-
cally accounted for, leading to more robust and reliable materials
design and discovery. In this context, we acknowledge the re-
cent contributions to the topic by Dai et al. and Kulichenko et al..
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Fig. 1 Frequency (count) of articles per year corresponding to the search
query reported in the figure legend: all fields of research, querying atom-
istic & model(l)ing & uncertainty. All fields of research refers to articles
titles, abstracts, keywords, and references. Data retrieved from Scopus
accessed on 06 Mar 2025.

By the same token, we remark that, while we aim for a com-
plete discussion, we intentionally focus on a a relatively restricted
number of representative works in the literature. A search for
the term “Atomistic Modeling (or Modelling)” and “Uncertainty”
shows that these appear with an increasing frequency, amounting
to more than 5000 literature items (Figure 1), highlighting the
significance of the topic under scrutiny.

The focus of our work is then on analysing recent trends in
uncertainty estimation methods —such as Bayesian frameworks
and ensemble approaches — and their practical application to
assess prediction reliability, and guide efficient data acquisition.
When possible, we synthesize and unify insights from the litera-
ture. Examples include connection interpretation of uncertainty
and extrapolation measures as Mahalanobis distances and discus-
sion on geometrical and statistical approaches to define in- and
out-of distribution predictions. When consensus is lagging, we
highlight key gaps and open research questions. These concern
benchmarking of uncertainty quantification methods and mod-
els trasnferability, uncertainty propagation for dynamical observ-
ables; uncertainty quantification in data-efficient methods includ-
ing foundation and multi-fidelity approaches. In conclusion, we
aim to provide a unified framework and highlight the open ques-
tions toward robust, efficient, and interpretable machine learning
approaches for atomistic modeling.

2 Uncertainty Estimates
For an uncertainty quantification method to be effective, a num-
ber of properties are desirable. In particular, the UQ methods
shall be:2

1. accurate, by realistically modeling the true uncertainty asso-
ciated with the ML prediction, and aiming to minimize bias
and systematic errors;

2. precise enough to provide a sufficiently narrow range of pos-

sible values;

3. robust, against variations in the data or model assumptions,
providing reliable results also when tested out-of-domain;

4. traceable and comprehensive, by capturing and identifying
all the possible sources of uncertainty, which include the
choice of hyperparameters and training set data points, or
the stochastic optimization of non-deterministic models.

5. computationally efficient, requiring only a negligible over-
head, possibly also in training, in obtaining the uncertainty
values of interest from the ML model

In what follows, we adopt operative definitions of uncertainty
based on the variance (second moment) of the distribution of
predictions (either theoretical or constructed via ensembles) to
quantify the spread of uncertain outcomes. This definition indeed
displays the properties listed above. The analysis of first and sec-
ond moment only may not be fully descriptive for non-Gaussian
(e.g., skew, heavy-tailed or multi-modal) distributions. Nonethe-
less, it provides an interpretable and computationally lightweight
measure of variability. Furthermore, it aligns well with Gaussian
or near-Gaussian models, such as those that are built from the
Laplace approximation (see Sec. 2.1.3). Finally, it supports sim-
ple calibration strategies that leverage the comparison of the un-
certainty estimate with the second moment of the empirical dis-
tribution followed by the residuals yi− ỹi between the reference
value for input i and its ML prediction.

Finally, towards a clear and unified discussion, we spell out the
notation we will adopt for our successive considerations:

x (or xi when labeling is needed) generic input/sample

X matrix collecting inputs in the training set as rows

fi array of features corresponding to xi

F matrix collecting training-set features as rows

w parameters of the model (a.k.a. weights)

ỹi ≡ ỹ(xi) machine-learning prediction for input xi

yi reference value corresponding to input xi

D training dataset of input-label pairs (xi,yi), with i =

1, . . . ,Ntrain

σ2
i variance on prediction ỹi

α calibration constant (see Sec. 2.4)

L training-set loss function

ℓi term of the loss function corresponding to a single instance
i of the training set

σ̃(x) machine-learning prediction, corresponding to input x, for
the uncertainty in mean-variance estimates and mean-
variance ensembles, see Sec. 2.3.
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2.1 Formulae for direct (and simple) uncertainty estimates

In the literature there exist several direct formulae to estimate
the ML uncertainty on a given prediction, which make the de-
tails much dependent on the specific ML approach, e.g., lin-
ear/kernel ridge regression; full or sparse Gaussian process re-
gression (GPR); neural-network (NN) models. Nonetheless, all
these direct estimates share a common (Bayesian) interpretation.
In fact, for a given new sample ⋆, the general shape of the un-
certainty associated to the prediction of is in the form of a Maha-
lanobis (square) distance:4

σ
2
⋆ = α

2f⊤⋆ Gf⋆ (1)

i.e. the (non-Euclidean) norm of properly defined feature vector,
f⋆, that the model associates to the new sample (see also Figure
2 for additional insights). For simplicity, we assume the features
have been centered, i.e. that 1

Ntrain
∑

Ntrain
i=1 fi,a = 0,∀a = 1, . . . ,N f . The

prefactor α2 is independent of ⋆ and acts as a tuneable constant
that must calibrated on some validation dataset (and also pro-
vides the correct units for the variance of the predictions). Why
calibration is needed and how to calibrate uncertainty are dis-
cussed in Sec. 2.4. The shape of the positive-definite metric tensor
G is model-dependent, but possess some common characteristics:

1. it can be viewed as an inverse covariance matrix of the
properly defined features of the input data points in D ,
i.e. G = [cov(F)]−1, where F ∈ RNtrain×N f collects as rows the
transpose of the feature vectors {fi}i=1,...,Ntrain of the training
points;

2. it is therefore strongly dependent on the distribution of input
points xi in D and on how much the new point ⋆ is “close”
to such distribution in this metric space;

3. it is largely independent of the specific target values yi in D .*

We report below the specific, model-dependent expression of
the features f and therefore of the metric tensor G.

2.1.1 Linear regression

In a linear regression f≡ x, so that N f = D, and

ỹ(x,w) = x⊤w (2)

where w are the weights. In a Bayesian picture, if we assume the
weights to be sampled from a zero-mean Gaussian prior, we have:

G =
(

X⊤X+ ς
2ID

)−1
(3)

where ς2 acts as a regularizer strength and ID is the identity ma-
trix of size D equal to the number of components of (any) input
x ∈ RD. Therefore, the uncertainty on a prediction ỹ⋆ = ỹ(x⋆) is

σ
2
⋆ = α

2x⊤⋆
(

X⊤X+ ς
2ID

)−1
x⋆ (4)

* The only dependence on the specific target quantity and values is through the value
of the regularizer that is included to make the inversion of the covariance matrix
numerically stable.
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A = 3.18
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Fig. 2 Mahalanobis distance. The new sample ⋆ has equal Euclidean dis-
tance dE between the distribution of features in training set A (blue), char-
acterized by a large covariance, and the distribution of features in training
set B (orange), characterized by a smaller covariance. The shaded ellipses
have axes equal to the eigenvalues of the covariance. In striking contrast
to Euclidean distance, the Mahalanobis distance of ⋆ from the distribu-
tion of features in training set B, dM

B , is more than three times larger than
that from A, dM

A .

2.1.2 Gaussian process regression

In the GPR problem f ≡ φφφ(x), i.e. the regression exercise has the
form

ỹ(x) = [φφφ(x)]⊤w, (5)

where φφφ(x) maps the D-dimensional input x into a N f -
dimensional feature space (in general, as a nonlinear function
of the input). The components φ a(x), with a = 1, . . . ,N f are often
called basis functions.

By assuming again that the weights are sampled from a zero-
mean Gaussian prior, we have:

G =
(

ΦΦΦ
⊤

ΦΦΦ+ ς
2IN f

)−1
(6)

and the uncertainty on a prediction ỹ⋆ = ỹ(x⋆) is

σ
2
⋆ = α

2
φφφ(x⋆)⊤

(
ΦΦΦ
⊤

ΦΦΦ+ ς
2IN f

)−1
φφφ(x⋆) (7)

Oftentimes the reported GPR uncertainty formula is:

σ
2
⋆ = k(x⋆,x⋆)−k(x⋆,X)⊤

[
K(X,X)+α

2INtrain

]−1
k(x⋆,X) (8)

which makes use of the kernel that, for any pair of inputs xi and
x j, is here defined as in Rasmussen and Williams: k(xi,x j) =

σ2
w[φφφ(xi)]

⊤φφφ(x j), where σ2
w is the variance of the prior distri-

bution of the weights, which can be identified in α2/ς2. In
some references—such as Tipping, which forms the basis for Ap-
pendix A—the factor σ2

w is either omitted or absorbed into the
feature definition via the rescaling φφφ ← σwφφφ . In this Perspective,
we have chosen to adhere as closely as possible to the conven-
tions and definitions adopted in the referenced papers, to main-
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tain consistency and facilitate comparison. To switch from Eq. (7)
to Eq. (8) or vice versa, it is sufficient to use Woodbury’s identity,
after assuming all the needed matrix inversions are possible. In
this sense, the role of the regularizer is crucial: in fact, when-
ever ΦΦΦ is not full rank, either ΦΦΦ

⊤
ΦΦΦ is invertible and ΦΦΦΦΦΦ

⊤ is not
(case of “tall” matrix ΦΦΦ, with Ntrain > N f ), or ΦΦΦΦΦΦ

⊤ is invertible
and ΦΦΦ

⊤
ΦΦΦ is not (case of “broad” matrix ΦΦΦ, with Ntrain < N f ). For

the relation between the eigenvalues/-vectors of ΦΦΦ
⊤

ΦΦΦ and ΦΦΦΦΦΦ
⊤,

see Tipping.

Mercer’s theorem ensures that for any kernel there exist a pos-
sibly infinite (i.e. N f → ∞) set of basis functions. Furthermore,
the representation in terms of the functions φφφ is also very useful
when sparse kernel approximations, such as the Nyström method
detailed in Appendix A, are employed.

