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The cellular Potts model on disordered lattices†

Hossein Nemati * and J. de Graaf

The cellular Potts model, also known as the Glazier–Graner–Hogeweg model, is a lattice-based

approach by which biological tissues at the level of individual cells can be numerically studied.

Traditionally, a square or hexagonal underlying lattice structure is assumed for two-dimensional systems,

and this is known to introduce artifacts in the structure and dynamics of the model tissues. That is, on

regular lattices, cells can assume shapes that are dictated by the symmetries of the underlying lattice.

Here, we developed a variant of this method that can be applied to a broad class of (ir)regular lattices.

We show that on an irregular lattice deriving from a fluid-like configuration, two types of artifacts can be

removed. We further report on the transition between a fluid-like disordered and a solid-like

hexagonally ordered phase present for monodisperse confluent cells as a function of their surface

tension. This transition shows the hallmarks of a first-order phase transition and is different from the

glass/jamming transitions commonly reported for the vertex and active Voronoi models. We emphasize

this by analyzing the distribution of shape parameters found in our state space. Our analysis provides a

useful reference for the future study of epithelia using the (ir)regular cellular Potts model.

1 Introduction

Collective cell migration plays an essential role in many biolo-
gical settings, ranging from morphogenesis,1–5 to wound
healing,6–9 to cancer metastasis.4,10–15 Confluent cell mono-
layers, such as those found in epithelial tissues, have attracted
considerable attention from the modeling community. Firstly,
their effective two-dimensional (2D) nature makes them rela-
tively simple to study, yet these tissues can exhibit a wide
variety of collective9,10,16,17 and rheological18–23 behaviors. Sec-
ondly, the fact that epithelia form the outer surfaces of our
organs makes them susceptible to cancer24,25 and play a role in
a wide variety of diseases,26–28 including pulmonary fibrosis29

and asthma.19 This gives the study of epithelia a direct biome-
dical relevance.

Over the past decades, various quantitative (computational)
models have been developed that capture the principal features
of cell populations, without being overburdened by
complexity.30,31 Many are agent-based in nature and have seen
concurrent use in the study of active matter.32 For tissues and
cells, these models include lattice-based methods like cellular
Potts model (CPM)33–40 and cellular automata (CA),41–44

particle-based,3,45–48 vertex,18,49–52 Voronoi,53–56 phase-field,57–

63 and Fourier-contour models.64 We should emphasize that
the constraint of confluency is an important difference between
particle-based models and models that have this feature built
into their description, e.g., the vertex, Voronoi, and CPM.
Evolutionary dynamics can also be included in models to
account for (cancerous) mutations and invasion.65–69 We refer
to ref. 11, 30, 57 and 70 for overviews of the different models
available and their respective ranges of application. Ref. 11
provides a detailed list of open-source implementations of
these models, should one wish to experiment. Lastly, ref. 71
and 72 have made comparisons between different models,
which included their ability to describe cell shapes and the
way cells exchange neighbors.

In this paper, we will limit ourselves to the CPM, which has
good performance on these two points, i.e., cell-shape descrip-
tiveness, and natural neighbor exchange. These abilities of the
CPM, naturally lead to a greater computational cost when
compared to the models in which cells are described as single
particles.71,72 However, the method is generally considered
efficient and has seen widespread adoption. For example, the
CPM has been successfully used to study cell sorting and
rearrangements,33,73,74 chemotaxis,75–77 topotaxis,78 cell migra-
tion patterns,79–83 wound closure,84,85 tumor growth and
invasion,37 and the interactions of cells with extracellular
matrix.86–88 Several open-source packages are available for
using the CPM89–94 and the approach has been extensively
reviewed, e.g., see ref. 34–36 and 95. However, despite its
popularity and qualities, the method is known to suffer from
lattice artifacts.36 That is, in certain regimes of model
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parameters, the shape of cells and macroscopic properties of
the system are strongly affected by the symmetries of the
underlying lattice. Some of the known issues have been
addressed. For example, cells can be fragmented at a suffi-
ciently high rate of cell membrane fluctuations (low surface
tension). This was resolved by Durand and Guesnet96 by adding
an efficient connectivity check. In addition, a node-based
version of CPM has been recently proposed with the goal of
reducing lattice artifacts.97 This model describes the cells as
polygons and tracks their vertices.

Here, we will take a different route toward removing/redu-
cing lattice artifacts. We employ an irregular and on-average
homogeneous lattice to support our CPM, which derives from a
separate simulation of a fluid-like state via Voronoi tessellation.
Using this supporting lattice, we study how the absence of long-
range order in the lattice affects the transition between (dis-
ordered) fluid-like and solid-like states that can occur in model
epithelia. Such changes of state are experimentally reported to
include‡ jamming, rigidity, and glass transitions,14,19,98–104 and
reproduced in a variety of vertex- and Voronoi-based computa-
tional studies,18,53,105–107 which also include polydisperse
systems.108 Here, we should mention that in Voronoi-based
models, although dynamical transitions are observed,53 they
are known to be absent in the athermal version of the model.109

These transitions have attracted attention as key players in the
development of the aforementioned tissue-related diseases.
The change from fluid-like to solid-like is commonly referred
to as a phase transition in the literature14,19,103,110,111 and we
adopt the nomenclature. Note, however, that biological tissues
are intrinsically out of equilibrium.

Disordered arrested dynamics and fluid-to-solid transitions
have been reported for the CPM.112–114 However, Durand and
Heu115 used the CPM to study soft cellular systems and instead
found an order-to-disorder phase transition. We revisit the
work by Chiang and Marenduzzo112 and show that lattice
artifacts present in their systems are removed by our
irregular-lattice CPM. Our results further demonstrate that for
the CPM with their (simple) Hamiltonian, there is an order-to-
disorder transition rather than a disordered solidification. This
transition has all the hallmarks of a first-order phase transition
from a fluid to a hexagonal solid. We verified the nature of the
transition by examining in detail the geometric features of the
cells in the tissue and their neighborhoods. Such features
include the (distribution of) the isoperimetric quotient and
the circularity. We have also studied how our irregular lattice
compares to the use of a hexagonal one and find that the latter
has spurious dynamics in the hexagonal crystal state.

The benefits of using a CPM on an irregular lattice come at
only a small computational overhead compared to using the
regular CPM. This makes it a suitable alternative for the study

of real biological tissues, which we aim to pursue in
future work.

2 Methodology

In this section, we cover the main features of our variant of
CPM: the creation and characterization of irregular lattices, and
the means by which we have modified the traditional CPM to
work with these lattices. We also discuss the various means,
including the mean-squared displacement (MSD) and isoperi-
metric quotient, by which we characterize the outcomes of our
simulations. We further provide our standard choices for the
system parameters and simulation ranges that we have
considered.

