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The drive for efficiency improvements in CO2 capture technologies continues to grow, with increasing

importance given to the need for flexible operation to adapt to the strong fluctuations in the CO2-rich flue

gas flow rate and CO2 concentration. Using renewable energy can improve the environmental benefit of

CO2 capture technologies; however, renewable energy resources often suffer from the challenge of non-

uniform power generation as a result of weather and seasonal variations. In this work, we aimed to

dynamically self-optimise the CO2 capture process in a renewable energy system via enhanced weathering

of calcite with fresh water in a packed bubble column (PBC) reactor, in which CO2 from flue gas produced

by a power plant is converted into bicarbonate and stored in the ocean. Data-driven surrogate dynamic

models of the PBC reactor are developed to predict the reactor CO2 capture rate (CR) and power

consumption (PC) and are trained using the data generated by physics-based models. Two deep learning

models are considered to capture the dynamics of the PBC reactor: a long short-term memory network

(LSTM); and a two-stage multilayer perceptron network (MLP). Data-driven models based on LSTM were

developed to predict wind energy (R2: 0.908) and inlet flue gas CO2 concentration (R2: 0.981) using

publicly available datasets. A multi-objective NSGA-II genetic algorithm is then applied that utilised the inlet

flue gas CO2 concentration and wind energy predictions to pre-emptively self-optimise the reactor

process conditions (i.e., superficial liquid flow rate and superficial gas flow rate) to maximise the carbon

capture rate and minimise non-renewable energy consumption. The results should that by using the

dynamic modelling and predictive multi-objective optimisation framework proposed within this study, the

PCB reactor CR increased by an average of 16.7% over a one-month operation, whilst simultaneously

reducing the proportion of now-renewable energy consumed from an average of 92.9% to an average of

56.6%. Overall, this study demonstrates the effectiveness of a dynamic data-driven modelling and multi-

objective optimisation approach to increase the operational flexibility of CO2 capture reactors to adapt to

strong fluctuations in flue gas and intermittent renewable energy supply.

1. Introduction

The rapid process of industrialisation and shifting lifestyles,
accompanied by a rising pattern of energy consumption, has
led to a significant surge in the demand for power. Carbon
dioxide emissions from power plants account for
approximately 35% of global greenhouse emissions,1

responsible for over 34 billion tonnes of CO2 emissions per
year.2 Although renewable energy generation has been rapidly
growing, the sheer scale of current power sector emissions

highlights the urgent need for nations to address their power-
related emissions in order to align with global climate
objectives. Carbon capture and storage (CCS) is viewed as a
key technology in the transition to net zero, which involves
capturing and storing carbon emissions from industrial and
power generation processes. While multiple industrial-scale
CCS projects are operational, capturing and storing over a
million tons of CO2 annually, the high energy costs associated
with the solvent-based CO2 scrubbing methods utilised in
these systems hinder their broad deployment.3 Despite the
high energy cost, CCS recognised internationally as a key
technology for mitigating climate change and achieving net
zero. The UK has set out the approach to delivering four CCS
low carbon industrial clusters capturing 20–30 MtCO2 per
year by 2030 (ref. 4) and in 2023 announced £20 billion
investment program for carbon capture projects.5 The U.S.
Department of Energy (DOE) announced up to $1.2 billion to
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advance the development of two commercial-scale direct air
capture facilities in Texas and Louisiana.6 In November 2022,
the European Commission adopted a proposal (COM/2022/
672) for an EU-wide voluntary framework to certify carbon
removals, with the aim to boost innovative industrial carbon
removal technologies, such as bioenergy with carbon capture
and storage (BECCS) or direct air carbon capture and storage
(DACCS).7 In the pursuit of a sustainable future, the collective
efforts to harness CCS technology underscore its pivotal role
in achieving net-zero emissions.

Emerging CCS technologies demonstrate significant
improvements in efficiency and energy cost over the current
solvent base methods. The technologies under development
include: membrane separation processes; adsorbent based
systems; advanced amine; aqueous ammonia scrubbing; and
cryogenic separation.8 Of these technologies, adsorbent
based methods offer have the potential to function as more
efficient and cost effective alternatives to solvent CCS
processes for selectively removing CO2 from large, stationary
sources including power stations.9 An adsorbent is typically a
porous substance with a significant surface area that can
attract and retain other substances on its surface through
intermolecular forces. Enhanced weathering (EW) is a CCS
adsorbent process that uses crushed alkaline minerals is
capable of accelerating the natural weathering process, which
is known to convert Gt of atmospheric CO2 per year into
bicarbonate stored in the ocean.10 Incorporating alkaline
minerals into chemical reactors operating under controllable
conditions provides a means to harness this inherent natural
process with increased efficiency in carbon capture rates,
milder reaction conditions and less impact on the
environment than the other CCS technologies.11 Alongside
enhanced weathering (EW), other promising methods have
emerged, such as direct air capture (DAC),12 bioenergy with
CO2 capture and storage (BECCS),13 afforestation and
reforestation (AR),14 photochemical CO2 conversion,15

electrochemical reduction.16 Recently added to this list are
innovative methods like CO2 capture using water- and amine-
based nanofluids17 and metal–organic frameworks (MOFs).18

Among these, EW is particularly notable for its use of
crushed alkaline minerals and chemical contactors to
significantly accelerate the natural weathering process.
Typically, this process converts atmospheric and
concentrated CO2 into bicarbonate, stored in the ocean, at a
impressive capacity of gigatonnes of CO2 annually, without
the involvement of environmentally harmful chemical
solutions and harsh operating conditions.11,19–21

Additionally, these chemical reactors can be integrated with
DAC systems, transforming concentrated CO2 into
bicarbonate for storage in the ocean, thereby optimising the
EW process. The compromise of using EW for CCS is the cost
and space required for building the infrastructure, as well as
the energy and water consumption during operation.21

Modelling has proved an effective tool for the design and
optimisation of EW reactors.11,19–21 By developing
experimentally validated physics-based mechanistic models

then using these models to generate data to train machine
learning surrogate models, it enables multi-variable
optimisation to maximise their CO2 capture rate, while
simultaneously minimising water and energy consumption.
Machine learning surrogate models are used as an efficient
way to perform multi-variable and multi-objective
optimisation, that significantly reduces computational time
and resources while maintaining high prediction accuracy.