2.1.3 Neural networks

Expressions analogous to Eq. (1) have appeared for neural net-
works several decades ago, in the work of MacKay in the early
’90s7–9, introducing Laplace approximation within the context of
Bayesian approach to neural networks. The Laplace approxima-
tion consists in approximating the posterior distribution of the
weights as a multivariate Gaussian distribution, centered around
the maximum a posteriori (MAP) optimal weights wo, that are
obtained after the NN training:

p(w|D)≈N
(
wo,α

2G
)

(9)

where α2G is the covariance matrix of the weights close to MAP,
and the tuneable parameter α may be interpreted as a noise level
on observation9. The discrepancy principle would indicate the
mean square error of the observations10 as an empirical estimate
of α2; nonetheless, the latter is often treated as a tuneable param-
eter, since additional calibrations are often required, as reported
in, e.g., MacKay and Imbalzano et al.. In the Laplace approxima-
tion, the matrix G is given by the inverse Hessian matrix of loss
function L = ∑i ℓi(ỹ(xi,w),yi), computed at MAP:

Ho =
∂ 2L

∂w∂w⊤

∣∣∣∣
wo

=
Ntrain

∑
i=1

∂ 2ℓi

∂w∂w⊤

∣∣∣∣
wo

(10)

Ho is routinely approximated by its Gauss-Newton form, which
employs only first order derivatives of predictions with respect

to the weights and evaluated at MAP, φφφ i ≡
∂ ỹi
∂w

∣∣∣⊤
wo

which can be

easily retrieved by backpropagation:

Ho ≈
Ntrain

∑
i=1

φφφ i
∂ 2ℓi

∂ ỹ2
i

φφφ
⊤
i (11)

Finally, the distribution of the output corresponding to the input
⋆ becomes:12

p(y⋆|x⋆,D)≈N
(

ỹ(x⋆,wo);α
2

φφφ
⊤
⋆ H−1

o φφφ⋆

)
(12)

from which the variance σ2
⋆ = α2 φφφ

⊤
⋆ H−1

o φφφ⋆ is obtained in the
form of a Mahalanobis distance, Eq. (1). In the context of atom-
istic modeling, this approach has been investigated by Zaverkin
and Kästner, and leveraged for active-learning strategies (see also

Sec. 3.5). The same results can be obtained in an alternative but
equivalent mathematical construction probing how robust a ML
model is, to a change in the prediction of an input ⋆, based on a
constrained minimization of the loss.14,15 (see Sec. 3.4 for more
details).

Two remarks should be made: first, as it is reasonable to ex-
pect, the quality of this approximation depends on how much the
posterior distribution of the NN model is close to a multivariate
Gaussian; second, the large number of weights, and thus of com-
ponents in φφφ i, in current deep NN typical architectures makes the
storage of Ho unfeasible, even in the Gauss-Newton approxima-
tion, due to memory requirements quadratic in the size of the φφφ

arrays. The context of NN Gaussian processes,16and in particular
of the Neural Tangent Kernel formalism,17–19 provides the ideal
theoretical framework to justify the first point and to find a vi-
able strategy to overcome the second one. In Bigi et al., the use
of a last-layer (LL) approximation,12,20 was extensively justified,
whereby only the derivatives of the predictions with respect to
the LL weights wL, i.e. the LL latent features

fi ≡
∂ ỹi

∂wL

∣∣∣∣⊤
wo

(13)

are considered in building Ho and in evaluating the variance of
the prediction for a new input ⋆. For a mean square loss function,
the latter becomes:†

σ
2
⋆ = α

2f⊤⋆
(

F⊤F+ ς
2INL

)−1
f⋆ (14)

where a regularizer has been added for numerical stability and
where NL is the number of components of LL latent features,
i.e. the number of nodes of the last hidden layer of the NN. A
few further remarks:

1. The presented derivation is based on the assumption that no
additional nonlinear activation is applied to the product of
the LL latent features and LL weights, i.e. that ỹ = f⊤wL.
Things get more complicated whenever a nonlinear applica-
tion function ϕ is instead applied, ỹ = ϕ(f⊤wL), even though
the correct distribution of the prediction can in principle still
be sampled (e.g., by Monte Carlo integration).

2. The LL latent features fi do not explicitly depend on the LL
weights wL, which are the weights reported to change more
during training.17 As such, the LL latent features, as well as
the covariance matrix F⊤F, are expected to be rather con-
stant during training.18 Furthermore, the different elements
of the array of LL latent features are identically distributed at
initialization, and centered around zero, for any given sam-
ple, because the weights (and in particular wL−1) are taken
as independent, identically distributed and centered around
zero. This implies that the additional enforcement of feature
centering should not change the result of the uncertainty es-
timate.

† To avoid notation overburden, we used the same symbol α2 in both Eqs. (12) and
(14) for the calibration parameters, although there is no reason for them to be equal.
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3. Numerical experiments indicate that, analog to linear regres-
sions, while the calibration of α2 is crucial, the regularizer
scarcely affects σ2

⋆ even when the regularizer strength ς2

is varied over several orders of magnitude, unless data are
scarce or highly collinear. The role of the regularizer is fur-
ther discussed in Appendix E of Ref.15.

Wenger et al. report on limitations of the NTK perspective. In
particular, to leverage the advantages of the NTK formulation,
one would need "architectures that are orders of magnitude wider
than they are deep" (verbatim from Ref. Wenger et al.). This is
in fact the case for several current architectures of ML models
in atomistic learning. ‡ Note, the NTK theory is valid for any
Ntrain in the infinite-width limit, but, for finite-width networks, the
width must grow sufficiently fast (polynomially) with the number
of samples to maintain the NTK approximation valid

Beyond last-layer approximations, it has been shown in the
context of atomistic machine learning that full-gradient repre-
sentations, combined with random projections to reduce mem-
ory cost, can offer improved performance.24 For a broader per-
spective on gradient features and their connection to the Neural
Tangent Kernel, we refer the interested reader also to Holzmüller
et al..

2.1.4 Bayesian methods beyond the Laplace approximation

As already discussed, Bayesian UQ scope is to find the probability
distribution of the output (a.k.a. posterior predictive distribution)
by means of Bayes’ rule

p(y⋆|x⋆,D) =
∫

dwp(y⋆|x⋆,w)p(w|D) (15)

from which one can quantify the uncertainty as the second mo-
ment of the distribution. When Laplace approximation is invoked,
one can obtain simple expressions like Eq. (12). Whenever this is
not possible, an explicit sampling of the posterior

p(w|D) ∝ exp
[
−U (w)

T

]

U (w) =− ln
Ntrain

∏
i=1

p(yi|xi,w)︸ ︷︷ ︸
likelihood, p(D |w)

− ln p(w)︸ ︷︷ ︸
prior

(16)

is needed. Here, T represents the posterior “temperature”, in-
troduced as an additional hyperparameter. The true Bayesian
posterior is obtained when T = 1;7 when T < 1 such a “cold”
posterior is a sharper distribution.26 The sampling is usually per-
formed via Markov chain Monte Carlo (MCMC) methods. In or-
der to generate proposals for the Monte Carlo acceptance step,
state-of-the-art techniques often leverage Hamiltonian-like dy-
namics, whereby the parameters w are evolved according to the
“forces” −∇∇∇wU (w).27 While standard Hamiltonian MCMC meth-
ods may be computationally intractable for current NN architec-

‡ For instance, the default fitting NN architecture of DeePMD is made by 3 layers of
240 neurons each. 22 Even in the earliest Behler-Parrinello architectures the number
of nodes (40) was much larger than the number of layers (2). 23

tures featuring a huge number of parameters, stochastic-gradient
MCMC algorithms have been recently devised and applied to NN
ML interatomic potentials,28,29 which involve data mini-batching
and give results comparable to (deep) ensemble methods (see
Sec. 2.2). Finally, last-layer variants of variational Bayesian ap-
proaches,30, providing a sampling-free, single-pass model that
enhances UQ, have not yet been explored in atomistic machine
learning but could offer a promising direction.

2.2 Ensembles of models

Another class of approaches to quantify the ML uncertainty ex-
ists, which is based on the generation of an ensemble of several
equivalent models y(m)(x), to compute the empirical mean

y(x) =
1
M

M

∑
m=1

y(m)(x) (17)

and variance

σ
2(x) =

1
M−1

M

∑
m=1

[y(m)(x)− y(x)]2 (18)

for the prediction corresponding to any given input of features x.
The ensemble members y(m)(x) are routinely obtained in differ-

ent ways:

1. by subsampling the entire dataset and then training one
model for each of the subsampled datasets D (m). The size
of D (m) depends on the subsampling technique, but usually
amounts to M−1

M ×Ntrain.

2. for models that are not trained via a deterministic approach,
stochasticity in the model architecture and training details
(e.g., varying the random seed, Monte Carlo dropout31) can
be exploited to obtain the ensemble.

2.3 Mean-variance estimation models and Mean-variance
ensembles

The goal of mean variance (MV) estimation models is to predict
the uncertainty σ̃2(x) affecting a given prediction ỹ(x) together
with the prediction itself. Different from ensembles, here the
model is trained to directly predict the best value and its vari-
ance, rather than building an ensemble to deduce them; see also
the region enclosed by the dashed line in Fig. 3(a). MV estima-
tion models are usually trained by using a negative log-likelihood
loss function,32 that, for a single instance xi, reads

ℓi =− ln p(yi|xi,w)

=
1
2

[
(yi− ỹ(xi))

2

σ̃2(xi)
+ ln σ̃

2(xi)+ ln2π

] (19)

Busk et al.33 interpret σ̃2(x), predicted by MV model as an ad-
ditional model output, as an aleatoric uncertainty that may stem
from random noise, data inconsistencies, or the model’s inability
to fit precisely, and, as such, cannot typically be reduced by col-
lecting more data. Incidentally, it should be remarked that, in the

Journal Name, [year], [vol.],1–23 | 5
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Fig. 3 a) Mean variance ensemble model. b) Shallow ensemble.

case of a dataset that assumes noiseless observations, all the de-
viations of the model’s prediction from the observations must be
considered as model’s bias,34 since considering the observations
to be the ground truth implies that a perfect model should really
pass through those points.

Ensembles models and MV estimation models can be combined
to give rise to mean-variance ensembles, introduced by Lakshmi-
narayanan et al. with the name of deep ensembles; see Fig. 3(a).
In this approach, a committee of MV estimation models is cre-
ated, where each member of the committee outputs a prediction
and variance pair,

(
ỹ(m)(x), σ̃2,(m)(x)

)
, and then the uncertainty

is estimated by summing the variance of the predictions, as in Eq.
(18), with the average of the variances of the committee:

σ
2
tot(x) =

1
M−1

M

∑
m=1

[y(m)(x)− y(x)]2

+
1
M

M

∑
m=1

σ̃
2,(m)(x)

(20)

which assumes that the two addenda are uncorrelated. Busk et al.
and Carrete et al. interpret the first addendum as the epistemic
uncertainty and the second addendum as aleatoric uncertainty.