2.1 The cellular Potts model

We introduce the basic CPM algorithm here so that the back-
ground for our extension is set. Assume that we have a lattice
with Ns sites and Nc cells, we can define a function s: {1,. . .,Ns}
/ {1,. . .,Nc} that describes the configuration of the cells on the
lattice, uniquely. That is, s(i) indicates the cell index, to which
the site i of the lattice belongs. As the development of CPM was
inspired by the Potts model116 – originally used to study spin
systems – let us call s(i) the spin of site i. Note that the real
biological system of interest for the CPM has nothing to do with
magnetism and the spin indices.

Now that we can describe a configuration using s, we can
specify the Hamiltonian that gives the total energy of the
system, H = H(s,P), where P represents the set of all physical
parameters of the system, e.g., surface tension and target cell
area. In general, the lattice can be of any dimension, but we will
restrict ourselves to 2D CPMs here. These are suited to describe
cell monolayers, which form a class of epithelia, found in the
cells lining blood vessels and alveolar sacs of the lung.117 The
simplest form of Hamiltonian that is used on 2D regular
lattices is given by

H ¼ a
2

XNs

i¼1

X
j2NðiÞ

1� dsðiÞ;sð jÞ
� �

þ l
XNc

s¼1
as � A0ð Þ2: (1)

The first term gives the total interaction energy between the
cells that comes from the surface tension between the cell
membranes. The indices i and j indicate the lattice sites and the
summation is carried out over the site pairs within each other’s
interaction neighborhood. The Kronecker delta dij (1 if i = j and
0 if i a j for any indices) is used to indicate that only adjacent
sites that belong to cells with different spins contribute to the
surface tension. The factor a indicates the surface tension and
is typically considered uniform between cells, though the
method can be used to study mixtures of different cell types as
well.33,73,118

The second term indicates that each cell has a preferred (or
target) area A0. Departures of the instantaneous area as away
from A0 are penalized using a Hookean potential with spring
constant 2l. This choice models the tendency of cells to have a
constant volume, as well as their connection to their neighbors

‡ It should be mentioned that, in the context of condensed matter, the glass and
jamming transition are different and have distinct underlying physics. However,
here, we chose to include all the nomenclature that is used in the literature of
tissue mechanics without judging the accuracy of the specific use.
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within an epithelium. That is, any change in shape (elongation/
shrinking out of the plane) will lead to a change in the in-plane
area (volume conservation). It is assumed that any deviation
from the natural shape is associated with an energy cost, which
at the lowest order would be quadratic.

The ‘dynamics’ of the CPM is propagated using a Monte-
Carlo (MC) approach. This consists of trial moves weighted by
the change in the energy. A trial move involves changing the
spin of a randomly chosen site to that of its neighbors. In brief,
the basic implementation is

(1) Store the energy of the current configuration Eold =
H(sold,P) and choose a lattice site randomly, say, site i. We call
it the candidate site.

(2) Choose a site from its surroundings§, Nc(i), say, site j.
We call it the invading site.

(3) If s(i) = s( j), go to step 1. Otherwise, temporarily change
s(i) into s( j), and calculate the new value of energy, Enew =
H(snew,P). We call this configurational change an attempt.

(4) Call the change in energy DE = Enew� Eold. When DE r 0,
accept the attempt. When DE 4 0, accept the attempt with the
probability

Pacc ¼ exp � DE
kBT

� �
; (2)

or reject it with probability 1 � Pacc. Here, the energy difference
is normalized by the thermal energy, where kB is the Boltzmann
constant and T is the temperature. These steps will repeat until
a user-defined maximum number of iterations is reached.

It should be noted that the use of thermal energy in the
algorithm, reflects its origin as a tool to study spin systems. The
interpretation of the temperature in the context of a cell
membrane is to set a rate, at which the various (internal) cell
activities change the boundaries. This rate can be given the
interpretation of a time scale for membrane fluctuations,36,74,96

provided only local trial moves are used. Nonetheless, the
CPM’s dynamics do not represent the evolution of the system,
as would follow from say a Langevin description. However, we
should note that there have been attempts to reconcile the
‘time’ in the CPM with a physically meaningful time through
the introduction of Poissonian statistics.119

According to the algorithm that we have described above,
the site pairs which belong to the same cell, are also allowed to
be chosen. Such picks are always disregarded for updates after
checking that the spins are the same. However, picking these
pairs comes at a computational cost. It is possible to identify all
‘allowed site pairs’ in linked list data structures120 and only
choose from the elements of these lists. However, in practice,
for our typical parameter choices, it turned out that searching
and updating the linked lists was computationally disadvanta-
geous. Hence, we utilized the above algorithm. Note that linked
lists should become more efficient when the number of border
sites is considerably less than the total number of lattice sites.

Examples of this include the simulation of single cells121 and
non-confluent cell populations.122,123

2.2 Using (Ir)regular lattices

The above algorithm for site updates holds for any underlying
lattice, provided H(s,P) and Nc(i) for 1 r i r Ns are well-
defined. As mentioned in the introduction, CPM has predomi-
nantly been applied to regular lattices, i.e., square and hexago-
nal lattices. We are aware of only one instance of a study of an
irregular lattice mentioned in the literature;124 in ref. 125 a
graph is shown of what appears to be a study performed on an
irregular lattice, but the original text could not be obtained. For
the sake of completeness, we should also mention the node-
based version of CPM,97 which describes cells through surfaces
rather than through volumes, making it principally different
from the standard CPM.

When moving to irregular lattices, we will assume that for
any lattice site i, we have Nc(i) = N(i). In addition, we have
assumed that the sites i and j are neighbors to each other, if
and only if the polygons that contain these sites have at least
one vertex in common. This simple rule on square lattice leads
to Moore neighborhood which considers 8 neighbors for each
site, see Fig. 1(a). On a hexagonal lattice, this leads to six
neighbors, while the number of neighbors will vary per site
on an irregular lattice, see Fig. 1(b) and (c), respectively. All of
the neighborhoods considered thus far are in contact with the
central cell. This is intuitive, as the interaction term considered
in the CPM Hamiltonian describes surface tension. For discus-
sion on other definitions of a neighborhood (for regular
lattices) we refer to, for example, ref. 96 and 126.

To work with an irregular lattice, the Hamiltonian of eqn (1)
needs to be modified. As the surface energy is proportional to
the contact length of cells, we introduce a weight factor in the
interaction term of the Hamiltonian. This weight ensures that
the surface-energy penalty is proportional to the contact length
of neighboring sites. The Hamiltonian then reads

H ¼ a
X
hi; ji

wij 1� dsðiÞ;sð jÞ
� �

þ l
XNc

s¼1
as � A0ð Þ2; (3)

in which the notation is mostly the same as in eqn (1). Here, the
first summation on the right-hand side runs over all neighbor-
ing sites based on the aforementioned neighborhood, and wij is

Fig. 1 The definition of a neighborhood on different lattice types. (a) The
Moore neighborhood on a square lattice, where the central site is blue and
its 8 neighbors are indicated in yellow. (b) On the hexagonal lattice, there
are 6 nearest neighbors to a central site. (c) On the irregular lattice, the
sites having at least one shared vertex are neighbors.