Previous studies modelling EW reactors have focused
on the steady-state operation of the chemical
reactors.11,19–21 Although several parameters, e.g., packing
materials size, packed bed height and porosity, reactant
and products concentration and CO2 capture rate, have
been dynamically studied, the operating conditions, e.g.,
gas and liquid velocity, CO2 inlet concentrations etc., were
fixed as constants. While these studies provide insights
into the reactor's performance in steady-state operating
conditions, they do not fully address the dynamic changes
that occur when the concentration and flow rate of the
incoming CO2 stream fluctuate over time, which is a
common occurrence in real-world flue gas scenarios.
Whereas dynamic machine learning models excel in
handling time-dependent data and evolving patterns and
can learn from historical process data and adapt to real-
time changes, enabling them to predict how the reactor's
behaviour will evolve over time. Power plants are
increasingly requiring flexible operation to balance the
intermittent electricity supply from renewable energy
resources and ensure consistent energy supply to the
grid.22,23 As CCS is integrated with power plants, it is vital
that the technology does not compromise their ability to
respond to flexible power output. Therefore, CCS systems
require the development of dynamic machine learning
models that can dynamically adjust their predictions and
control strategies in response to these demands,
enhancing the reactor's stability and robustness.
Furthermore, these models should address the economic
and environmental challenges of CCS technologies, aiming
to establish its feasibility as a viable choice for power
producers. Of particular significance is the need to
mitigate energy consumption, a well-recognised barrier
associated with CCS technology.3 Employing renewable
energy has the potential to enhance the environmental
advantages of CO2 capture technologies, yet renewable
energy resources frequently suffer from the challenge of
non-uniform power generation as a result of weather and
seasonal variations. Considering these challenges, the
development of dynamic control methodologies becomes
imperative.

As computational resources have advanced and control
algorithms refined, model predictive control (MPC) has
gained popularity in various industries, including
petrochemical, biotechnical, electrical and mechanical
processes.24 By utilising dynamic models, MPC enables the
control system to account for time-varying conditions and
respond to changes, ensuring the efficient operation of
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processes like CO2 capture within integrated power plants.
Model predictive control offers advantages over traditional
control methods due to its predictive nature, constraint
handling, and optimisation capabilities.25 Previous studies
have shown that the implementation of the MPC formulation
proves to be a very good option to enable the flexible
operation of integrated power generation capture plants.26–30

One study showed that the MPC control strategy can quickly
adapt to any disturbance applied to the capture plant, which
is essential for the profitable operation of decarbonised
power plants.30 Furthermore, MPC have been demonstrated
to perform significantly better in terms of close-loop settling
time, integral squared error and compliance of operational
and environmental constraints when compared to
conventional control strategies.26 Previous studies have
developed dynamic models of CCS systems built using
physics-based models hosted on process simulation
software.26–30 Dynamic systems can be extremely complex
with intricate interactions and feedback loops. Machine
learning can capture these complexities without requiring
explicit formulation of differential equations, making it
suitable for scenarios where deriving analytical models is
challenging. The integration of machine learning has
empowered MPC with more accurate models of chemical
systems, enabling it to excel in nonlinear and dynamic
systems.31 Furthermore, machine learning models can adapt
to changes in the system behaviour as new data becomes
available. The disadvantage of using machine learning
include: a lack of interpretability; failure to generalise beyond
the training data; and the availability and quality of data.
Hybrid approaches, such as by developing machine learning
surrogate models from existing physics base models, can
leverage the strengths of both methods. Machine learning
also offers the potential to extend the capabilities of MPC to
include forecasting external system variable to improve the
control performance. External system variables, such as
renewable energy supply, upstream processes, and other
external factors, can have a direct impact on the behaviour of
the system being controlled. By integrating forecasts of these
variables into the MPC framework, the controller can make
more informed and proactive decisions.

Using machine learning dynamic models within MPC
introduces uncertainties due to various factors such as
model errors, noisy measurements, and changes in the
underlying system dynamics.32 Measuring uncertainty is a
crucial to chemical engineering, yet when using machine
learning to model chemical system, the models often
predict just a single point value (e.g., the predicted CO2

capture rate). The standard procedure is to evaluate the
models' ability to make new predictions using unseen test
data and providing error scores for the models' overall
ability to fit the unseen data. However, this does not
provide a specific estimation of the uncertainty associated
to that point prediction. Prediction intervals, on the other
hand, provide a range of plausible values for the
predictions, thereby incorporating uncertainty estimation.