2.3.1 Shallow ensembles

While the mean-variance ensemble approach is known to provide
robust uncertainty estimates and is commonly considered the cur-
rent state-of-the-art, it often suffers from the large computational
cost incurred from training and evaluation of multiple models.
Given that the commonly adopted ensemble size is ≥ 5–10, it

can quickly become prohibitive for sufficiently large and complex
models, especially neural networks.

In this latter case, akin to LL approximation motivated in 2.1.3,
one could construct “shallow ensembles” (Figure 3(b)), where
only the last-layer of the neural network is varied in obtaining
an ensemble of models, and rest of the weights are shared across
the members. Such an approach effectively mitigates the large
computational cost associated with the training of multiple neural
network models and their inference. Kellner and Ceriotti present
a version of this approach, where a shallow ensemble of models
is trained to using an NLL-like loss obtain the empirical mean and
variance through Eqs. (17) and (18).

2.3.2 Mixtures of experts

An emergent approach across numerous machine learning do-
mains, towards highly accurate and efficient models, concerns
the adoption of ensemble learning and mixture of experts (MoE)
strategies.38 In the context of atomistic modeling these have been
explored by Zeni et al. for monoelemental systems and Wood
et al. for efficient universal models for atoms. The formulae dis-
cussed in the previous section can be easily extended to mixture-
of-experts models, where the prediction for a sample ⋆ is

ỹ(x⋆) =
K

∑
k=1

πk(x⋆) ỹ(k)(x⋆) (21)

Here, πk(x) is an input-dependent coefficient representing the
contribution of model k of the mixture. The total number
of models is K. The coefficients πk are normalized so that
∑

K
k=1 πk(x) = 1,∀x. Examples include soft-max assignment based

on distance:39

πk(x) =
es(dk(x))

∑
K
k′=1 es(dk′ (x))

(22)

where s(dk(x)) labels a function of the reciprocal of the distance
dk(x) between the point x and the centroid of the model dataset k.
Other smooth space-partitioning functions based on density have
been similarly suggested:38

πk(x) =
p(k)(x)

∑
K
k=1 p(k)(x)

(23)

where p(k)(x) is the probability density to find x according to
model k of the mixture (e.g., in the case of Gaussian mixture mod-
els p(k) is the probability density function of a normal distribution
defined by the k-th cluster’s center and covariance). By assuming
that different models of the mixtures are independent among one
another and characterized by the uncertainties

σ
2,(k)
⋆ = α

2,(k)f⊤⋆ G(k)f⋆, k = 1, . . . ,K (24)

then, standard uncertainty propagation gives:

σ
2
⋆ =

K

∑
k=1

[
∂ ỹ⋆

∂ ỹ(k)⋆

]2

σ
2,(k)
⋆ =

K

∑
k=1

π
2
k σ

2,(k)
⋆ (25)

6 | 1–23Journal Name, [year], [vol.],
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2.4 Calibration: quantification and practicalities

2.4.1 Maximum log-likelihood calibration

Musil et al. and Imbalzano et al. have shown that the un-
certainty σ2(x) estimated by the ensemble-based approach of
Eq. (18) can be calibrated a posteriori by applying a global (i.e.,
x-independent) scaling factor α2, such that σ2

calib.(x)← α2σ2(x).
α2 is chosen to maximize the log-likelihood of the predictive dis-
tribution over a validation set of Nval points, and is given by:

α
2 =

1
Nval

Nval

∑
i=1

|yi− ȳ(xi)|2

σ2(xi)
(26)

It is crucial to remark that Eq. (26) is a biased estimator in the
number of models composing the ensemble, M. Whenever M is
small, Eq. (26) should be replaced by the bias-corrected formula

α
2 =− 1

M
+

M−3
M−1

1
Nval

Nval

∑
i=1

|yi− ȳ(xi)|2

σ2(xi)
(27)

from which it is also seen that at least M = 4 members are needed.
With proper (straightforward) changes, this approach can be eas-
ily extended to the other UQ techniques outlined in the previous
sections. Notice that tracing back a clear distinction between epis-
temic and aleatoric components of the uncertainty, as outlined in
Eq. (20), may be problematic after calibration.

2.4.2 Expected vs observed uncertainty parity plots

Another common approach to check UQ calibration involves con-
structing parity plots, typically on a log-log scale, to compare the
estimated variance with the observed distribution of (squared)
residuals, sometimes binned according to the model’s estimated
variance.2,15,16,37,42 A proxy to summarize these reliability plots
is the so-called expected normalized calibration error (ENCE), re-
cently introduced by Levi et al., defined by:

ENCE =
1

Nbins

Nbins

∑
b=1

|RMV(b)−RMSE(b)|
RMV(b)

RMV(b)≡
√

1
|b|∑i∈b

σ2(xi)

RMSE(b)≡
√

1
|b|∑i∈b

|yi− ỹ(xi)|2

(28)

where |b| labels the number of data points in bin b.
If the estimated variance σ2(xi) follows a functional form such

as Eq. (1), the free parameter α2 must be adjusted, for example,
following the procedure of Eq. (26)—to align the expected vari-
ance with the observed MSE. Notably, in log-log space, varying
α2 results in a rigid shift of the entire plot. Thus, even for uncal-
ibrated UQ estimates, a linear correlation between the expected
and observed distributions of (squared) residuals should still be
apparent. If there is a poor linear correlation, this suggests that
the Gaussian-like UQ framework defined by Eq. (1) may be in-
adequate, as can occur in NN models with only few neurons per
layer, and/or that a local calibration α2(x) may be necessary.

Along these lines it is worth mentioning the insightful work

by Pernot, Pernot which involves stratifying the evaluation of a
given calibration score, such as Eq. (26), based on the predicted
uncertainty: the dataset is split into subsets where the predicted
uncertainty falls within certain ranges (e.g., low, medium, or high
uncertainty predictions); calibration metrics are then calculated
independently for each subset. This allows for a more detailed
analysis of how well the model is calibrated across different levels
of predicted uncertainty. By performing different types of strati-
fication/binning of the dataset, Pernot shows that it is also possi-
ble to distinguish between consistency (the conditional calibration
with respect to prediction uncertainty) and adaptivity (the condi-
tional calibration with respect to input features), and that good
consistency and good adaptivity are rather distinct and comple-
mentary calibration targets.

2.4.3 Miscalibration area

In the literature,46 (mis)calibration is often discussed in terms
of the similarity between the expected and observed cumulative
distribution functions (CDFs) of residuals. A model is considered
calibrated when the miscalibration area between these CDFs is
small, indicating consistency between the predicted and actual
uncertainties. The sign of the miscalibration area can further re-
veal whether the model’s estimated uncertainties are under- or
over-confident, providing additional diagnostic insight.

Nonetheless, methods based on the miscalibration area can be
challenging to interpret. In fact, they provide an indirect assess-
ment of UQ quality, since, by comparing CDFs, they inherently
compare higher moments of the distributions. For example, two
distributions may share similar second moments–quantities typi-
cally interpreted as uncertainty—but diverge significantly in their
CDFs due to deviations from Gaussianity, such as skewness or
heavy tails. This conflation of uncertainty with other aspects
of distribution’s shape highlights a key limitation of such ap-
proaches.

For this reason, we recommend prioritizing the calibration
strategies discussed in Secs. 2.4.1 and 2.4.2, which more clearly
align with the intended interpretation of uncertainty.

2.5 Conformal prediction
Most of the UQ strategies described so far employ input-
dependent uncertainties whose evaluation are largely indepen-
dent of the values of the targets in the dataset (see point 3. in
Sec. 2.1). A complementary and rather opposite idea is based
on conformal predictions (CPs), which—for regression tasks—
provide a way to construct confidence intervals for a continuous
target prediction ỹ⋆, such that the intervals contain the true value
with a predefined probability (e.g., 95%). Notably, CPs offers a
distribution-free approach to uncertainty quantification. The idea
of CPs stems from seminal concepts developed by Ronald Fisher
in the 1930s,47 and then applied to the context of ML by Vladimir
Vovk and collaborators in the 1990s (for a pedagogical review, see
e.g. Shafer and Vovk). In a nutshell, the CP procedure reads as
follows:

• train a regression model to give predictions ỹi

• use a separate calibration dataset C

Journal Name, [year], [vol.],1–23 | 7
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• compute the nonconformity score si∈C (typically the absolute
error, si = |yi− ỹi|)

• determine the (1−α)-quantile q1−α of the sorted scores. For
instance, if α = 0.05, then 95% of the scores si∈C shall lie
below the value q0.95

• for a new input x⋆ construct the prediction interval as [ỹ⋆−
q1−α , ỹ⋆+q1−α ].

The prediction interval contains the true y with at least 1−α con-
fidence. The key assumption in CP is that the new (test set’s)
error distribution is representative of both the training and cal-
ibration sets error distribution. This allows 1−α, derived from
the calibration data C , to apply universally across all inputs x.
As a result, q1−α acts as a global threshold for constructing pre-
diction intervals, a measure of the model’s “typical error” that
encapsulates how large the prediction errors tend to be (up to the
(1−α)-quantile), independent of any specific input x. Nonethe-
less, if the new set of inputs is significantly out of distribution,
meaning it differs substantially from the training and calibration
data, the assumptions underlying CP may no longer hold, and the
prediction intervals obtained from CP might lose their validity.

In the context of atomistic modeling of materials, CPs have
been recently used, e.g., in Hu et al. and Zaverkin et al., for the
UQ of ML interatomic potentials predictions.

2.6 Are all uncertainty estimates the same?

Standardized benchmarks and evaluation protocols for ML model
accuracies in atomistic modeling have been established only re-
cently. Shortly after, limitations of these benchmarks where also
identified, and this continues to be an area of ongoing research.
Similarly, a consensus on UQ methods reliability is still lacking,
since no unique set benchmarks for uncertainty estimation has
been developed yet.