§ This neighborhood Nc(i) is not necessarily the same as the one used for the
computation of the Hamiltonian N(i) and may be defined separately.
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the weight factor shared between sites i and j. This weight is
defined

wij = lij/%l, (4)

where lij is the length of the contact edge between the sites i and
j, and %l is the average length of the edges taken over the entire
lattice. Taking wij = 1, which is appropriate for regular lattices,
the Hamiltonian of eqn (3) reduces to that of eqn (1).

We generate our irregular lattices from a set of points using
Voronoi tessellation. There are many ways in which to choose
the generating points, e.g., by choosing these randomly on the
plane using a uniform distribution. However, this leads to the
presence of many small Voronoi cells and several large
ones.127,128 Here, we want our lattice sites to have roughly the
same size and number of neighbors, whilst maintaining an
isotropic character to the distribution of points. Therefore, we
choose to base our lattice on the center of mass (CMS) of
uniformly sized particles in a fluid phase. A regular CPM can be
easily implemented and can serve to generate such a configu-
ration for a suitably chosen value of a = 0.8, which places the
configuration in the fluid phase. We performed a large-scale
simulation to obtain an equilibrated fluid, see Table 1 for our
choices, by which we obtained approximately 2002 lattice
centers. This is illustrated in Fig. 2(a)¶.

Next, we applied Voronoi tessellation to these centers,
imposing periodic boundary conditions, using the package
Voro++,129 see Fig. 2(b). Finally, we verified that the newly
formed irregular lattice does not have any long-range orienta-
tional structure. Using the image analysis software ImageJ,130

we performed a fast Fourier transform (FFT) on a snapshot of
the center of mass of the lattice sites. The result is shown in
Fig. 2(c), which reveals the uniform rings, that are indicative of
structural homogeneity. Further simulation details will be
provided in Section 2.3.

2.3 Simulation parameters

The dynamics of the system is generated through MC attempts,
as described in Section 2.1. We refer to Ns MC attempts as a
sweep and we measure ‘time’ in terms of MC sweeps (MCS). As
the temperature here is merely a scaling of the cell membrane
fluctuations, we set kBT = 1 throughout. The number of MCSs
used depends strongly on the state point under consideration
since the system features slow dynamics. Table 1 provides the
relevant choices for both the equilibration (or waiting) time tw

and the time over which we sampled ts. We examined the
evolution of total energy, the shape parameters, and the order
parameter, both of which will be introduced shortly, to estab-
lish the appropriate value of tw.

We wanted to evaluate the phase transition induced by the
variation in the surface tension of the cells. Therefore, we
assumed l to be constant and equal to 1.0, while we changed
a as the control parameter in the range of a A [1.0,4.0] on all
lattices to go from a disordered diffusive dynamics of the cells
to an ordered arrested one. The value of a was changed in steps
of 0.2 and smaller steps of (0.02–0.04) near the transition point,
as appropriate. In all cases, we used periodic boundary condi-
tions and modeled nearly 1000 cells, see Table 1 for the details.

Table 1 Parameter choices and details of the simulations carried out for this study. These include the size of the simulation boxes (Lx � Ly), the number
of lattice sites (Ns) and number of cells (Nc), the preferred cell area (A0) and the values of surface tension (a). Waiting and sampling times (tw and ts), and the
number of independent simulations for each value of a are presented in the final three rows, specified by a. The right-most column presents the values
for the square-lattice simulation, by which we generated the fluid state from which the irregular lattice was obtained

Square Hexagonal Irregular Irr. gen.

Lx � Ly 2002 199.15 � 199.87 200.11 � 197.08 12802

Ns 4 � 104 39 804 40 960 12802

Nc 1000 1000 986 40 960
A0 40 39.80 40 40
a [1,4] [1,4] [1,4] 0.8
tw (MCS) 2 � 105, a A [1,1.4] 2 � 105, a A [1,1.66] 2 � 105–7 � 105, a A [1,2.12] 2 � 104

2 � 105, a A [1.6,2.4] 2 � 105–1 � 106, a A [1.68,2.4] 3 � 105–1 � 106, a A [2.16,2.6]
3 � 106B 8 � 106, a A [2.6,4] 1.2 � 106, a A [2.6,4] 1 � 106, a A [2.8,4]

ts (MCS) 2 � 105–1 � 106, a A [1,1.4] 2 � 105, a A [1,1.66] 2 � 105–1 � 106, a A [1,2.12] —
2 � 106–8 � 106, a A [1.6,2.4] 2 � 106–6 � 106, a A [1.68,2.4] 1 � 106–5 � 106, a A [2.16,2.6]
2 � 106, a A [2.6,4] 2 � 106, a A [2.6,4] 1 � 106, a A [2.8,4]

Number of simulations per each a 50 20 20 1

Fig. 2 Creation and characterization of the irregular lattice. (a) Part of a
snapshot of the simulation, which was used to create a fluid state of cells.
Nearly 0.1% of all simulated cells are shown, outlined in black. The blue
dots indicate the cell’s centers of mass. (b) The Voronoi tessellation based
on the snapshot in panel (a). Each polygon will serve as a lattice site for our
irregular lattice. (c) Fast Fourier transform of the picture of the center of
mass of all cells comprising the fluid-like state – a portion of which is
shown in panel (a). We express the inverse wavelength in terms of a length
unit u, which represents the average cell spacing.

¶ For this study, we did not need to introduce any specific length unit. Lengths
may be subsumed in the definitions of the prefactors. Only for the fast Fourier
transforms, we introduce the length scale u, which makes the wave space vectors
scale as u�1.
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For the irregular lattice, we used a simulation box of size Lx =
200.11 and Ly = 197.08, such that it is perfectly tileable by
hexagons having a target area of A0 = 40. Every configuration
studied was set up (and remained) confluent. We also per-
formed several independent simulations to generate statistics.

As the initial condition on square lattice, we considered a
rectangular arrangement of cells, each of which has dimen-
sions 5 � 8. On the hexagonal and irregular lattices, we did the
same for a r 2.2, while taking an equilibrated snapshot
(prepared at a = 2.2) for higher values of a. The reason for this
was the slow equilibration of the system in the high-a range.
Again, we emphasize that we started sampling after the system
was equilibrated and all the transient effects were decayed.