Conformal prediction is a well-established framework that
offers a principled approach for generating prediction
intervals with provable validity guarantees.33 The use of
conformal prediction within reaction chemistry and
engineering modelling field is limited. However, by
estimating the uncertainty, conformal prediction offers
engineers valuable insights into the reliability of the
model's output, enabling engineers to make informed
choices based on the level of uncertainty associated with
each prediction. This knowledge can help to make machine
learning models more interoperable, a key challenge to
their widespread use within chemical engineering.34

In this study, a MPC framework is proposed aimed at
optimising the rate of CO2 capture and the energy
consumption in an EW reactor designed to capture CO2

emissions from the flue gas of a coal power plant. Two
methods to dynamically model the system are evaluated
against a steady model of the system. To enhance the
framework's capabilities, a technique for integrating forecasts
of external system variables into the multi-objective
optimisation algorithm is developed. Moreover, the
framework's functionality is extended by employing
conformal prediction to assess the uncertainty associated
with the outputs of the dynamic models. This also includes
utilising conformal prediction to evaluate the uncertainty
linked to the solutions obtained through multi-objective
optimisation. Notably, to the best of the authors knowledge,
this application of conformal prediction to multi-objective
optimisation solutions has not been previously documented.
While the framework was developed and demonstrated
within the context of an EW reactor, its applicability extends
to other CCS technologies and the wider reaction chemistry
and engineering applications. The overarching aim is to
enable flexible and efficient operation, thereby contributing
to the practical implementation of CCS in pursuit of net-zero
emissions targets.

2. Methods and materials
2.1 The enhanced weathering CO2 capture reactor and
system

The power plant flue gas is directed into the EW packed
bubble column (PBC) reactor, shown in Fig. 1(A), where
efficient removal of CO2 takes place before the treated flue
gas is either released to the atmosphere or subjected to
additional treatment. To ensure a sustainable power supply,
the reactor's electricity demand is primarily met by renewable
wind energy, with grid electricity serving as a backup during
periods of intermittent wind availability. However, the
variable CO2 concentration in the flue gas and the
intermittent nature of renewable power sources introduce
challenges that compromise the CO2 capture rate and
environmental benefits associated with enhanced weathering
reactors. Fig. 1(B) illustrates the schematic representation of
model predictive control framework developed for the CO2

capture system investigated in this study.
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In response to these challenges, a multi-objective
predictive optimisation framework was developed aimed at
proactively optimising the reactor conditions, specifically
the superficial gas and liquid flow rates. This optimisation
strategy aims to concurrently maximise the CO2 capture
rate and minimise non-renewable energy consumption. To
achieve this, the framework utilises a multi-target dynamic
reactor model that predicts CO2 capture rate and the power
consumption of the reactor using real-time input data
encompassing the incoming flue gas CO2 concentration
and reactor operating conditions. These predictions then
feed into a multi-objective optimisation genetic algorithm
that finds the optimal reactor conditions (superficial gas
and liquid flow rates) to simultaneously maximise CO2

capture rate and minimise non-renewable energy
consumption in response to the system variables, i.e.,
availability of renewable energy and flue gas concentration.
To further enhance the framework's utility, its capabilities
were extended from adaptive optimisation based on real-
time data to predictive optimisation. This extension
involves the development of time-series models capable of
forecasting the system variables and utilise these
predictions to pre-emptively optimise the reactor
conditions.

2.2 Reactor-scale dynamic multi-physics simulation

The detailed mechanistic models of a packed bubble column
(PBC)-based enhanced weathering system for CO2 removal
have been developed previously.11,19,20 The accuracy of these
models was confirmed through experimental validation,
focusing on the calcite dissolution rate11,13 and dynamic CO2

removal efficiency.14 These validations were conducted using
both fresh water and seawater, thereby demonstrating the
robustness and reliability of the developed models. To avoid
redundancy, only the key governing equations and
descriptions are provided.

2.2.1 Mass balance. Diffusive and dispersive mass
transport of gaseous CO2 is omitted in PBC owing to its
negligible influence in comparison with convective mass
transport at high Peclet number. A time-dependent equation
is developed to describe the unsteady state mass balance of
CO2(g), leading to

εG
∂
∂t cCO2 gð Þ þ ∇· uGcCO2 gð Þ

� � ¼ −rG–L (1)

where εG (−) is the gas holdup, defined as the volume fraction
of packed bed occupied by the gas phase, cCO2(g) (mol m−3) is
the concentration of gaseous CO2, uG (m s−1) is the gas
superficial velocity, rG–L (mol m−3 s−1) is the source term,

Fig. 1 Schematic representation of (A) enhanced weather packed bubble column reactor and (B) the model predictive control framework
developed to maximise enhanced weathering reactor CO2 capture rate, whilst simultaneously minimising non-renewable energy consumption.
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representing transfer of CO2 from gas to liquid through the
interfacial area of gas and liquid.

Similarly, a time-dependent expression for aqueous
species i in the packed bed is given as

εL
∂
∂t ci − εLEL∇2ci þ uL∇·ci ¼ ri (2)

where εL (−) is the liquid holdup, defined as the volume
fraction of packed bed occupied by the liquid phase, ci (mol
m−3) is the concentration of aqueous species i, EL (m2 s−1) is
the hydrodynamic dispersion coefficient, uL (m s−1) is the
superficial liquid velocity, and ri (mol m−3 s−1) is the source
term for species i. The aqueous species include CO2(aq), Ca

2+

and total carbon ions (TCI) defined as the sum of
bicarbonate and carbonate.

The Dirichlet boundary and Danckwerts' boundary
conditions35 are adopted for eqn (1) and (2), respectively,
leading to the following expression:

at gas inlet, x = 0, cCO2(g) = cCO2(g),inlet (3)

at liquid inlet: x = Hbed, uLci,inlet = uLci − DL,i ∇ci (4)

The Neumann boundary (zero flux) is applied on the liquid
and gas outlets as

at liquid outlet: x = 0, ∇ci = 0 (5)

at gas outlet, x = Hbed, ∇cCO2(g) = 0 (6)

The subscript i represents the aqueous species, e.g. CO2(aq),
Ca2+ and TCI; DL,i (m

2 s−1) is the diffusivity of species i in
aqueous phase.