Tran et al. compared the accuracy and uncertainty of multiple
machine learning approaches for predicting the adsorption en-
ergy of small molecules on metals. The most effective approach
combines a convolutional neural network (CNN) for feature ex-
traction with a Gaussian process regressor (GPR) for making pre-
dictions. This hybrid model not only provided accurate adsorp-
tion energy estimates but also delivers reliable uncertainty quan-
tification.

Tan et al. evaluated ensembling-based uncertainty quantifica-
tion methods against single-model strategies, including mean-
variance estimation, deep evidential regression, and Gaussian
mixture models. Results, using datasets spanning in-domain in-
terpolation (rMD17) to out-of-domain extrapolation (bulk silica
glass), showed that no single method consistently outperforms
the others. Ensembles excel at generalization and robustness,
while MVE performs well in-domain, and GMM is better suited for
out-of-domain tasks. The authors concluded that, overall, single-
model approaches remain less reliable than ensembles for UQ in
NNIPs.

Kahle and Zipoli reported that NN potentials ensembles may re-
sult overconfident, underestimating the uncertainty of the model.

Further, they require to be calibrated for each system and archi-
tecture. This was verified across predictions for energy and forces
in an atomic dimer, an aluminum surface slab, bulk liquid wa-
ter, and a benzene molecule in vacuum. Bayesian NN potentials,
obtained by sampling the posterior distribution of the model pa-
rameters using Monte Carlo techniques, were proposed as an al-
ternative solution towards better uncertainty estimates.

Further, the integration of UQ methods with existing machine
learning architecture is often streamlined for one specific ap-
proach only (53,54) and it is rarely the case that one single work-
flow allows for the adoption of a diverse set of ML UQ methods.

2.7 Size extensivity of uncertainty estimates

Another important consideration in ML for atomistic modeling is
the size extensivity of properties targeted by the ML models, and
how that propagates to the uncertainty estimates. Take ML inter-
atomic potentials as an example, where the models are trained
to predict total energies of chemical systems as a sum of atomic
contributions. It is unclear how the uncertainties of the systems
grow with their size. One could rationalize two extrema: one
is a perfectly crystalline system with all-equivalent atomic en-
vironments, leading to maximal correlation between local pre-
dictions and hence uncertainties would strictly grow as N, the
number of atoms. The other would be a dilute gas of atoms or
molecules with no correlation, leading to the growth of uncer-
tainty in quadrature, i.e., scaling with

√
N. Real chemical systems

are expected to have components that can be distinguished with
both scaling behaviors.

Kellner and Ceriotti37 have investigated the size extensivity of
uncertainty estimates for bulk water systems using their shallow
ensembling method for a deep NN model. In their analysis, they
decomposed the uncertainties on differently sized bulk water sys-
tems into “bias” and “residual” terms. The bias term, computed
by taking the absolute difference between the mean predicted
and reference energies for a given system size, was found to
scale roughly with N. The remaining residual term, which would
largely capture the random distortions of the water molecules,
was then found to correlated with

√
N. Given the significant

contributions from both terms, their experiments showcase the
non-trivial trends in the size extensivity of ML model uncertain-
ties for real material systems, which exposes the limitations of
approaches where extensivity is ignored or a naive scaling law
is assumed. Size extensivity of uncertainty estimates presented,
in the context of gradient features—has also been discussed Za-
verkin2024.

2.8 Uncertainty propagation

Besides being an alternative strategy with respect to the direct
application of the formulae of Sec. 2.1, the use of ensembles is
particularly useful in several physical applications that require the
propagation of uncertainty to derived quantities that are function
f of the regressor’s output, z(x) = f (y(x)). In fact, only in few
simple cases uncertainty can be propagated analytically from the
UQ formulae presented in Sec. 2.1 in the form of Eq. (1), as it is
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the case, for instance, whenever the linear approximation

σz(x⋆)≈
d f
dy

∣∣∣∣
x⋆

σ⋆ (29)

is sufficiently accurate. In the general scenario one can easily re-
sort to explicit sampling of the models’ distribution, and generate
an ensemble of M models from which uncertainty can be propa-
gated as in:

z(m)(x) = f (ym(x))

z(x) =
1
M

M

∑
m=1

z(m)(x)

σ
2
z (x) =

1
M−1

M

∑
m=1

[z(m)(x)− z(x)]2

(30)

Explicit sampling can also be useful to account for the corre-
lated nature of the errors made by ML models. Excessively con-
servative UQ estimates are made, e.g., when computing differ-
ences of observables–such as the relative energy E(x1)− E(x2)

for nearby configurations x1 and x2–if independent errors are as-
sumed across configurations. In reality, ML models often pro-
duce highly correlated predictions in such scenarios, meaning
that while absolute uncertainties may be significant, the uncer-
tainty on differences (which are often more physically relevant)
can be much smaller. Sampling ∆E(m) ≡ E(m)(x1)−E(m)(x2) and
then estimating the mean value ∆E ≡ 1

M ∑
M
m=1 ∆E(m), and the un-

certainty as 1
M−1 ∑

M
m=1[∆E(m)−∆E]2 is a viable option offered by

explicit sampling, which naturally incorporates correlations be-
tween ML estimates that are function of multiple configurations.

In ML-driven atomistic simulations, UQ is also needed to single
out the uncertainty ascribable to ML models from the statistical
one due to a poor sampling (i.e. too short trajectories): in fact it
would be pointless to run very long MD simulations if the uncer-
tainty due to ML cannot be lowered below a given threshold.

A more subtle problem arises in the realm of MLIPs, whenever
one aims at propagating uncertainty to thermostatic observables
(e.g., the radial distribution function, the mean energy of a sys-
tem, etc.) where ML uncertainty on the energy of a given struc-
ture enters the Boltzmann weight of thermodynamic averages,
or – equivalently under the erdogic hypothesis – affects the sam-
pling of the phase space via molecular dynamics simulations. In
Imbalzano et al., the availability of model-dependent predictions
was leveraged to propagate uncertainty to thermostatic observ-
ables while running a single trajectory with the mean MLIP of the
ensemble, by applying simple reweighing strategies.

For instance, consider the case of training a committee of M
ML interatomic potentials to learn the ML potential energy sur-
face V (r), where r indicates the set of positions of all the atoms
of a system. The potential energy of the i-th model is labeled by
V (i)(r), and the mean potential energy of the committee by V (r),
as in Eq. (17). Then, for a given observable a(r) of the atomic po-
sitions, its canonical average, computed by sampling the configu-
rational space according to the Boltzmann factor exp[−βV (i)(r)],
where β = (kBT )−1, can be equivalently expressed in terms of a

canonical average using the Boltzmann factor exp[−βV (r)] asso-
ciated to the mean potential of the committee as:

⟨a⟩V (i) =

∫
drw(i)(r)a(r)e−βV (r)∫

drw(i)(r)e−βV (r)
(31)

where w(i) ≡ exp[−β (V (i)(r)−V (r))]. Therefore, by performing
a single experiment to sample the configuration space (e.g., via
Monte Carlo or molecular dynamics) using the mean potential of
the committee, one can post-process the result to obtain the set
⟨a⟩V (i) , i = 1, . . . ,M, whose standard deviation across the commit-
tee quantifies the uncertainty on the thermodynamic average ⟨a⟩.
Statistically more stable approximations also exist, based on a cu-
mulant expansion, to overcome sampling efficiency issues stem-
ming from direct application of Eq. (31).11,37,55

Looking ahead, fundamental questions remain. E.g., from a
physical perspective: what are the key ingredients towards the def-
inition of a rigorous theory for uncertainty propagation for time-
dependent thermodynamic observables, such as correlation func-
tions? Such a question is relevant for spectra and transport co-
efficients, obtained from ML-driven molecular dynamics simula-
tions,56–65 since its answer would make it possible to quantify the
uncertainty on these dynamical observables in an efficient way,
bypassing time-consuming, brute-force approaches that require
running several trajectories.

2.9 Model Misspecification

In the UQ approaches of the previous sections, we have tacitly
assumed that the regression problem is specified, i.e., that, ex-
cept for i.i.d. noise, the ground truth can be in principle captured
by the model form for some value of the weights. Model mis-
specification occurs when the assumed form of the model does
not match the true data-generating process. The implication on
UQ is rather important: as the number of samples Ntrain → ∞,
the posterior over parameters p(w | D) becomes sharply peaked
around a point estimate (e.g., MAP or MLE). This is fine if the
model is correctly specified, i.e., the true data-generating distri-
bution lies within the model class. But if the model is misspeci-
fied, then the parameters may converge to values that are optimal
only within the incorrect model class—and the posterior uncer-
tainty on weights may shrink, even though predictive uncertainty
should not. Many fundamental theorems in statistical modeling
and Bayesian inference actually assume that the problem is well-
specified, and need to be modified to account for misspecifica-
tion.66

Misspecification is a form of systematic model error, distinct
from overfitting or random noise. In the context of atomistic
simulations, modern ML architectures based on NN have in gen-
eral enough capacity to fit any function to training data without
overfitting; nonetheless, misspecification may still arise due to
omitted physics, inadequate data coverage, or improper model
assumptions. While it is universally true that “all models are
wrong,67 this limitation becomes especially critical in the con-
text of misspecification, which can lead to unreliable or mislead-
ing UQ. For instance, if the model cannot represent long-range
interactions that are present in the underlying physics—as in the
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binding curves of molecular dimers68—all members of an ensem-
ble may still agree on an incorrect prediction, such as vanishing
forces beyond the model’s short-range cutoff. This leads to artifi-
cially low uncertainty estimates. Such issues cannot be resolved
even with calibration strategies like Eq. (26), since no global cal-
ibration can simultaneously account for both the regions where
the model performs well (short distances) and those where it sys-
tematically fails (long distances). Another case where misspec-
ification occurs concerns wrong functional forms as, e.g., in ML
interatomic potentials trying to model a sharp repulsive wall with
a smooth function.

3 Uncertainty and robustness
Having reviewed a wide range of UQ methods for ML models,
we now extend our discussion to the “robustness” of the mod-
els and their predictions. By robustness, we refer to the ability
of a model to maintain good accuracy and precision under var-
ious types of perturbations, noise, and adversarial conditions in
the provided input. Approaching the robustness of ML models re-
quires the knowledge of when and where the ML model fails or
stops being applicable, even in the absence of target values unlike
the case of UQ. Through such an understanding and quantifica-
tion of ML model robustness, one can propose efficient methods
for rational dataset construction/augmentation and active learn-
ing for ML training.