2.4 Characterization of the results

We characterize the outcomes of our simulations in several
ways. First, we compute the MSD, hr2(t)i, by extracting the CMS
of each cell after equilibrating the system, based on eqn (5).

hr2(t)i = h(r(t + tw) � r(tw))2i. (5)

Here, r is the position vector for the center-of-mass of each cell
and t denotes ‘time’. Henceforth, we identify t as the number of
MCS8. The angle brackets indicate averaging over the cells and
taking an ensemble average. We also fitted power-laws to the
extracted MSDs to evaluate the diffusive behavior of the cells.
Here, we focused on the long-time behavior only, which we
found to follow

hr2(t)ip tb, (6)

where b is the scaling coefficient. In practice, we determined b
from the slope of the MSD after taking the log of both the time
and MSD. To calculate the effective diffusion coefficient Deff, we
use

hr2(t)i = 4Defft, (7)

for the long-time behavior, whenever b\ 0.95. By using Deff, we
identified solid-like and fluid-like states of the tissue. We did
this by fitting a polynomial function to the diffusion coefficient,
and pinpointing where the curvature of the function is maxi-
mally negative. Diffusion coefficient has been used in similar
studies for the identification of phase transition in tissues.53

Second, we consider the local bond-order parameters to
establish the degree of hexatic order. This is computed as
follows for the cell indexed k

c6ðkÞ ¼
1

Nn

X
j2NðkÞ

e6iyð j;kÞ: (8)

In this equation, N(k) is the set of nearest neighbors to the k-th
cell and Nn is the number of neighbors. Here, N(k) is con-
sidered simply six nearest neighbors** of the cell k. This means

that Nn = 6 for all the cells. The angles y( j,k) represent the
counterclockwise angle between the x-axis and the vector con-
necting the center-of-mass of the cell k to that of j. The i
represents the complex identity, i2 = �1. For a perfect hexago-
nal arrangement, the absolute |c6(k)| = 1, and the value of the
hexatic order decreases with disorder. Typically, we average |c6|
over all cells and the production time.

Third, we complement the hexatic-order analysis by consid-
ering the dimensionless quantity called the shape index. For

any 2D shape, this quantity is defined as P
� ffiffiffiffi

A
p

, where P and A

are the perimeter and the area, respectively. This parameter has
been studied extensively in tissue mechanics, e.g., see ref. 18,
19, 23, 53, 106, 112, 133 and 134. A slightly modified version of
this quantity is the isoperimetric quotient, which is defined as

q ¼
ffiffiffiffiffiffiffiffiffi
4pA
p �

P. It is dimensionless as well, and equal to 1.0 for
the circle, while being close to 0 for highly elongated shapes.

Here, we should note that the cell perimeter derived from
lattice-based models is not readily comparable to that in off-
lattice models. This is because the borders of the cells are
defined by the edges of the lattice sites, which enforces excess
jaggedness to the cells – in mathematical language, a natural
metric to distance calculations. To overcome this issue, we
applied Voronoi tessellation to the center-of-mass (CMS) posi-
tions of the cells. This enabled us to study the effective areas
and perimeters of the generated polygons and compute the
associated isoperimetric quotient. Note that the effective cell
shape obtained by applying Voronoi tessellation can be differ-
ent from the original. There are alternative ways to smoothen
the jagged borders of cells on a lattice, e.g., using elliptic
Fourier analysis.135–137 However, since one of the goals of this
study is to compare the shape characteristics in CPM with those
in vertex and Voronoi models, we decided to construct our
effective polygons in the same manner. We use the subscript
‘V’, for example, qV, to indicate the use of our Voronoi proce-
dure. Fig. 3(a)–(c) shows a zoomed-in view of a snapshot that
illustrates the process, as well as the obtained value of qV. We
should note that a correction was also introduced to evaluate
the perimeter of the cells on the CPM.123,126 However, we chose
to use Voronoi tessellation to make a clear comparison between
this study and the vertex and Voronoi models that are being
used in this context of epithelia.

The isoperimetric quotient of regular polygons with n edges,
qreg(n), can be readily computed and reads

qregðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pAregð1; nÞ

p
Pregð1; nÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2np sinð2p=nÞ

p
2n sinðp=nÞ ; (9)

where Areg(r,n) and Preg(r,n) are the area and the perimeter of a
regular polygon having n edges and a circumscribing circle with
radius r. This function maps the number of the edges of regular
polygons to their isoperimetric quotient, and vice versa. We can
now straightforwardly apply the right-hand side of eqn (9) for
non-integer values of n, which we call the generalized edge
number and which we will identify using n*. Numerically
inverting this function, we uniquely obtain n* for any given
value of qV. By doing so, we can assess the effective number of

8 This definition is subject to the caveat that MCS can be understood to be
proportional to the real time in a system, but they are not the actual time.
** Other definitions of the local hexatic bond order are possible,131,132 but we
considered the definition provided in eqn (8) the most appropriate for our
purposes.
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edges for a given (convex) cell shape. The dependence is shown
in Fig. 3(d).

Lastly, we also considered the circularity C of our model
cells. This parameter was introduced by Zunic and Hirota,138,139

and is calculated as follows. Given the area A of a 2D connected
object, and the moment of inertia tensor %I, we write

C ¼ 1

2p
A2

�Ixx þ �Iyy
; (10)

where in the denominator, the trace of the tensor is taken.
Since the trace is invariant under translation and rotation, C is
independent of the coordinate system. One should be careful in
connection to ref. 138 and 139, to note that people also use the
term ‘circularity’ to refer to the quantity 4pA2/P, which is q2 in
our characterization. However, throughout this study, by circu-
larity, we mean the quantity calculated using eqn (10). The
reason we study this parameter is that, unlike the isoperimetric
quotient, it is not directly dependent on the perimeter. As we
have indicated above, there are issues in defining a perimeter
length in lattice-based models. Circularity bypasses this issue
and thus helps us learn how different ways of measuring cell
roundness compare to each other. Circularity is in fact, one of
the Hu moment invariants140 that are widely used in image
processing and pattern recognition.141 This quantity has also
been used in studying cell morphology,142 branching patterns
in organogenesis simulations,41 and pathological cell nucleus
shape analysis.143 However, to the best of our knowledge, thus

far it has not been studied in the context of confluent tissue
transitions. Similar to the isoperimetric quotient, we rely on a
Voronoi tessellation to determine CV. The circularity is much
more strongly nonlinear than q in the number of edges of a
regular polygon. Therefore, we do not invert it to establish an
equivalent circularity-derived generalized edge number n1.

3 Results

In this section, we introduce the main results of our CPM
simulations. As explained in Section 2.1, the control parameter
in our simulations is a, which models the surface tension
between cells. We start by showing that increasing a leads to
a first-order phase transition from a disordered fluid to an
ordered hexagonal phase on all lattices.

3.1 Hexatic order, artifacts, and diffusion

Fig. 4 shows the (average) hexatic orientational order parameter
h|c6|i as a function of a and several representative snapshots of
a part of the simulation area. The average hexatic order is
generally an increasing function of a, except for high values of a
on the square lattice, which we will return to shortly. For all our
lattices there is a substantial increase in h|c6|i in the range 0.7
to 0.8, which appears to connect a disordered and an ordered
‘branch’ in the state space. This is indicative of the presence of
a first-order phase transition from a disordered fluid to a
hexagonal solid. The nature of the structural change is further
confirmed by contrasting the first two columns of snapshots in
Fig. 4(b) with each other. The centers of mass of the cells
assume a hexagonal arrangement in the three subpanels.