2.2.2 Reaction kinetics. For this study, it was assumed that
the flue gas has been pre-treated, thus only CO2 and air
mixture is introduced into the EW capture reactor.
Additionally, it was assumed that the air in the mixture is
inert and therefore has no effect on the reaction kinetics.
Calcite particles are chosen as the minerals to conduct the
EW reaction. The relatively sluggish calcite dissolution
process in aqueous environment with dissolved CO2 is
modelled using the 7 elementary steps proposed by Cents
et al.36 and Plummer and Busenberg37 for the CaCO3–CO2–

H2O system. The water dissociation reaction and the
carbonisation reaction of bicarbonate in alkaline
environment are treated through chemical equilibria due to
their rapid reaction rates. The change in particle size is
associated with dissolution of calcite particles through mass
balance between solid and aqueous phase.

2.2.3 Interfacial area and mass transfer coefficient. The
gas–liquid and solid–liquid interfacial areas are calculated
and implemented in the source terms rG–L and ri in mass
balance eqn (1) and (2). For example, the source term in eqn
(1) is used to describe the mass transfer of CO2 from the gas
flow into the aqueous phase:

rG–L ¼ aG–LKOL CCO2 aqð Þ* − cCO2 aqð Þ
� �

(7)

The gas–liquid mass transfer of CO2 is modelled using
specific mass transfer area (aG–L) and overall mass transfer
coefficient (KOL). In the case of the PBC, the value of aG–L is
determined using gas hold-up and bubble size. Gas hold-up
is estimated by combining a static and a dynamic
component, as determined through experimental
analyses,38,39 while bubble size is determined using a
correlation provided by Akita & Yoshida.40 The estimation of
KOL in the PBC model was carried out using Danckwerts'
formulation, which relies on surface renewal analysis.41 As all
the calcite particles are fully immersed in the aqueous phase,
the calculation of the solid–liquid interfacial area is
determined by dividing 6 by the particle diameter.

2.2.4 Energy consumption. The energy consumption
necessary for running the CO2 capture reactor includes
two main components: the energy needed to pump water
to the reactor's upper part and the energy required to
compress the gas feed to overcome pressure losses within
the reactor. CO2 capture rate, defined as kg CO2 captured
over the modelling period, is calculated by the following
expression:

RCO2 ¼
ð t

0
cinletCO2

− coutletCO2

� �
MCO2uGSRdt=t (8)

where MCO2
(kg mol−1) is the molecular weight of CO2,

c inletCO2
and coutletCO2

(mol m−3) are the CO2 concentration at

the inlet and outlet, respectively. t (h) is the required time
to dissolve a required mass of calcite, which is also the
period of computational process.

This requires mechanical energy, consisting of gas flowing
and water pumping over a time period t, and is expressed as

WG ¼ 1
η

ð t

0
pinQ

in
G

γ

γ − 1
pout
pin

� � 1−1=γð Þ
− 1

" #( )
dt (9)

WL ¼ 1
η

ð t

0
ρLQLgH

pbldt (10)

where WG and WL (W) are the energy consumptions for the
gas and liquid, η is compressor efficiency, γ is the ratio of
specific heats at constant pressure and constant volume, Qin

G

(m3 s−1) is the inlet volumetric flow rate of gas, QL (m3 s−1) is
the volumetric flow rate of liquid, pin (Pa) is the pressure of
the feed stream prior to compression, and pout (Pa) is the
outlet pressure of the compressor.

The total energy consumption for maintaining gas and
liquid flows is thus

Etotal = WG + WL (11)

In summary, a reactor-scale mechanistic model for the CO2

capture through a PBC is developed by integrating reaction
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kinetics of enhanced weathering of calcite in a CO2-rich
aqueous environment and the mass transport of CO2 from
gas fluids (bubbles) into liquid phase. The CO2 capture rate
and energy consumption are calculated as two performance
indicators, with respect to three time-dependent operating
parameters, namely inlet CO2 concentration, gas and liquid
superficial velocities. These two performance measures are
then used as the output in the subsequent dynamic data-
driven surrogate models.

2.3 Dynamic data-driven surrogate models

In multi-objective optimisation, conducting a substantial
number of simulation runs can be prohibitively expensive
and time-consuming due to the high computational cost
involved.11 To address this challenge, data-driven surrogate
models were developed as an alternative approach. These
surrogate models offer a computationally efficient means of
predicting reactor performance compared to the complex
mechanistic simulation model presented in section 2.2. By
leveraging these surrogate models, the optimisation process
becomes more streamlined, enabling effective exploration of
multiple variables while reducing computational burden and
saving valuable time. Two deep learning models were
developed to capture the dynamics of the EW reactor: a two-
stage multilayer perceptron network (2-stage MLP); and a
long short-term memory network (LSTM).

A MLP is a type of artificial neural network that consists
of multiple layers of interconnected neurons.42 It is a
feedforward neural network, meaning that information flows
only in one direction, from the input layer through hidden
layers to the output layer. In contrast to conventional
industrial packed bed reactors, mineral particles dissolve
during the CO2 capture process, leading to changes in
packing structure and interfacial areas over the course of the
operation.11 Direct measurement of the packing material's
size during operation is unfeasible. Therefore, to capture this
dynamic a two-stage MLP model was proposed, as outlined
in Fig. 2. The first stage is a model that predicts the
deterioration to packing material caused by the previous
timestamp. The second stage then predicts CO2 capture rate
and the power consumption of the reactor using the

incoming flue gas CO2 concentration, reactor operating
conditions and packing material size predicted in stage 1.