In the context of atomistic modeling, robustness is important
for novel materials discovery, where models are often used to pre-
dict the properties of new phases or materials that lie outside the
existing dataset. The concept of robustness can also be straight-
forwardly extended to the predictions of “local” (e.g., atom-
centered) or “component-wise” (e.g., range-separated) quantities
of the chemical systems, which do not correspond to physically
observable targets. This is especially relevant for ML models con-
structed to make global predictions on the system as the sum
of local and component-wise predictions on distinguishable parts
and their associated features. This is indeed a common practice
in ML for atomistic modeling.

3.1 A geometrical perspective on in- and out- of distribution

Intuitively, a prediction is likely to be accurate and precise if it
takes place in the region corresponding to the distribution of
training points. Towards the definition of robust prediction, it
is then relevant to explore the definition of in- and out-of dis-
tribution. A first perspective to this end concerns a geometric
framework and a convex hull construction. The convex hull of a
set of training samples X = {x1,x2, . . . ,xn} in the feature space is
defined as the smallest convex set that contains all points in X .
Mathematically, the convex hull is expressed as:

Conv(X ) =

{
x

∣∣∣∣∣ x =
n

∑
i=1

αixi, αi ≥ 0,
n

∑
i=1

αi = 1

}
,

where αi are convex coefficients ensuring that any point x in-
side the hull is a weighted combination of the training samples
xi.

This construction provides a method to distinguish in-

distribution samples, which lie within Conv(X ), from out-of-
distribution samples, which fall outside the convex hull. Extrap-
olation, in this context, refers to the model’s attempt to make
predictions for such out-of-distribution points by extending pat-
terns learned from the training data, often resulting in increased
uncertainty and reduced accuracy (Figure 4 left panels).

The convex hull evaluation faces significant challenges in high-
dimensional spaces. The computational cost of constructing and
evaluating convex hulls increases with dimensionality, making
this approach impractical for large-scale, high-dimensional ma-
chine learning tasks. Even more importantly, the number of
points required to approximate the convex hull grows exponen-
tially with the dimensionality of the feature space, a problem
commonly referred to as the “curse of dimensionality.” Conse-
quently, the convex hull becomes increasingly sparse in high di-
mensions, causing most points in the space to be classified as out-
of-distribution.69 This observation also holds for the case of atom-
istic machine learning models based on local atomic environment
representation.70

Importantly, while the intrinsic dimensionality of high-
dimensional representation may be still low, low-dimensional
projections (e.g., D=2 or D=3) for visualization or analysis, can
introduce artifacts that misrepresent the true relationships in the
data, such as incorrectly classifying in-distribution samples as out-
of-distribution due to oversimplified boundaries. This is also rel-
evant in machine learning for atomistic modeling, where the in-
formation high-dimensional representation can be reduced to a
small but not too small amount of principal components.70

3.2 A statistical perspective on in- and out- of distribution

An alternative to the convex hull for defining in- and out-of-
distribution samples is to use a density-based method. Here one
evaluates the likelihood of a sample belonging to the training dis-
tribution by estimating the sampling density in the feature space
(Figure 4 right panels)

In an adaptive k-nearest-neighbor (k-NN) density estimation
procedure proposed by Zeni et al.70, each test point x∗ is tem-
porarily inserted into the training set so that its k∗ nearest neigh-
bors among the training samples can be identified. This process
makes it possible to compute the local density at x∗ via:

ρ(x∗) =
k∗−1
MV ∗

, (32)

where M is the total number of training examples, and V ∗ is the
volume corresponding to the k∗ neighbors . The number k∗ is se-
lected in an adaptive manner for each test point to optimize the
precision of the resulting density estimate. Moreover, the volume
V ∗ is determined by the hypersphere of dimension d, where d
represents the intrinsic dimensionality of the training set as com-
puted using the TwoNN estimator71,72.

Through this methodology, the resulting metric reflects the
degree to which an unseen atomic environment lies in a well-
sampled portion of the representation space. Importantly, it also
correlates with the errors observed in machine-learned regression
potentials. Furthermore, the same authors report a strong consis-
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Fig. 4 The four panels illustrate two example distribution of points in
two dimensions. In the left panels, in- and out- of distribution regions
are categorized according to a convex-hull geometric construction (left).
In the right panels in- and out- of distribution are defined according to
a density-based criterion. For the left panels, the green region is defined
as in-distribution, the red region is out-of-distribution. For the right
panels, color from green to red highlight areas moving from in- to out-
of distribution. Figure courtesy of Claudio Zeni.

tency between this density-based measure, model-specific error
estimator – namely the predictive uncertainty from a commit-
tee of models trained on different subsamples of a larger train-
ing set – and model-free estimators – namely Hausdorff Distance
between the prediction point and the training set. This result is
also consistent with reports contrasting other model-specific and
model-free approaches based on distances (e.g. latent space dis-
tances73).

In related work, Schultz et al. utilized kernel density estima-
tion in feature space to evaluate whether new test data points
fall within the same domain as the training samples. Their ap-
proach illustrates that chemical groups traditionally considered
unrelated exhibit pronounced divergence according to this simi-
larity metric. Moreover, they show that higher dissimilarity cor-
relates with inferior predictive performance (manifested as larger
residuals) and less reliable uncertainty estimates. They addition-
ally propose automated methods to define thresholds for accept-
able dissimilarity, enabling practitioners to distinguish between
in-domain predictions and those lying outside the model’s scope
of applicability.

We similarly consider the work of Zhu et al. in the context of
statistical methods to define extrapolation and interpolation and
in- and out- of distribution. Given a specific training set, a feature
vector for each point is derived from the latent space represen-
tation of a NequIP76 model. Next, a Gaussian mixture model
(GMM) is fitted on this distribution. A negative log-likelihood

can be then obtained by evaluating the fitted GMM on the feature
vector associated to any test point. Higher negative log-likelihood
were observed for points resulting in higher predictions uncer-
tainty.

To conclude, we note that, while statistical estimates of in- and
out- of distribution are of interest because of their efficiency and
effectiveness, questions remains. The magnitude of these metrics
depends on the chosen representation,70 and its precise correla-
tion with the mean absolute error (MAE) is contingent upon both
the system and the model employed.

3.3 Transferability
Transferability, in the context of machine learning for atomistic
modeling, is often defined as the ability of a ML model to main-
tain its accuracy when applied to structures sampled under con-
ditions different from those in the training dataset. However, the
definition of these "different conditions" has remained somewhat
weak, and can be summarized as follows (also illustrated in 5):

• Phase Transferability refers to the ability of an ML poten-
tial trained on certain phases of a material to accurately
predict properties of other ones (e.g. different polymorphs
or phases), assuming both are sampled at similar tempera-
tures.77–79

• Temperature Transferability concerns the accuracy of the ML
potential when, e.g., trained on structure sampled at high
temperatures and tested on structures at lower tempera-
tures, or viceversa.78,80–82

• Compositional Transferability refers to the ability of a ML
model when providing predictions for systems with un-
seen compositions with accuracy comparable to known sto-
ichiometries. This can refer both to predictions for unseen
stoichiometries, or for unseen elements (alchemical learn-
ing).83–85

The standard according to which a model is deemed transfer-
able across different conditions remains rather flexible too. Crite-
ria used to relate transferability and model accuracy so far have
included:

• The error incurred by the model in the test domain is com-
parable with the one observed for the training domain.

• The error in the test domain is sizably larger from the one
in the training domain, but remains acceptable for practical
purposes (e.g., energy errors below 10 meV/atom, force er-
rors below 100 meV/Å).

• Simulations remain stable over long timescales, showing no
significant energy drift or sampling of unphysical configura-
tions.

The lack of a rigorous and standardized definition of transferabil-
ity challenges our attempt to unify conclusions drawn from stud-
ies concerned in assessing ML model transferability in the context
of atomistic modeling. Heuristic observations on transferability
report that:
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Fig. 5 Illustration of possible transferability tests. A model is trained
on initial database (left) consisting of structures in phase α sampled
at T = 300 K. Its transferability may be tested for the case of different
phases (β and γ in the illustration), temperatures (e.g., T = 500 K), or
compositions (i.e. different stoichiometries or elemental compositions).

• Phase Transferability: There is often a trade-off between ac-
curacy and generality when applying ML potentials across
different phases. This trade-off is generally acceptable for
many practical applications.39,80

• Temperature Transferability: Models trained on high-
temperature data tend to generalize well to lower-
temperature conditions.78,81

• Compositional Transferability: Interpolation within the com-
positional space is generally feasible, but extrapolation to
entirely new stoichiometries or elements (e.g., alchemi-
cal learning) poses significant challenges, unless tailored
schemes are adopted.83,84

The relationship between a model’s complexity and its trans-
ferability has also been a subject of discussion. In principle, more
flexible models are more susceptible to overfitting, which can re-
duce transferability. Empirically, this tendency has been observed
in ML methods based on feed-forward neural networks.77 Im-
portantly, modern high-order graph convolutions and/or physics-
inspired (e.g., symmetry conserving) architectures have not ex-
hibited this limitation, suggesting that increased complexity does
not necessarily compromise transferability, at least within the
data- and parameter-sizes considered in those applications.86

3.4 Quantifying Robustness
To meaningfully interpret the robustness of a prediction in itself,
study its dependence on the datatset composition, and compare
the robustness of a prediction on one input with another, the ne-
cessity to perform such an assessment in a quantitative manner
arises.

To address this problem, recently, Chong and coworkers have
introduced the concept of “prediction rigidities” (PRs),14,15,87

which are metrics that quantify the robustness of ML model pre-
dictions. Derivation fo the PRs begin from considering the re-
sponse of ML models to perturbations in their predictions, via

their loss, by adopting the Lagrangian formalism. A modified loss
function can be defined as shown below:

L̂ (w) = L (w)+λ

[
ε⋆− (φφφ o

⋆)
T(w−wo)

]
(33)

where φφφ
o
i ≡

∂ ỹ⋆
∂w

∣∣∣
wo

, and ε⋆ is the perturbation of the model pre-

diction for the input of interest denoted by ⋆. It is then possible
to perform constrained minimization of this new loss, leading to
the following expression that solely depends on ε⋆:

L̂o(ε⋆) = Lo +
1
2

∂ 2L̂o

∂ε2
⋆

∣∣∣∣∣
ε⋆=0

ε
2
⋆ (34)

Here, the “curvature” at which the model responds to the per-
turbation in the prediction is given by ∂ 2L̂o/∂ε2

⋆ , which can be
further derived as follows:

∂ 2L̂o

∂ε2
⋆

∣∣∣∣∣
ε⋆=0

≡ 1
(φφφ o

⋆)
T(Ho)−1φφφ

o
⋆

(35)

One can recognize the crucial connection between the Ho appear-
ing in this expression and the Ho defined in Eq. (9), as well as
the orignal Eq. (1) defined for the Mahalanobis distance. Note
that Ho is often approximated as the sum of the outer products of
structural features over the training set, which would be the sum
or mean of atomic features of the given structure and an indirect
approach to consider the “groupings” of local environments that
are present as structures in the training set.