In the case of a square lattice, the transition appears sharp.
For the other two lattices, there is a smoother transition, which
can be attributed to the fact that we work in the NVT ensemble.
That is, when we average over several realizations of the system,
these likely contain both fluid and hexagonal configurations,
beyond the transition a. In support of this, we found patterns of
coexistence between the disordered and ordered phases in
some of the simulations, see Fig. S1 (ESI†) for an example
snapshot. This provides further (tentative) evidence for the
presence of a first-order transition. Note that unlike in fluid–
solid phase coexistence for particle-based systems,3,45–48 we
have an area-constraint term in our Hamiltonians (1) and (3).
This presumably narrows any density gap that could be
present between the disordered and ordered phases, and
makes it difficult to find strong evidence of coexistence.
We will also not concern ourselves with the existence of a
potential intermediate hexatic phase here, but referencing the
literature,115,144,145 it should be present.

Increasing a beyond the transition value, h|c6|i E 0.76, we
find that the hexatic order increases further. Note that our
transition value is comparable to that reported in ref. 115,
providing additional confidence in our results. On a square
lattice, h|c6|i eventually assumes a maximum. We can appreci-
ate the underlying cause of the high-a reduction by examining
snapshot 7 in Fig. 4(b). This reveals that for the square lattice,

Fig. 3 Using Voronoi tessellation to determine the shape index of lattice-
based cells. (a) A snapshot of cells on the disordered lattice. The colors
indicate individual cells and the black circles their centers of mass. (b)
Voronoi tessellated version of the cells based on the position of the
centers of mass. (c) Voronoi tessellated cells are colored by their isoperi-
metric quotient qV, as indicated by the color bar shown on the right-hand
side. The data derives from a part of a simulation with a = 1.8. (d)
Isoperimetric quotient of regular polygons, qreg(n), as well as its general-
ization qV(n*).
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the cells become distorted into a configuration with staircase-
like borders. That is, the borders of cells in large parts of the
simulation locally follow the lattice (are at 901 angles). This
leads to the cell edges overall being directed at angles�451 with
respect to the horizontal (or vertical) and the cells assuming a
rhombus-like shape. This, in turn, gives rise to the strong,
unphysical peak in the distribution of hexatic order, as can be
seen in Fig. S3 (ESI†). For the disordered lattice, there is no
such a peak, and the distribution of hexatic order is smooth
within the error, as can be appreciated from Fig. S3b (ESI†).
Together these results underpin that on the disordered lattice,
the artificial (rhomboid) cell shapes are not present.

The orientation of the cell borders on the hexagonal lattice is
also a lattice artifact. Fig. 4(b), snapshots 5 and 8, show that the
borders of neighbor cells at intermediate-to-high surface ten-
sion, follow specific directions. These preferential orientations
are dictated by the hexagonal symmetry of the underlying
lattice. The effect appears less ‘severe’ than for the cells on
the square lattice, where artifacts lead to significant cell-shape
distortions. However, we caution against drawing this conclu-
sion, as the natural high-surface-tension shape of the cells is
hexagonal, which masks the extent to which cells are con-
strained by the underlying lattice.

We further characterized the behavior of our systems by
examining the MSD scaling exponent b, and the diffusion
coefficient, Deff, as defined in eqn (6) and (7), respectively. A
plot of MSD on the disordered lattice is shown in Fig. S2 (ESI†).
First, we evaluated b and Deff by fitting lines to log–log plots of
the late-time MSD. Fig. 5 shows both quantities for different
lattices as a function of a (b is shown in the inset). For low
values of a, we readily obtain diffusive scaling b = 1 within the
error, and the system is in a fluid-like state. Since the definition
(7) holds for b = 1, we only show Deff for the cases where b

departs from 1 by less than one standard error of the mean.
Note that the decrease in Deff can be in orders of magnitude
over the entire range of considered a, though we do not
consider this indicative of glassy behavior, as reported in other
sources;53,112,113 we will return to this point in Section 4. For
high values of a we observed sub-diffusive behavior. It is likely
that for some of these values, the dynamics eventually becomes
diffusive when they are evaluated for a sufficiently long time.
However, we did not test this, as these values of a are far

Fig. 5 Particle diffusion indicates where the system transitions from fluid-
like to solid-like behavior. The effective diffusion coefficient Deff of cells as
obtained from their long-time diffusive dynamics as a function of the
interfacial energy a for the three different lattices as labeled. We only show
data for which the scaling exponent of the MSD, b E 1.0, and the (long-
time) dynamics is indeed diffusive. The inset shows b as a function of a. The
dashed lines in the main panel and the inset serve as guides to the eye. The
star symbols ?ð Þ localize the inflection points to fitted data, and the square
symbols ð’Þ indicate the transition points which were determined from
the second derivative of the fitted data. See the main text for the
procedure.

Fig. 4 The formation of hexatic order on the three lattice types considered by increasing the surface tension. (a) The system-averaged hexatic order
h|c6|i as a function of a for the CPM on a square (blue), irregular (green), and hexagonal (red) lattice. The error bars show the standard error of the mean.
The black dashed line indicates the transition value reported by ref. 115. (b) Snapshots of the simulations specified by their labels in panel (a); only a small
part of the simulation box is shown (B6%). The color of the cells indicates their local hexatic order.
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enough away from the transition that they do not affect our
analysis and conclusions.

Fig. 5 reveals that Deff generally decreases with a. It is
difficult to identify where the phase transition happens without
performing an exhaustive analysis. Here, we therefore com-
puted two properties. First, the decrease has an inflection point
at a given value of a that is lattice-dependent. This inflection
point is posited to be indicative of coexistence, i.e., it is caused
by blending fluid-like and solid-like behavior in equal parts.
Thus, we expect the inflection point to overestimate the value of
a for which there is a transition. To locate the inflection a, we
fitted polynomial curves to the semi-log plot of Deff. The
obtained points are indicated using stars ?ð Þ in Fig. 5. We will
refer to the associated values using a? and D?

eff , respectively.
Second, we identify the point where Deff starts to drop rapidly by
examining the second derivative of the fitted Deff(a). To do so,
we considered the point at which, the curvature of the fitted
curve is maximally negative. This point is posited to be closer to
the transition, i.e., at the end of the purely disordered branch.
We denote this point using a’ and Deff

’ which are showed by
square symbol in Fig. 5.

3.2 Isoperimetric quotient and circularity

Fig. 6(a) shows the equilibrium distribution of the Voronoi-
based isoperimetric quotient, qV, for two different values of a,
obtained by using an irregular lattice. Because our model tissue
is confluent, the qV for the majority of the cells assumes values
in the square-to-hexagon range. Note that for the fluid-like
state, there is a dip in the value qV around that of a regular
pentagon. This is a consequence of the definition of qV, rather
than a profound result. Voronoi cells with 5 vertices always have
values of qV r qreg(5) = 0.930, and cells with 6 vertices always
have qV r qreg(6) = 0.952. Whether the role of an arbitrary
polygon in tiling the plain is similar to that of a pentagon or a
hexagon, depends mostly on whether its qV is closer to qreg(5) or
qreg(6), rather than the number of its edges. It is clear that upon
undergoing a phase transition, the distribution shifts directly
from being double-peaked to being strongly peaked close to a
hexagonal value – another indicator of a first-order phase
transition. The fact that the model tissue has defects in
combination with the properties of qV, makes it that the peak
is not exactly centered about qV E 0.952. The defects can be
seen in Fig. 4(b), snapshots 6 and 9.