An alternative to the two-stage approach, is a long short-
term memory network (LSTM), which is a type of recurrent
neural network that excels in capturing and processing
sequential data, such as time series.43 The architecture of an
LSTM network consists of a series of interconnected memory
cells, which are organised into a recurrent structure. Each
memory cell is equipped with three essential components: an
input gate, a forget gate, and an output gate. These gates
regulate the flow of information into, out of, and within the
memory cell. The key innovation of LSTM lies in its ability to
selectively remember or forget information over extended
sequences, enabling it to capture both short-term and long-
term dependencies within the data. Given the LSTM's
capability to capture temporal information, the inclusion of
specific details regarding the packing material, as
implemented in the two-stage approach, becomes redundant
as this data is inherently assimilated and encoded within the
LSTM's temporal understanding. The performance of the
dynamic models was evaluated in comparison to a steady-
state MLP model. The MLP model solely relied on the
incoming CO2 concentration and reactor conditions to
predict the CO2 capture rate and power consumption. Unlike
the dynamic models, the MLP model did not consider any
information about the reactor dynamics.

The 2-stage MLP and LSTM models were developed using
a dataset of 1001 datapoints, which simulated a 42-day
operation of the EW PCB reactors with data recorded every 30
minutes. Synthetic data representing the CO2 concentration
in flue gas from coal-fired power plants was created using the
method and data provided in.44 The optimum Latin
hypercube sampling method (OLHS)45 was used to generate
random sample points for the reactor operating conditions
within the standard operating range outlined in.11 The
dynamic mechanistic simulation model was used to
determine the CO2 capture rate, reactor power consumption,
and particle size deterioration in these conditions.

The data set with 1001 samples was divided into 70% as
training data, and the remaining 30% as testing data. The
testing data was formed with the last 150 recorded hours,
never seen by the models during the training and validation.

Fig. 2 The two-stage multilayer perceptron network (MLP) dynamic model to predict CO2 capture rate and the power consumption of the
enhanced weathering packed bubble column reactor with respect to deteriorating packing material size.
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The training data was normalised the by scaling them
ranging from 0 to 1 through the minimum–maximum scaler
procedure. The normalised weights were then used to
normalise the testing data. The training data is then further
partitioned into multiple training and validation data sets
using cross validation, which splits the data into multiple
folds of training and validation dataset. Each of the folds is
given an opportunity to be used as a held back validation set
whilst all other folds collectively are used as a training
dataset. The purpose of cross-validation is to reduce the risk
of overfitting the data during the hyperparameter
optimisation. A hyperparameter is an adjustable algorithm
parameter that must be either manually or automatically
tuned in order to obtain a model with optimal performance.
The withheld testing data was then used to evaluate the final
models to provide an unbiased evaluation of the models'
predictive capabilities.

2.4 Time-series forecasting models

In this study, two Bi-LSTM models were developed to forecast
short-term CO2 concentration in flue gas from a coal plant
and the availability of power from a micro wind turbine (with
a capacity below 100 W) specifically designed to power the
carbon capture reactor. Recently, Bi-LSTM (bi-directional long
short-term memory), an extension of LSTM model with an
additional backward training step has gained a lot of interest
in the prediction of sequential data.46–49 By incorporating a
bidirectional structure, each cell of LSTM enables to learn
the data from both past and future directions. For instance,
Tai et al. adopted Bi-LSTM to understand the intermittency of
renewable energy, ultimately optimising the energy
management in the electrochemical CO2 reduction
reaction.49 The synthetic coal fire plant emission data created
in section 2.3 was used to train the flue gas CO2

concentration forecast model and historical wind turbine
data sourced from ref. 49 was used to train the wind power
availability forecast model.

2.5 Model evaluation and uncertainty quantification

The assessment of predictive capabilities among different
models was subjected to statistical evaluation using three key
metrics: the coefficient of determination (R2), the normalised
root of mean squared error (nRMSE), and the mean absolute
percentage error (MAPE). R2, which represents the squared
value of the sample correlation coefficient between observed
and predicted values, serves as an indicator of the extent to
which the model can account for the variance in the data.50

On the other hand, nRMSE quantifies the normalised
magnitude of the mean square error,51 while MAPE measures
the absolute percentage of the errors.52 The ideal model from
a statistical perspective is characterised by an R2 value
approaching one, simultaneously minimising nRMSE and
MAPE.

Inductive conformal prediction was employed to
determine precise levels of confidence in new predictions.

The training data was further randomly partitioned into 90%
training data and 10% calibration data. The models were
then trained using the new training data as outlined in
section 2.3. The predicted values from the calibration data
set were then predicted using the trained models. The
nonconformity measurers (α-values) for all the calibration
examples were then generated. Nonconformity measurers
how different a new example is from old examples and can
be generated as the absolute difference between the actual
value and the predicted value for the calibration set.33 Next
the α-values are sorted in ascending order to generate
nonconformity scores, which provides understand of the
distribution of uncertainty across a set of predictions. The
prediction interval can be defined based on the distribution
of nonconformity scores from the calibration set. For
example, you can select a threshold or quantile level (e.g.,
95% quantile) to form the prediction interval around the
predicted value for the test data point. The prediction interval
is constructed based on the distribution derived from these
nonconformity scores originating from the calibration set. By
selecting a predetermined threshold or quantile level (for
instance, the 95% quantile), a prediction interval can be
established around the predicted value for the test data
point.

2.6 Multi-objective optimisation

A multi-objective optimisation formulation strategy was
designed to use the non-dominated sorting genetic algorithm
(NSGA-II) to find the best solution for two objectives. The
first objective is to maximise the CO2 capture rate and the
second is to minimise the non-renewable energy resources.
The estimation of the CO2 capture rate was conducted
through the utilisation of data-driven surrogate models,
denoted as G1, which were described in section 2.3. The
objective constrained to ensure that the capture rate remains
above zero in order to guarantee that the reactor is
consistently configured to seize a portion of the CO2

emissions emitted by the coal-fired power plant. The NSGA-II
is committed to minimising all objectives; therefore, the first
objective was computed as follows:

min f1 = −g1(y1, x1, x2) (12)

where y1 represents the predicted CO2 concentration in the
flue gas from the LSTM model developed in section 2.4, x1 is
the superficial gas flow rate and x2 is the superficial liquid
flow rate.