A few important remarks should be made here:

• absence of any calibration parameters in the PRs hint that
these are purely dataset and representation-dependent pa-
rameters, and hence distinct from being a UQ metric;

• dependence on the dataset and model training details is de-
termined by Ho, which can adopt a Gauss-Newton approxi-
mation scheme and be computed in a similar manner as Eq.
(11), and remains constant for a given model;

• there is freedom in how ⋆ is defined — it is possible to com-
pute the PRs for any data point as long as it is definable
within the input parameter space, furthermore, one can also
target specific local predictions or component-wise predic-
tions of the model, resulting in local PR (LPR) or component-
wise (CPR) that quantitatively assess the robustness of inter-
mediate model predictions that do not have corresponding
physical observables.

The robustness metrics introduced thus far are solely depen-
dent on the dataset distribution (i.e. structural diversity of mate-
rial systems and their local environments) and remain detached
from the distribution of the target metric. One must be mindful of
the repercussions, which is that complexity of the target quantity
landscape is ignored: if the target landscape is smooth, learning
may require fewer data points to achieve the target accuracy; if it
is rough, more data points would be needed to resolve the com-
plex landscape and achieve desirable accuracy.

The quality of data and representation may be similarly rel-
evant. For example, as discussed by Aldeghi et al.88and van
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Tilborg et al.89, “activity cliffs”—instances where structurally
similar pairs of molecules that exhibit large differences in the
targets—negatively affect the model performance. By learning
a representation, e.g., through contrastive learning, that correctly
separates such structures the learning problem is simplified. Also,
a modified Shapley analysis was also proposed for analysing and
interpreting the impact of a datapoint in the training set on model
prediction outcomes90,91.

3.5 Dataset improvement and active learning
In atomistic modeling, tasks such as identifying global minima in
complex energy landscapes and estimating statistical observables
from molecular dynamics sampling require efficient exploration
of vast and high-dimensional spaces. A recurring question then
emerges: What (additional) data should one select to gather, to
build a “better” model (i.e., capable of more reliable/robust predic-
tions)? The problem of optimal data selection is in fact crucial in
two main scenarios:

1. Generation of new targets is relatively expensive and/or
time consuming. In such a case one may like to know in
advance for which new data point inputs x compute the tar-
get y (i.e. assign a label);

2. There is a vast pool of data and one aims to select a subset
of data points. This is critical for, e.g., the construction of
the representative set of sparse kernel models, although it is
common in modern deep learning training strategies to use
all the data at disposal.

A first example of workflows iteratively improving the accuracy
of an atomistic model was the “learn on the fly” hybrid scheme
proposed by Csányi et al. Here, fitted potentials (based upon an
analytical formulation92 or machine learning93) are refined us-
ing a predictor-corrector algorithm and quantum calculations to
ensure reliable simulations of complex molecular dynamics.

Since the units of the uncertainty naturally allow for the defini-
tion of interpretable thresholds and tolerance criteria, uncertainty
can be naturally adopted as the metric to identify configurations
where model predictions are too uncertain, for which additional
information is necessary to steer the model towards more robust
predictions.

Numerous active learning schemes (Figure 6 for interatomic
potentials based upon uncertainty thresholds have been proposed
in the last years, encompassing a variety of materials and chem-
istry, from heterogeneous catalysis94,95 to energy materials,96

from reactions in solutions97,98 to molecular crystals99. More
recently, biasing the sampling towards configurations correspond-
ing to highly uncertain prediction was brought forward as a strat-
egy to ensure the collection of varied training set, and the train-
ing of a model presenting an uncertainty always below a specific
threshold across a (large) region of interest in the configurational
space.50,100–103

In the next subsections, we show that several “active learning”
approaches to sequentially select new, optimal data points can be
framed in the context of the maximum gain of information, as first
discussed by MacKay in the context of the Bayesian interpretation
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Fig. 6 Example of active learning for energy evolution over time for
different iterations. The orange region indicates uncertainty. In Iteration
1 and Iteration 2, uncertainty increases significantly after the red dashed
line leading to termination of the simulation. The last iteration (Iteration
n) represents the case where the previous active learning iteration result
in a stable, accurate, and precise simulation.

of learning. We also show that apparently model-free approaches
do effectively identify new points where uncertainties would be
the largest.

3.5.1 Maximizing information gain

Consider a dataset D of Ntrain points with feature matrix F. From
the information theory standpoint, we can define the Shannon
entropy

S≡−
∫

dw p(w|D) log[p(w|D)] (36)

where p(w|D) is a probability measure of the parameters, the
weights w, given the model architecture and dataset D . In the
Bayesian interpretation, p(w|D) is the posterior distribution of
the weights, which assumes the form of a multivariate Gaussian
distribution, Eq. (9), whenever the model is linear or a Laplace
approximation around the MAP optimal weights is performed,
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leading to

S =−1
2

log(detHo)+ constants. (37)

Here, as in Sec. 2, Ho is the Hessian matrix of the loss function at
optimum. As previously discussed, the generalized Gauss-Newton
approximation implies:

Ho ≈ F⊤F (38)

Let us now take a new point of features f⋆ and add it to the
dataset. The new feature matrix Fnew is obtained by concatenat-
ing the row vector f⊤⋆ to F. The new Hessian becomes

Ho,new ≈ F⊤F+ f⋆f⊤⋆ (39)

and the new Shannon entropy is

Snew =−1
2

log(detHo,new)+ constants

≈−1
2

log(det(F⊤F+ f⋆f⊤⋆ ))+ constants

(40)

One can use the matrix determinant lemma104 to express:

det(F⊤F+ f⋆f⊤⋆ ) = [1+ f⊤⋆ (F
⊤F)−1f⋆] det(F⊤F) (41)

The total information gain from adding ⋆ to the dataset, ∆I, is

∆I ≡−(Snew−S) =
1
2

log[1+ f⊤⋆ (F
⊤F)−1f⋆] (42)

which is maximized when the (scaled) variance f⊤⋆ (F⊤F)−1f⋆ is
largest: therefore, to obtain maximal information gain (MIG), a
next point should be chosen where the uncertainty, Eq. (1), is
currently largest. The MIG criterion has been recently used by
Kästner’s group for active learning in atomistic simulations, see
Zaverkin et al., which also focus on active selection of batches
of new data points,25 rather than the incremental, one-at-a-time
approach. See the seminal works on multiple point selections by
Fedorov and Luttrell, where analytic expressions for the expected
information gain from a set of measurements are discussed, and
batch selection strategies are explored in detail, showing how
optimal placements shift with the number of samples, signal-to-
noise ratio, and prior constraints.

The MIG criterion also motivates, from an information theory
perspective, the addition of structures characterized by environ-
ments with lowest local prediction rigidity as active learning cri-
terion, as in Chong et al.. We remark that:

• the MIG criterion is independent of the specific target, which
need not be computed in advance to perform the active data
selection.

• if we consider the initial dataset D as fixed, then maximizing
the information gain implies looking for ⋆ to satisfy:

max
⋆

det(F⊤newFnew) (43)

which is called D-optimality criterion in optimal design the-
ory. F⊤newFnew is sometimes called, in this context, the Fisher
information matrix of the new dataset. We review the use of

D-optimality for active learning in atomistic simulations in
Sec. 3.5.2.

• In this approach, the noise on data is taken the same for all
the data (in fact, a single calibration constant α2 was used
in Sec. 2). Generalization to the case of sample-dependent
noise is nonetheless straightforward.

While the selection of a single datum based on maximum ex-
pected information gain is a well-established approach in ac-
tive learning, practical applications often require evaluating how
much information a single new datum contributes with respect
to a set of target points (e.g., a test set or region of interest).
MacKay—see section 4.1 of Ref.9—can be credited for generaliz-
ing data-point selection by considering information gain across a
set of input points, representing a region of interest. However, a
naïve use of the joint information gain of the interpolated values
can lead to suboptimal results, as it may favor inducing correla-
tions among outputs rather than minimizing their individual un-
certainties. A more appropriate strategy that MacKay suggests is
to maximize the mean marginal information gain (MMIG) across
these points (which we label by u = 1, . . . ,V ), independently, i.e.,
in formulae–for noiseless observations:

MMIG≡−1
2

V

∑
u=1

pu log

[
1− [f⊤⋆ (F⊤F)−1fu]

2

[f⊤u (F⊤F)−1fu][f⊤⋆ (F⊤F)−1f⋆]

]
(44)

where pu is the probability that we are asked to predict yu, and
acts as a tunable weight. This approach provides a principled
basis for an acquisition strategy with the overall goal of improv-
ing model performance across the domain of interest. Alterna-
tive, yet similar, results are obtained via Q-optimality,105 which
is an optimal design criterion that aims to minimize the mean
squared error of predicted outputs at specific points of interest. In
Bayesian or active learning contexts, it is formulated as selecting
data points that reduce the average predictive variance for a set of
points (or a region), i.e. that minimizes ∑u pu[f⊤u (F⊤newFnew)

−1fu]

when one (or more) data points are actively selected.