The distribution of qV is insightful, but to help understand
the properties of the underlying system, it is beneficial to
convert it to an effective number of edges n*, see Fig. 6(b)
and the definition in Section 2.4. The advantage of working
directly with n*, rather than qV, is that it allows us to examine
the partition of the distribution. We identify the nearest integer
number to a given n* by In*n, which factors our range into
distinct subsets of triangular, square, pentagonal, hexagonal,
heptagonal, etc. neighborhoods. For example, all the cells
having In*n = 5 (i.e., 4.5 o n* r 5.5) can be referred to as
pseudo-pentagons. Integrating the PDF belonging to the
pseudo-pentagons provides insight into the fraction of

pentagonal cells in the system. This includes cells with 5 or
more edges, but for which some of the edges are very small.

Fig. 7(a) shows fractions of pseudo-polygons fn* present in
the system as a function of a. Interestingly, the curves for f5 and
f6 show a crossover that matches well where we locate the phase
transition based on our analysis of the diffusion coefficient
drop. The physical intuition in this representation is clear: to
crystallize, the system must have a majority of pseudo-
hexagons. Fig. 7(b) shows the relation between the crossover
and the transition on different lattices. Here, we have plotted
Deff as a function of f6/f5. The transition value of diffusion
coefficient, i.e., Deff

’ , is indicated by the horizontal dashed lines.
In Fig. 7(b), it can be seen that when the ratio exceeds 1, the
diffusion coefficient drops sharply, which is a precursor to full
crystallization, on both the square and irregular lattices. How-
ever, on the hexagonal lattice, there is a slight mismatch
between the crossover and the transition. The ESI† goes into
a longer discussion of this crossover for regular lattices and,

Fig. 6 The distribution of Voronoi-based isoperimetric quotient qV for a
liquid- and solid-like state. (a) For a disordered lattice, we computed the
probability density function (PDF) of qV for a = 1.8 (blue) and a = 2.2
(orange), which are in the fluid and crystal states, respectively. (b) The same
data, but now converted to an effective number of edges n*. In both
graphs, the error bars indicate the standard error of the mean, and values
of qV and n* that correspond to regular polygons are indicated using
dotted vertical lines and the use of symbols/numbers.
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also considers the mean and median of the distribution. The
latter quantity also appears to be a good quantifier of the
transition for these systems, see Fig. S4 and S5 (ESI†).

Returning to the data presented in Fig. 6, we see that the
distributions for the fluid-like state (e.g., a = 1.8) have two
peaks, while the solid-like state (e.g., a = 2.2) is characterized by
a single peak. This statement holds in general and we can
extract the positions of n* for the maximum; or the two maxima
and the local minimum, see Fig. 8. Similar data for the square
and hexagonal lattices are provided in Fig. S6 (ESI†). We note
that the behavior of the peak bears the hallmarks of a first-
order phase transition, with a jump in the value of the ‘effective
order parameter’ at a E 2.1, as we alluded to before. The
minimum is effectively at n* = 5, as is a feature of the definition
of qV. When the system transitions into the solid state, the
peak reaches a nearly constant value of n* E 5.7, which is
shared among the studied underlying lattices. This is commen-
surate with the model cells transitioning to a state that is

geometrically similar between the square, irregular, and hex-
agonal lattices. However, we emphasize that this does not imply
that the transition is unaffected by the properties of the under-
lying lattice, as we have provided evidence for above.

Lastly, we calculated the circularity of the Voronoi-generated
polygons for our model tissues. Fig. 9(a) shows the distribution
of CV of the cells on the disordered lattice, for two values of a
already considered in Fig. 6. It turns out that the distributions
of CV for all the values of a studied here are unimodal, unlike
those of qV, e.g., see Fig. 9 and Fig. S7 (ESI†). We also observe
from our data that at the transition point, the mode of the
distribution of CV almost matches with the circularity of a
regular pentagon, which we identify with C(5). If we apply the
same strategy as we did to calculate n* from qV, to calculate n1
from CV, the mode of the distribution lies around n1E 5.1. This
relation is shown in Fig. 9(b) for the disordered lattice, where
we calculated Deff for the long-time diffusive regime, as a
function of the departure of the mode from the pentagonal
value, i.e., mode (CV) � C(5). Clearly, the value C(5) is an
excellent estimator for the phase transition. Lastly, it should
be reemphasized that circularity compares the area with
moment of inertia. This gives it an advantage over the isoperi-
metric quotient, which depends on perimeter length.

4 Discussion

In this section, we provide additional context to our research.
We have split this into five parts for convenience. The first
concerns itself with the quality of our phase diagram and the
lack of a glassy phase. The second makes the connection to
experimental observations to further justify the use of the CPM.
The third discusses resolving the lattice artifacts present on
regular lattices. The fourth provides insight into the efficiency

Fig. 7 The trend in the fractions of pseudo-polygons can be used to
determine the transition point. (a) The fractions of pseudo-polygons fn* as
a function of the surface tension a obtained for a disordered lattice. The
number of edges for the pseudo-polygons is indicated in the legend and
the colored area around the respective curves indicates the standard error
of the mean. The vertical gray bar shows the range for which the system
transitions from a fluid to a hexagonal solid; i.e., where the diffusion
coefficient drops steeply. (b) The diffusion coefficient Deff as a function
of the ratio f6/f5. The horizontal dashed lines show Deff

’ for different lattices.
The vertical dashed line highlights the crossover at f6/f5 = 1.

Fig. 8 The fluid-to-solid transition in the model cell system as character-
ized using the extrema in the distribution of the Voronoi-based isoperi-
metric quotients. The n* values for the local maxima are indicated in red
and the local minimum in blue when it is present. The dashed lines are
guides to the eye and the grey vertical bar indicates a interval in which we
locate the transition, similar to Fig. 7(a). The dotted horizontal lines indicate
the values for a regular pentagon and hexagon, respectively, as labeled.
The error bars are smaller than the point size. All data was obtained for a
disordered lattice underlying the CPM dynamics.
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of our algorithm and the challenges in working with an
irregular-lattice CPM. We close with a larger discussion on
the use of shape parameters.

4.1 The phase transition

On three different lattices studied here, we observed an order–
disorder transition. This transition was reported previously for
the square-lattice version of CPM,115 where it was studied as a
function of temperature. Here, we show the transition as a
function of the surface tension and show that it is not limited
to the classical square-lattice version of CPM. By the Mermin–
Wagner theorem, there should be a narrow, intermediate band
of hexatic phase in the phase diagram, as also reported in the
literature.115,144,145 However, this phase is notoriously difficult
to identify and we did not carry out the detailed analysis

required to establish its presence. Our focus is instead on the
effect of lattice artifacts on the overall trends.