The reactor's electricity demand is primarily met by
renewable wind energy, with non-renewable grid
electricity serving as a backup during periods of
intermittent wind availability. The power consumption of
the reactor, as evaluated by data-driven surrogate models
denoted as G2, was optimised in order to minimise the
reliance on non-renewable energy sources. The goal of
the reactors is to maximise the capture of CO2
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emissions while minimising the utilisation of non-
renewable energy sources. To achieve this, a constraint
was imposed to ensure that the proportion of non-
renewable energy supply remains greater than or equal
to zero, thereby ensuring the optimal utilisation of
available renewable energy for CO2 capture.

min f2 ¼ 1 − y2
g2 y1; x1; x2ð Þ (13)

where y2 represents the predicted wind energy available
from the LSTM model developed in section 2.4.

Overall, the multi-objective optimisation problem can be
presented as below:

min(F) = min { f1, f2} (14)

Subject to

f1 ≥ 0,
f2 ≥ 0 (15)

The bounds on the decision variables (i.e., reactor condition
set points) were determined from previous work11 and are
given as followed:

0.0001 ≤ x1 ≤ 0.01,
0.0001 ≤ x2 ≤ 0.01 (16)

Solving the problem using the NSGA-II generates a set of
optimal conditions corresponding to the trade-off curve
(Pareto front) between the two objectives. The multi-criteria
decision making method augmented achievement scalarising
function (AASF) was then employed to combine multiple
conflicting objectives into one in order to find a Pareto
optimal solution to the original problem.53

3. Results and discussion
3.1 Necessity of dynamic models

When altering the set point of reactor conditions, e.g.,
changing incoming flue gas CO2 concentration and velocity,
the packed bubble column reactor requires time to stabilise
and reach equilibrium. If the reactor conditions again shift
before equilibrium is attained, relying solely on steady-state
models would result in inaccurate performance predictions.
This is because steady-state models assume that the system
remains in a stable, equilibrium state. If the reactor
frequently experiences transient behaviour and does not

Fig. 3 Impact of reactor parameters (x1: superficial liquid velocity; x2: superficial gas velocity; x3 CO2 inlet concentration) on time to return to
equilibrium for eight scenarios (A–H) of the permutations of the maximum and minimum values of x1, x2 and x3.
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return to equilibrium, steady-state models may not accurately
capture the system's dynamics.

To investigate how long the reactor returns to equilibrium,
eight different scenarios were investigated by altering
permutations of the maximum and minimum values of
superficial liquid velocity, superficial gas velocity, and CO2

inlet concentration. As shown in Fig. 3, in most scenarios,
the required time to reach equilibrium is less than 30
minutes. However, in case G and H, when both the
superficial velocities of liquid and gas are 1 × 10−4 ms−1, the
time significantly increases to approximately one hour,
indicating the great impact of superficial liquid velocity on
the reaction equilibrium. Within this study, the reactor
conditions and/or flue gas condition fluctuate every 30
minutes. When the reactor is operating under superficial
velocities of liquid and gas close to 1 × 10−4 ms−1, it is
experiencing transient behaviour and does not return to
equilibrium before the next change. In these situations, a
steady-state model may not accurately capture the system's
dynamics and a dynamic modelling approach would be more
appropriate method for capturing these transient responses.

3.2 Evaluation of the data-driven surrogate models

Two deep learning models were developed to capture the
dynamics of the PBC reactor: a two-stage multilayer
perceptron network (2-stage MLP); and a long short-term
memory network (LSTM). The models' predictions were
compared against the “actual” values obtained through
directly solving the dynamic mechanistic simulation model.
The standard correlation coefficient (R2), normalised root-
mean-square deviation (nRMSE) and mean average
percentage error were investigated to evaluate the predictive
accuracy of the data driven surrogate models and the results
are presented in Table 1.

The importance of incorporating system dynamics in
models is evident in the superior generalisation ability
exhibited by the dynamic models as compared to the steady-
state models. From the results in Table 1, it can be inferred
that both dynamic models we able to accurately able to
predict CO2 capture rate, achieving higher R2 (>0.99), low
nRMSE (<0.03) in contrast to the steady state model (R2: 0.96
and rRMSE 0.04). Notably, the MAPE of the 2-stage MLP
model signifies an average percentage deviation of 7.16%
between the predicted and actual values, which is

significantly lower compared to the steady-state model
(20.42) and LSTM model (21.74). This reduction in MAPE
emphasises the accuracy of the 2-stage MLP model in
predicting the CO2 capture rate, thus highlighting the
model's competence in capturing the EW-reactor dynamics.
The LSTM models shows a higher MAPE during testing
(21.74), suggesting that the model may have had more
difficulty capturing the target output accurately compared to
2-stage MLP model.