3.5.2 D-optimality

Lysogorskiy et al. show that the maximum deviation within an
ensemble of models—in our notation maxi |ỹ(i)−y|, where y is the
total potential energy or a force component of a structure— fully
correlates with the so-called D-optimality criterion, which is then
used for active learning strategy. In the latter, one seeks to find 1)
an optimal (sub)set of data samples and 2) to quantify how much
a new sample ⋆ is represented. Specifically, if we collect all the
dataset features in the “tall” Ntrain×N f matrix F, step 1) looks at
a subsampling N f data points, i.e. selecting N f out of Ntrain rows
to obtain a new, N f ×N f matrix F̃, such that

det(F̃⊤F̃) (45)

is maximal. Then, in step 2), a new sample ⋆ of features f⋆ is
selected from a pool of new data (e.g. structures generated via
MD trajectory) so that

|f⊤⋆ F̃−1|=
√

f⊤⋆ (F̃⊤F̃)−1f⋆ (46)
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is maximal (or larger than a given threshold γth ≥ 1).

This is the same criterion found the previous section from the
theory of maximal information gain, i.e. the quest for the sam-
ple ⋆ with largest variance, Eq. (1). Nevertheless, this time, the
adopted metric is G̃ = (F̃⊤F̃)−1, obtained with the D-optimally
subsampled dataset. Notice that

det(F̃⊤F̃) = det(F̃)2

≤∑
S

det(FS)
2 = det(F⊤F) = λ

2
1 λ

2
2 · · ·λ 2

N f

(47)

where λi are the singular values of F, S runs over all the
(Ntrain

N f

)
combinations in which one can select N f rows out of Ntrain to
build the N f ×N f matrix FS. The second line follows from the
Binet-Cauchy formula. A threshold on γ must be set to deter-
mine whether a given point is in- or out-of-distribution during
the active learning cycle. The original paper by Podryabinkin and
Shapeev suggests that a threshold of γ ≤ 1 corresponds to pre-
diction in in-distribution regime, and γ ≫ 1 would correspond
to strong out-of-distributions regimes. D-optimal-based active
learning for atomistic simulations and machine learning inter-
atomic potentials construction has been implemented and ex-
tensively used first and foremost by the communities developing
moment tensor potentials and atomic cluster expansion poten-
tials107,109–112. A generalization of the D-optimality criterion to
the case of nonlinear dependence of the model upon its parame-
ters has been proposed by Gubaev et al.. Just like the maximum-
information-gain criterion, D-optimality proves to be largely more
efficient than both random and CUR- (and FPS-) based selec-
tion107.

3.5.3 Empirical forms of dataset entropy

Another approach that is used in the atomistic modeling commu-
nity is based on the empirical estimate of the entropy of a dis-
tribution of dataset features. In this context, this set is usually
taken as the set of features of atomic environments114,115. Kara-
bin and Perez propose the following estimator for the entropy of
a distribution of features in a given configuration A (e.g., a given
structure in a simulation cell) of NA atomic environments:

SKP(A) =
1

NA

NA

∑
i=1

log
(

NA min
j
|xAi −xA j |

)
(48)

where |xAi − xA j | is the Euclidean distance between the atomic
descriptors (features) of atoms i and j. This configuration-
dependent entropy SKP is then used for active dataset construc-
tion: the training set is incrementally built by adding independent
local minima of the “effective (free) energy”:

V (A) = Erepulsive(A)−KSKP(A) (49)

where Erepulsive is a short-range repulsive term penalizing very
small distances between atoms, and K is an entropy scaling coef-
ficient which controls the relative importance of the two contribu-
tions. The minima are found via a simple annealing procedure at
a given (fixed) cell volume. Notice that one could also construct
a global SKP by considering all the atomic environment features

present in the dataset. §

Nonetheless, SKP diverges to −∞ whenever the features associ-
ated to environments i and j in Eq. (48) coincide. Schwalbe-Koda
et al. solve this issue by defining a dataset entropy of a set of Nenv

environments:

SSK =− 1
Nenv

Nenv

∑
i=1

log

[
1

Nenv

Nenv

∑
j=1

k(xi,x j)

]
(50)

where k(xi,x j) is some kernel function expressing the similarity
between environments i and j. This formulation is also used to
define a “differential entropy”:

δSSK(x⋆) =− log

[
Nenv

∑
i=1

k(xi,x⋆)

]
(51)

which is then used for active learning and as a “model-free uncer-
tainty estimator” of a new input for a given dataset115.

We highlight that even when the dataset is built with targets
that are structural properties, rather than local atomic properties,
no “grouping” of local environments into structures is taken into
account in these data-entropy based schemes, as it is instead done
in the construction of the metric tensor in Mahalanobis distance
(see Eq. (34)). It is further relevant to note that any kernel can
be written (Mercer’s theorem) as

k(xi,x j) = ∑
a

λaϕa(xi)ϕa(x j) = φφφ
⊤(xi)φφφ(x j) (52)

where λa ≥ 0 and ϕa are the eigenvalues and eigenfunctions of
the kernel with respect to a measure µ:∫

k(x,x′)ϕa(x′)dµ(x′) = λaϕa(x) (53)

and the (possibly infinite) components of φφφ(x) are φa(x) =√
λaϕa(x), for every possible x. In such a case,

Nenv

∑
i=1

k(xi,x⋆) = Nenvφφφ
⊤

φφφ(x⋆) (54)

where φφφ = 1
Nenv

∑
Nenv
i=1 φφφ(xi) is the array of mean (latent) features

over the dataset, i.e. the coordinates of the center of the dataset
latent features. If we replace this into Eq. (51) we obtain, since
the logarithm is a monotonic function, that the maximum differ-
ential entropy is given when the argument of the logarithm is
minimal, i.e.

max
⋆

[δSSK(x⋆)]⇔min
⋆

[
φφφ
⊤

φφφ(x⋆)
]

(55)

Unfortunately, in contrast to the forms of active learning of the
previous subsections, based on Eq. (1), here the complexity of
the dataset is effectively “averaged out” by considering φφφ in the la-
tent feature space. Notice that if the features in the latent feature
space are centered (see Appendix C for a discussion on whether

§ Karabin and Perez report that “Extensions to global entropy-maximization over the
whole training set (in contrast to the local configuration-by-configuration optimization
presented here) are in development and will be reported in an upcoming publication.”
Montes de Oca Zapiain et al. still adopts the local approach.
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latent feature centering is legitimate or not), φφφ vanishes, and one
incurs into the additional problem that the argument of min⋆ van-
ishes for any x⋆.

A different perspective on assessing the proximity of two dis-
tribution (e.g., training points features and test point features)
was proposed by Zeni et al.. Their study considered 2-body ma-
chine learning potentials and the Kullback-Leibler divergence be-
tween distributions of interatomic distances in the training and
test sets to rationalize prediction errors in machine learning po-
tentials. The Kullback-Leibler divergence is an asymmetry statis-
tical measure to quantify the information loss when a probabil-
ity distribution q(ξ ) associated to a dataset Q over some sample
space Ξ is used to approximate another probability distribution
p(ξ ) associated to a dataset P on the same sample space:

DKL(P∥Q) = ∑
ξ∈Ξ

p(ξ ) log
p(ξ )
q(ξ )

(56)

A positive correlation between KL divergence and the mean ab-
solute error of 2-body kernels was observed, highlighting the im-
portance of including training data that captures interatomic dis-
tances relevant to the test set. The KL divergence was thus pro-
posed as a measure to assess how well structural features in the
training dataset align with those in the test dataset and interpret
model errors in a case study concerning machine learning poten-
tials for Ni nanoclusters80. Extending the assessment to 3-body
machine learning potentials and the KL divergence of bond-angle
distribution functions also resulted in the observation of positive
correlation between the two quantities. We notice an hystereti-
cal behavior exists in this metric, whereby the net cross-entropy
change in first adding a point to the dataset and then removing it
is nonzero (see Appendix B).

3.6 Bayesian Optimization

Bayesian optimization is a method designed to find the optimal
value of a function efficiently. It uses a probabilistic model to pre-
dict the behavior of the function across the input space, guiding
the search toward regions where the model is either uncertain or
expects to find better results117–120(Figure 7).

While similar to active learning in its iterative approach and
reliance on uncertainty to guide decisions, Bayesian optimization
differs in its goal. Active learning focuses on generally improving
a model’s predictions. Bayesian optimization aims to optimize
an objective function directly. Instead of stochastically sampling
or evaluating all possibilities, Bayesian optimization identifies the
next point to sample by balancing two goals: exploring unknown
regions (where the function behavior is uncertain) and exploit-
ing promising areas (where the function is predicted to perform
well). Once the function is evaluated at the chosen point, the new
information is used to update the model, and the process repeats
until an optimal solution is found121.

Building upon these premises, Bayesian optimization acquisi-
tion deciding where to evaluate the objective function next and
uncertainty estimates are at the heart of this process: e.g., Im-
provement122 uses uncertainty to identify areas where the poten-
tial for improvement is highest. Probability of Improvement121

factors in uncertainty to assess the likelihood of finding better
outcome. The Upper Confidence Bound123 takes a more explicit
approach, blending the model’s predictions with a weighted mea-
sure of uncertainty.

Bayesian optimization has emerged as a powerful tool in atom-
istic modeling, offering efficient strategies for navigating complex
energy landscapes and exploring vast configuration spaces. By
leveraging probabilistic models, it enables the optimization of po-
tential energy surfaces for intricate atomistic systems, guiding the
search toward minima or other critical points with minimal com-
putational cost. Challenges in Bayesian Optimization may arise if
it is performed in a too highly dimensional space or if the prop-
erty landscape is rough (that is to say, properties change rapidly
with respect to a small change in the feature space, akin to the
discussion presented in Sec 3.4).

Successful applications of BO in atomistic modeling have been
showcased for molecular124,125, crystalline126–129 and disor-
dered systems130, as well as complex interfaces131. Beyond iden-
tifying stable configurations, Bayesian optimization facilitates the
exploration of structures to achieve specific target properties or
locate configurations along the Pareto front in multi-objective pre-
dictions. This capability makes it highly valuable for material
where balancing multiple competing properties is often required.
Applications include (but are not limited to) metallic glasses
mechanical properties132, multi-principal133 or high-entropy al-
loys134,135 and their catalytic properties136–138, or electrolytes
properties for energy storage applications139.

4 Uncertainty and emergent atomistic machine
learning approaches

Data-efficient methods offer a compelling pathway to achieve
highly accurate prediction, while significantly reducing the data
and resource requirements. Notable emergent approaches in this
area include Universal and Foundation Models, their fine-tuning,
as well as Delta- and Multi-fidelity Learning.