Bearing this caveat in mind, our transitions have the hall-
marks of a first-order phase transition. These include a sharp
change in the value of the hexatic order and the diffusion
coefficient, and the presence of what appears to be coexistence
between ordered and disordered cell populations, as shown in
Fig. S1 (ESI†). One should be aware that the simulations are in
NVT ensemble, thus, the presence of a coexistence region tends
to smoothen averaged curves. To establish the coexistence
behavior proper free-energy calculations would have to be
performed, but this was not the main goal of our present work.

The value of the isoperimetric quotient at the transition, see
Fig. S5 (ESI†), lies between that of a regular pentagon and a
regular hexagon, which is commensurate with this observation.
Additionally, as is plotted in Fig. 4(a), the transition value of
hexatic order matches with the value reported in ref. 115,
providing additional support for the similarity between our
findings and theirs. Other studies in the literature that
used ‘deformable’ particles, e.g., phase-field60,63 and Fourier
contour64 approaches, have also reported the emergence of
hexagonal solid phases in model tissues, lending further cre-
dence to our result.

This makes the transition in the CPM markedly different
from the jamming transitions reported for the vertex18,106 and
active Voronoi models.53,146 These appear to leave the structure
amorphous and occur at an average (target) value of q = qreg(5).
The regular (perfect) pentagon is a shape that cannot tile the
plane confluently. Thus, imposing this on all cells in the
model tissue leads to frustration between local and global
constraints, resulting in a disordered arrest. Considering the
similarities between cellular-Potts, phase-field, and Fourier-
contour models, we surmise that a lack of border flexibility
may be partly responsible for the difference. That is, in the
vertex and Voronoi descriptions, the cells are described as
polygons whose dynamics is ruled by their vertices and cen-
troids, respectively. This means that they have far fewer degrees
of freedom to their dynamics when compared to CPM at an
equal cell number.

In this context, the work by Sadhukhan and Nandi113 should
be mentioned, who have reported glassy behavior in the CPM
with a Hamiltonian restricting the perimeter of the cells, as well
as their area. This choice brings their version of CPM closer to
the vertex and Voronoi models. However, we believe that the
observation of square cells by these authors may be attributed
to lattice artifacts.36 For their large preferred perimeter regime,
the interlocking of cells can also be attributed to the underlying
lattice. As a lattice-based model, CPM has the inherent weak-
ness of dealing with target perimeter lengths. Our work most
closely follows that of Chiang and Marenduzzo112 who identify
a glass transition for the square-lattice CPM. However, in
reproducing their results for the case of no self-propulsion,
we have conclusively shown that this glassy behavior is not
present. We did this by studying the hexatic orientational order
parameter across the transition. Lastly, we turn to the results of
ref. 114. They report a similar value of the shape parameter at

Fig. 9 The circularity CV of the Voronoi tessellation as an indicator of the
phase transition. (a) The PDF of CV for two different values of a on the
disordered lattice. One is representative of the fluid-like regime (a = 1.8,
blue), and the other, of the solid-like regime (a = 2.2, orange). The position
of the peak of the distribution (green circles) is extracted from the red
(polynomial) fits. The two dotted vertical lines and symbols indicate the
value of circularity for a regular pentagon and hexagon, respectively.
(b) The diffusion coefficient, Deff as a function of the departure between
the mode of the distribution, mode (CV), and the value of the circularity for
a regular pentagon C(5). The horizontal dashed line, and the gray box,
show the average and standard error of Deff

’ . The data points are colored by
the value of a, as indicated in the color bar to the right. In both panels, the
error bars show the standard error of the mean.
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the transition. However, they identify this transition as a
jamming one. This is likely a misinterpretation of their find-
ings, and this issue could be resolved by examining the hexatic
order in their ‘jammed’ phase.

4.2 Connection to experiment

There have been many studies focused on jamming transitions
and glassy behavior in living tissues, e.g., reviewed by ref. 15
and 103. However, these are not the only arrested patterns that
can exist in these systems. Hexagonally packed cell arrange-
ments are also frequently found in epithelia across a range of
species and developmental stages.147–163 Although more com-
plicated mechanisms such as adherens junctions164 can play a
role in maintaining cellular order in hexagonal cell packings, it
is informative to distinguish models that can capture this type
of packing by their nature. The importance of this study is that
we showed that regular and irregular versions of CPM, show an
order/disorder transition, above which they were able to readily
achieve the crystallized configuration. This makes them suita-
ble for studying tissues with hexagonal cell packing.

4.3 Resolving lattice artifacts

The main advantage we derive from our irregular underlying
lattice is to rid our simulations of two types of (obvious) lattice
artifacts, without having to resort to higher-order neighbor
coupling, as has been discussed in, e.g., ref. 36. Fig. 4 and
Fig. S3 (ESI†) both clearly provide evidence that a square lattice
CPM with a Moore neighborhood rule can lead to an abnormal
distribution of hexatic order at high surface tension. This
happens because on the square lattice, the cells are essentially
forced to assume the rhombus-like shape that is shown in
Fig. 4(b), snapshot 7. There are lattice artifacts on the hexago-
nal lattice too, although they appear not to be as severe as they
are on the square lattice. The cells become hexagonal, but these
hexagonal cells are forced to align with the underlying lattice.
The disordered lattice is free of both of these artifacts within
the error. Firstly, the distribution of hexatic order for the
simulations on the disordered lattice is completely smooth
and free of any unphysical peak within error. Secondly, there
is no obvious preferred direction for cell borders on the
irregular lattice.

By resolving these two lattice artifacts, we decreased the
influence of the lattice geometrical symmetries on the shape of
cells. We should mention that artifacts are an inevitable feature
of lattice-based models. The shape of cells is always to some
extent dependent on the geometry of the underlying lattice.
However, as we have shown, by breaking the orientational
symmetries of the underlying lattice, one can significantly
weaken this dependency. This is an important advantage
because as discussed in several studies,19,146,165–167 the shape
of the cells can be strongly connected to the dynamics of the
tissue.

4.4 Efficiency and considerations

Our irregular-lattice version of CPM not only is free of demon-
strable artifacts but it can also be applied to any lattice that

derives from a Voronoi construction, including regular ones.
This provides our description with greater flexibility. In fact, for
simulations on the hexagonal lattice, we used the same code,
but with a perfect hexagonal Voronoi lattice as an input. When
using an irregular lattice, it may be prudent to generate several
independent realizations of the lattice. This should further
reduce the correlations when taking statistical averages; note
that we used only one disordered lattice in the current study.