The results in Table 1 show that all models accuracy
decreased when predicting the reactors power consumption
when compared to predicting CO2 capture rate. This was
particularly true for the steady state MLP and LSTM models
that have a larger difference in their training and testing
statistically error metrics, indicating their decreased ability to
generalise to unseen data. However, the benefit of including
dynamic information was again demonstrated by the superior
performance of the 2-stage MLP model, which achieved a
high R2 (0.98) and low nRMSE (0.03) and MAPE (7.22) of the
2-stage MLP model when evaluated on unseen testing data.
When contrasted with prior research involving the
construction of steady-state models for forecasting power
consumption in EW reactors (with R2 values of 0.89 (ref. 11)
and 0.96 (ref. 19)), the dynamic models formulated in this
investigation attained superior precision, recording an R2

value of 0.98. These results are in agreement previous work
that has demonstrated the benefit of capturing knowledge of
the reactor dynamics when modelling chemical reactors.54 To
the best of the authors knowledge, this work is the first to
proposes a method to capture the deterioration of packing
material size in a dynamic machine learning model. The
benefit of this approach is demonstrated by the observed
disparity in performance between the LSTM and 2-stage MLP
models, which could be attributed to the LSTM model's
inherent complexity, which renders it more susceptible to
challenges during the training process, particularly in terms
of overfitting.55

Fig. 4 presents the results of using conformal prediction
applied to the 2-stage MLP models, to assess the predictive
uncertainty associated with their predictions over a 24-hour
operation of the reactors using unseen data. Additional
results for using the models to make predictions for
alternative 24-operation of reactor operation are presented in
the ESI† (Fig. S1–S4). The alpha value chosen for this analysis
was 0.05, corresponding to a 95% confidence level. By

Table 1 Statistical analysis of the data driven surrogate models' capability to fit the training and testing data

Model Data

CO2 capture rate Power consumption

R2 nRMSE MAPE R2 nRMSE MAPE

Steady state MLP Training 0.98 0.02 10.71 0.96 0.04 6.51
Testing 0.96 0.04 20.42 0.90 0.07 10.05

2-Stage MLP Training 0.99 0.02 7.16 1.00 0.01 2.45
Testing 0.99 0.03 9.87 0.98 0.03 7.22

LSTM Training 0.99 0.01 7.97 0.98 0.02 5.00
Testing 0.99 0.03 21.74 0.92 0.06 9.73
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examining the resulting prediction intervals, insights into the
models' performance and reliability were made. For the CO2

capture model predictions (Fig. 4A), the conformal prediction
algorithm generated prediction intervals that exhibited a
narrow range. Furthermore, the actual values are consistently
within the prediction intervals for this time period. This
indicates that during these periods, the model's uncertainty
estimates align closely with the true variability of the data,
enhancing the credibility of the model's predictive
capabilities. This consistency reinforces the model's capacity
to capture and quantify uncertainty, thus providing decision-
makers with a reliable tool for assessing the potential
outcomes of the CCS technology's CO2 capture rate
predictions. There are instances where actual power
consumption values deviate from the prediction intervals
(e.g. 368.5–370 hours) suggest a level of unpredictability not
observed in the CO2 capture rate predictions. These

disparities may stem from the intricate interplay of factors
influencing power consumption, such as varying operational
conditions, energy demands, and fluctuations in equipment
efficiency.21 Unlike the CO2 rate, which might be influenced
by more stable chemical processes, power consumption can
be influenced by a wider array of dynamic and complex
variables.

3.3 Evaluation of time-series models

The performance of the LSTM models in forecasting short-
term CO2 concentration in flue gas from the coal plant and
wind energy from a micro turbine was statistically evaluated
using unseen testing data and the results are presented in
Table 2. This is to assess the accuracy and performance of
the models in predicting CO2 concentration and power
availability. Both the testing and training results showed
good agreement in Table 1, indicating the models' ability to
generalise well to unseen data.

For the flue gas CO2 LSTM model, the testing results
revealed a R2 value of 0.97, indicating a strong correlation
between the predicted and actual CO2 concentration
values. The nRMSE was 0.04, reflecting a small deviation
between the predicted and actual values and the MAPE of
2.54 suggests that, on average, the model predictions
deviated by 2.54% from the actual CO2 concentrations.

Fig. 4 Comparison of CO2 capture rate (A) and reactor power consumption (B) predictions against actual values, including prediction intervals
determined using conformal prediction, over a 24-hour operation of the reactors using unseen data.

Table 2 Statistical analysis of the LSTM time series models' capability to
fit the training and testing data

Model Data R2 nRMSE MAPE

CO2 Training 0.99 0.02 1.93
Testing 0.97 0.04 2.54

Wind energy Training 0.89 0.05 16.41
Testing 0.83 0.07 18.89
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Similarly, the wind turbine energy LSTM model
demonstrated satisfactory performance. The R2 value of
0.83 indicated a reasonably good fit between the predicted
and actual wind energy values. The nRMSE of 0.07
suggests a moderate level of accuracy, while the MAPE of
18.89 indicates an average percentage deviation of 18.89%
between the predicted and actual wind energy values.
These results are consistent with other studies that have
used LSTM modelling techniques to forecast wind power
from turbines.55,56 Wind power forecasting is a difficult
task due to the influence of many factors, including
weather, wind speed and temporal variability.56

When integrating the LSTM models into a multi-objective
optimisation framework aimed at maximising the CO2

capture rate and minimising non-renewable power
consumption, the observed model errors have important
implications. The flue gas CO2 LSTM model strong
performance enables precise estimation of the CO2 capture
rate, contributing to effective decision-making for
maximising the capture of CO2 emissions from the coal
plant. However, the wind energy LSTM model exhibited
relatively higher error rates compared to the flue gas CO2

LSTM model. This discrepancy suggests that the wind energy
predictions may be less reliable, introducing uncertainties
when incorporating them into the optimisation framework.
The higher errors in wind energy forecasting could lead to
suboptimal decisions regarding the utilisation of non-
renewable power sources.