4.1 Foundation models

Universal and foundation models (e.g.,86,140,141) are designed
to capture broad physical relationships by training on diverse
datasets. The accuracy of these models hinges on the large num-
ber of diverse training data; if critical subdomains are underrep-
resented, predictions in those regions may falter nevertheless.142

The benchmark of foundation models so far took place against
established metrics, informing on errors in thermodynamic stabil-
ity.143 Community benchmarks and validation practices further
did rarely account neither for uncertainties nor for their propaga-
tion. An attempt to introduce performance assessment against an
observable (thermal conductivity) drawn from molecular dynam-
ics has been recently introduced.144 Similarly, UQ has been intro-
duced in foundation models,141 adopting the last-layer approx-
imation described in Eq. (14), with almost no additional com-
putational load with respect to inference of raw prediction. We
consider these key steps towards the definition of probing and
informative benchmarks and validation practices.

Fine-tuning and transfer learning build upon the knowledge
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Iteration 2 Iteration 1 Iteration 3 

Fig. 7 Illustrative example of Bayesian optimization to sampling the minimum of a one-dimensional energy landscapes.

encoded in pre-trained models, such as universal and foundation
models, adapting them to specific tasks or systems through tar-
geted retraining with smaller datasets. This approach enhances
data efficiency, and often robustness, as the base model serves as a
strong starting point. Their achievement span across diverse areas
of machine learning, also including atomistic modeling.145–149

Nevertheless, challenges arise when the pre-trained model’s do-
main significantly differs from the target domain. Question thus
arise in reference to the effect of different strategies on the relia-
bility and robustness of the uncertainty estimators.

4.2 Multi-level approaches
Delta-learning150 predicts corrections of a simpler and (rela-
tively) inexpensive model - such as a classical forcefield, a semi-
empirical force-field, or a low quality DFT level) - achieving high
accuracy with minimal training data by concentrating on residual
discrepancies. The quality of the baseline model and the rep-
resentativeness of the training data are nevertheless critical to
Delta-learning model accuracy and precision.

Multi-fidelity learning151 integrates information from datasets
of varying accuracy and cost, effectively linking low-fidelity data
to high-fidelity outputs. By synthesizing information from mul-
tiple sources, this approach enhances robustness while reducing
the dependence on high-cost data. However, inconsistencies be-
tween fidelities and the challenge of accurately propagating un-
certainties associated from models considering multiple fidelity
levels demand careful consideration.

Open questions remain on how uncertainty estimate is affected
by the use of these data-efficient models. These include - but are
not limited to - a reflection on whether the simultaneous learn-
ing of multiple level of theory advantageous in terms of both data
efficiency and robustness, also in relation to their effect on pre-
diction uncertainty.

5 Beyond atomistic modeling
Many of the theories and arguments described in this perspec-
tive have broader relevance that extends beyond atomistic simula-
tions. While a detailed discussion of error sources and uncertain-
ties in the design, synthesis, characterization, and understanding
of materials and processes lies beyond the scope of this work, we
emphasize that estimating and propagating uncertainty is critical

across all stages of the materials development cycle. Uncertain-
ties arise, for instance, in the reproducibility of synthetic proto-
cols—often influenced by hidden variables—, in the interpreta-
tion of spectroscopy and microscopy signals, in the construction
and use of structure–property relationships, and in the iterative
optimization of processes to achieve target performance metrics.
These considerations highlight several key domains where uncer-
tainty quantification deserves focused attention:

• Models trained to predict or guide synthesis strategies may
be significantly affected by noise and bias in experimental
data, making robust uncertainty estimates essential for ac-
tionable predictions.152)

• Machine learning tools developed to accelerate materials
characterization must account for ambiguities in signal as-
signment and model interpretability.153

• Surrogate models used to establish structure–property re-
lationships or optimize structures towards target properties
are often based on regression over high-dimensional descrip-
tors. These models thus benefit from UQ strategies already
employed in atomistic modeling, such as ensemble methods
or Bayesian approximations.154

• Multiscale modeling frameworks require principled ap-
proaches for propagating uncertainty across scales — from
atomistic to continuum — where even well-calibrated mod-
els at a lower scale may induce unpredictable errors at a
higher one.155

6 Conclusions
In this perspective, we have examined the integration of machine
learning and uncertainty quantification (UQ) in atomistic mod-
eling, with a focus on methods to estimate uncertainties. We
discussed state-of-the-art approaches, including Bayesian frame-
works and ensemble techniques, and explored their applica-
tions in improving prediction reliability, guiding data acquisition
through active learning and Bayesian optimization, and assess-
ing the influence of uncertainties on equilibrium observables es-
timates. We also explored the influence of dataset composition
and construction strategies on model accuracy, uncertainty, trans-
ferability, and robustness. We finally considered emergent data-
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efficient approaches and highlighted emergent questions concern-
ing prediction uncertainty estimate when leveraging these meth-
ods.

Taken together, our work underscores the role of rigor-
ous UQ frameworks for guiding data-driven modeling and the
value of thoughtful dataset construction in enhancing the trans-
parency and robustness of ML-based atomistic modeling. As new
techniques—especially those geared toward data-efficient learn-
ing—continue to mature, careful validation and thorough uncer-
tainty assessments become even more critical to maintain trust
in model predictions. We hope this perspective stimulates fur-
ther development and integration of UQ protocols into atomistic
modeling efforts.

Finally, we emphasize that the challenges and strategies for
managing uncertainty in atomistic modeling echo a broader sci-
entific discourse extending beyond this specific domain. Across
materials science, physics, and chemistry, there is a renewed drive
to establish clear standards for assessing information and uncer-
tainty, from the reproducibility of synthetic protocols—whether
in organic or materials synthesis—to the quality of data gleaned
from real- and inverse-space characterization methods. The same
principles underpin efforts to gauge the reliability of outputs
from generative AI for materials discovery, large language mod-
els, automated image and spectrum analyses, and multi-modal
approaches alike. Similar to Tycho Brahe’s endeavor, these col-
lective efforts will contribute to robust, transparent, and repro-
ducible scientific findings.
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A Nyström approximation
In the Nyström approximations one considers a regression prob-
lem, Eq. (5), with N f equal to the number of sparse points, M,
and where

[φφφ(x)]⊤ = k(x,Xs)
⊤UsΛΛΛ

−1/2
s . (57)

In this formula, k(x,Xs) is the vector of the kernels between the
input point x and each of the points in the sparse set, that are
collected in the matrix Xs ∈RM×D, while Us ∈RM×M is the matrix
of the eigenvectors of the sparse set kernel matrix, Ks≡K(Xs,Xs),
that has as entries the kernel between two points of the sparse set:

Ks = UsΛΛΛsU⊤s . (58)

The diagonal matrix ΛΛΛ collects the eigenvalues, ordered to corre-
spond to Us. The kernel matrix of the training set is then approx-
imated as (Nyström formula):

K(X,X)≈K(X,Xs) [Ks]
−1 K(X,Xs)

⊤

= K(X,Xs)UsΛΛΛ
−1/2
s ΛΛΛ

−1/2
s U⊤s K(X,Xs)

⊤

= ΦΦΦΦΦΦ
⊤

(59)

Here, X ∈ RNtrain×D is the training set matrix, and K(X,Xs) ∈
RNtrain×M is the kernel matrix between the training set points and
the sparse set points. After centering the matrix, the variance
on the prediction for input ⋆ is readily obtained as Eq. (7).

B Hysteresis of cross-entropy gain/loss
Consider an initial dataset Q and a probability density q asso-
ciated to it, then add a data point to obtain the distribution p
associated with the new dataset P. The Kullback-Leibler (KL)
divergence is given by:

DKL(P∥Q) = ∑
ξ∈Ξ

p(ξ ) log
(

p(ξ )
q(ξ )

)
(60)

Then, starting from the dataset P, remove a data point to return
to Q. The KL divergence in this case is:

DKL(Q∥P) = ∑
ξ∈Ξ

q(ξ ) log
(

q(ξ )
p(ξ )

)
(61)

In general, DKL(Q∥P) ̸= −DKL(P∥Q). This results in a form
of information hysteresis in the cycle Q →P → Q, if we asso-
ciate the KL divergence with the concept of information gain or
loss. Notation was kept loose on purpose: Information hysteresis
would exist irrespective of whether p and q represent (posterior)
probability distribution of the weights,9 as in Sec. 3.5.1, or the
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Fig. 8 Effect of application of Eq. (1), where f⋆ and F are centered or
not with respect to the center of the dataset’s features distribution, for
a toy model with two features. The (unitless) Mahalanobis distance is
obtained by expressing the uncertainty from Eq. (1) in units of calibration
parameter α.

probability distribution of dataset features, as in Secs. 3.5.3.

C Why (not) center (pseudo)features?
In the discussion above, where the uncertainty of a prediction
was interpreted as a Mahalanobis distance, we assumed that the
distribution of the (pseudo)features was centered at zero. In lin-
ear regression, centering the features ensures that the intercept
has a meaningful interpretation, such as representing the mean
response when all predictors are at their mean values. In ker-
nel methods, however, the focus shifts to pairwise similarities en-
coded in the kernel matrix, which implicitly maps the data into a
latent space of pseudofeatures.

Centering the kernel—either directly or by centering the pseud-
ofeatures as in the Nyström approximation—adjusts the distribu-
tion of data representation in latent space, thereby affecting the
variance of predictions, which may reflect both the global mean
effect and deviations from this mean. Centering also isolates vari-
ability purely due to deviations, aligning the variance estimate
more closely with the concept used in linear models, where cen-
tering is standard.

However, pseudofeatures centering has a direct impact on vari-
ance estimates, especially for bias-less models. For instance, con-
sider a NN model where the output y⋆ = f⊤⋆ wL is forced to vanish
for vanishing features no matter the values assumed by the last-
layer weights: the uncertainty on the prediction, σ⋆(f⋆ = 0), is
always zero by construction—see Eq. (1). In general, the vari-
ance for predictions near (far from) the origin of the latent space
will be small (large). Nonetheless, this is a characteristic of the
model: one could in fact argue that re-centering may introduce
spurious a posteriori effects that clash with how the model ulti-
mately represents (or learns) data in latent space. By centering
the input features one effectively removes the global mean effect,

ensuring that the predictions reflect deviations based solely on
the relative relationships between data points. Yet, it is not ev-
ident that performing centering on pseudofeatures (that are the
way the kernel represents data, or are learned by the model in
NN architectures) should be encouraged.
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