In terms of computational efficiency, an extra run time is
incurred using our approach compared to the square-lattice
CPM. This was, however, very reasonable, as the average
simulation time per 106 MC sweeps for the square-lattice
CPM was generally in the range of 7 to 11 hours, while it was
in the range of 8 to 15 hours for our generalized CPM. This
timing data was obtained using cluster nodes equipped with,
on average, 20 CPU cores and 64 GB of RAM. Even in the worst
case, the run time was less than twice that of the regular CPM.

Note that to properly evaluate the perimeter of our cells, we
used Voronoi tessellation on their centers of mass. Even on the
irregular lattice, the contour length of the cells is artificially
high, as we established by examining a very large circular cell in
isolation. This is a limitation of the model, which could be
overcome by using alternative perimeter evaluation algorithms
such as Voronoi tessellation.

4.5 Shape-parameter-based characterization

Several studies have looked at distributions of properties
of the cell neighborhood. Some considered the aspect ratio
of the cells,146,168 while others extracted the number of
neighbors.49,161,169,170 Here, we calculated the distribution
underlying the mean isoperimetric quotient, and from these,
we extracted fractions of pseudo-n*-gons to gain a deeper
insight into the system. Fig. 7 for the irregular and Fig. S4
(ESI†) for the regular lattices, respectively, show that the
majority of the polygons in the subdiffusive state are pseudo-
hexagons, while in the sufficiently fluid-like regime, they are
pseudo-pentagons. Close to the transition, we have observed
that their relative abundance in the sample crosses over.

We found a single study by Saito and Ishihara,64 who
examined isoperimetric-quotient distributions across the tran-
sition in their Fourier-contour model. They also reported a
unimodal-to-bimodal transition in the distributions, as we have
observed. The bimodality in the fluid-like regime is indicative
of a coexistence between more-rounded and less-rounded cells,
which is understood to lead to fluidity of the tissue. We note
that in the current literature60,64,112–114,171 there is a tendency to
focus on the mean value of the shape parameter as the
indicator of transition. This is undoubtedly motivated by its
relevance to the behavior of the vertex and Voronoi
models.18,20,53–55,106,133,146,172–175 However, as we have argued
above, these models fall into a different class. We, therefore,
believe it to be informative in general to examine shape-
parameter distributions rather than only means.

As a complementary quantity to describe the shape of the
cells we studied the circularity parameter C,138,139 which is in
essence, one of Hu moment invariants.140 This compares the
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area of shapes to their moment of inertia, rather than to their
perimeter, which is the case for q. This makes C less sensitive to
noise at the boundary or definition issues with perimeter
length. That is, we could have performed the circularity analysis
on the original cell shapes rather than their Voronoi-based
counterparts. However, we found that applying Voronoi tessel-
lation to the cells led to a better comparison between the two
roundness measures.

5 Summary and outlook

In this study, we extended the regular (square-lattice) cellular
Potts model to work on arbitrary (ir)regular lattices. The main
motivation of this study was to eliminate lattice artifacts observed
for square-lattice CPMs in the literature. We demonstrated that
such artifacts could indeed be eliminated by using an irregular
lattice generated from a fluid-like state using Voronoi tessellation.
Our generalized CPM maintains many of the desirable features of
a base CPM, at the price of a small computational overhead.

We gained the following insights using our algorithm on
both irregular, square, and hexagonal lattices. First, there is an
order–disorder transition in confluent cell monolayers when
using CPM on all lattices that we considered. This sets the base
CPM apart from the active Voronoi and vertex models, in which
there is a rigidity transition that maintains the disorder of the
fluid-like state for shape parameters close to those of a regular
pentagon. This makes the CPM suited to describe epithelia in
which ordered cell arrangements form, as these can be reached
directly and straightforwardly from the disordered state. This,
however, does not mean to imply that the CPM can never
describe glassy dynamics. For example, glassy dynamics could
be realized in the CPM by modifying the Hamiltonian or by
introducing restrictions on rearrangements leading to crystal-
line order. Second, for the square lattice, the cell shape can be
impacted by artifacts above the transition, while for the hex-
agonal lattice, the borders of cells are affected by the symmetry
of the lattice. Our irregular-lattice CPM did not exhibit these
undesirable features.

In addition, we gained deeper insight into the transition by
studying the distributions of different quantities across the
transition. These included the hexatic bond order, the isoperi-
metric quotient, and the circularity, which overlap in their
descriptiveness of local neighborhoods. For the isoperimetric
quotient, the transition is closely correlated to the crossover in
the fraction of pentagonal and hexagonal neighborhoods found
in our simulations. However, the transition does not lie at an
average isoperimetric quotient of a pentagon, as is the case for
the vertex and active Voronoi models. This is because, unlike
these two systems, the shape is not a target parameter in the
Hamiltonian describing the system. It is further important to
realize that examining the mean isoperimetric quotient, or the
related shape index, may give an incomplete picture of the
behavior of the system. We exclude the athermal Voronoi
model in this comparison, where the rigidity transition is
known to be absent.109

Looking forward, we note that artifacts can be straightfor-
wardly eliminated through the introduction of an irregular
grid. This may have additional advantages when coupling the
dynamics of the cells to that of external fields, such as food or
chemical fields in bacterial colonies.176 We will explore these
directions in modeling real biological tissues using our general-
ized CPM in the future and hope this will lead to wider
adoption of our approach.
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and R. Frangež, Histochem. Cell Biol., 2018, 150, 93–102.

143 M. Ammar, K. Baiche, S. Mahmoudi and M. Benazzouz,
2017 5th International Conference on Electrical Engineer-
ing – Boumerdes (ICEE-B), 2017.

144 A. Pasupalak, L. Yan-Wei, R. Ni and M. Pica Ciamarra, Soft
Matter, 2020, 16, 3914–3920.

145 J.-j Li and B.-q Ai, New J. Phys., 2021, 23, 083044.
146 L. Atia, D. Bi, Y. Sharma, J. A. Mitchel, B. Gweon,

S. A. Koehler, S. J. DeCamp, B. Lan, J. H. Kim, R. Hirsch,
A. F. Pegoraro, K. H. Lee, J. R. Starr, D. A. Weitz,
A. C. Martin, J.-A. Park, J. P. Butler and J. J. Fredberg,
Nat. Phys., 2018, 14, 613–620.

147 D. J. Cislo, F. Yang, H. Qin, A. Pavlopoulos, M. J. Bowick
and S. J. Streichan, Nat. Phys., 2023, 19, 1201–1210.

148 D. A. Sun and N. H. Patel, Wiley Interdiscip. Rev.: Dev. Biol.,
2019, 8, e355.

149 A.-K. Classen, K. I. Anderson, E. Marois and S. Eaton, Dev.
Cell, 2005, 9, 805–817.

150 F. Pilot and T. Lecuit, Dev. Dyn., 2005, 232, 685–694.
151 B. Aigouy, R. Farhadifar, D. B. Staple, A. Sagner, J.-C.
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162 A. Hočevar and P. Ziherl, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2009, 80, 011904.

163 R. I. Johnson, Dev. Biol., 2021, 478, 173–182.
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