Fig. 5 presents a visual comparison of the actual data
and the model predictions for the testing dataset. The
plot showcases good agreement between the two, with the
model predictions (shown as a solid line) closely tracking
the actual CO2 concentration and wind turbine power
output (represented by the scattered data points). This
alignment reinforces the reliability of the LSTM models in
capturing the complex behaviours of the two time series,
validating their potential applicability in real-world
scenarios. However, Fig. 5(A) does highlight that the LSTM
model consistently overestimates the CO2 concentration
for the last 20 hours of the recorded data. One possible
explanation for the consistently higher CO2 concentration
predictions in the final 20 hours could be a shift in the
underlying dynamics of the system. This suggested that
the patterns and behaviours governing the CO2

concentration may have changed during this period,
rendering the trained LSTM models less effective in
capturing these new dynamics. Factors such as variations
in plant operation, atmospheric conditions, or other
external influences could contribute to this shift. To
address this issue and improve the accuracy of the
predictions, retraining of the LSTM models may be
necessary. If this solution was to be deployed in an
industrial setting the use of online learning would be
recommended to ensure the model is continuously
updated and adapted as new data becomes available in a
streaming or online fashion.57

Fig. 5 Comparison between the actual (A) CO2 concentration in flue gas and (B) the power output from the micro wind turbine against the
corresponding LSTM model predictions for the testing data. The solid line represents the model's predictions, while the scattered data points
indicate the actual data.

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
di

ce
m

br
e 

20
23

. D
ow

nl
oa

de
d 

on
 2

0/
01

/2
02

6 
11

:1
2:

49
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3re00544e


246 | React. Chem. Eng., 2024, 9, 235–250 This journal is © The Royal Society of Chemistry 2024

3.4 Predictive multi-objective optimisation of enhanced
weathering system

A multi-objective optimisation genetic algorithm was then
developed with the twin goals to find the optimal reactor
conditions to maximise the CO2 capture rate and minimise
the proportion of non-renewable energy consumed by the
EW-reactor. The ability of the predictive optimisation
framework was evaluated using the unseen testing data,
representing 150 hours operation of the reactor. Once the
predicted optimal values of the studied reactor conditions
are obtained, they are validated by the simulated results of
physics-based simulation models. The simulated values are
the results obtained by solving the mechanistic simulation
model using the predicted optimal values. The results from
validating the predicted optimal results using the simulated

values is reported in Table 3. The predicted CO2 capture rate
and power consumption good agreement with the simulated
values, demonstrating the effective and reliable prediction of
the model predictive control framework developed in this
study.

The results presented in Fig. 6(A) indicates that the multi-
objective optimisation led to an average increase in the CO2

capture rate of the reactor by 16.7% compared to the
baseline. Furthermore, the method also reduced the
variability associated with CO2 capture rate, resulting in a
more consistent and stable operation of the reactors, as
shown by narrow interquartile range in the box plot in
Fig. 6(A). The increased capture rate signifies a more efficient
utilisation of resources and a reduction in the release of CO2

into the atmosphere. Prior to the implementation of the
predictive optimisation framework, Fig. 6(B) shows the
reactors were consuming an average of 92.9% non-renewable
energy. However, with the application of the framework, this
proportion decreased significantly, reaching an average of
56.6%. The results highlight the potential of using predictive
optimisation techniques to improve the performance and
sustainability of industrial processes. By leveraging predictive
models and optimisation algorithms, it becomes possible to

Table 3 Validation of the predicted optimal results determined by the
surrogate models

Output R2 nRMSE MAPE

CO2 capture rate 0.95 0.05 13.27
Power consumption 0.93 0.04 14.01

Fig. 6 Comparing baseline and optimised performance of the enhanced weather reactors for the (A) CO2 capture rate and (B) reactor power
consumption, including the optimised operating conditions (C) superficial liquid velocity and (D) superficial gas velocity.
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identify optimal operating conditions that maximise
desirable outcomes such as CO2 capture while
simultaneously minimising the consumption of non-
renewable energy.

The superficial liquid and gas velocities of the EW
reactor operate between 0.0001 and 0.01 m s−1. Past
investigations have employed genetic algorithms to ascertain
optimal operational conditions for EW reactors configured
to either maximise CO2 capture rates or minimise power
consumption, utilising a CO2 inlet concentration of 20%.11

This present study extends the scope of the prior research
by determining optimal operational conditions that
simultaneously maximise the CO2 capture rate and
minimise proportion of non-renewable power consumption,
encompassing a range CO2 inlet concentration (5.67–
13.71%) throughout a 150-hour testing operation. As
depicted in Fig. 6(C), the optimal superficial liquid velocity
during this period is observed to range between 0.0015 and
0.0040 m s−1, with a median velocity of 0.0024 m s−1.
Notably, this optimal range is closer to the previously
established optimum superficial liquid velocity deduced for
minimising power consumption (0.00106 m s−1), rather than
maximising CO2 capture rates (0.01 m s−1).11 This
observation suggests that the influence of liquid velocity on
reactor power consumption outweighs its impact on CO2

capture rates. Fig. 6(D) reveals that the optimised superficial
gas velocity lies between 0.0015 and 0.036 m s−1, with a
median velocity of 0.0021 m s−1. This range surpasses the
optimal superficial gas velocities identified in the earlier
study for optimising both CO2 capture rates (0.001 m s−1)

and power consumption (0.0007 m s−1). This deviation
might be attributed to this study exploration of lower CO2

inlet concentrations (5.67–13.71%) compared to the previous
study's concentration of 20%.

The MOO framework's ability to dynamically adjust
reactor operating conditions to attain optimal outcomes
introduces an additional layer of complexity, where the
uncertainty of individual model predictions interacts to
shape the overall outcome uncertainty. The framework
proposed in this study, integrates the uncertainty calculated
using conformal prediction for each distinct model to
establish prediction intervals for the optimal CO2 capture
rate and power consumption determined by the MOO
algorithm, as depicted in Fig. 7. The prediction intervals
associated with the MOO framework tend to exhibit greater
variability compared to those of individual component
models, such as the CO2 capture rate and power
consumption dynamic models (Fig. 4, section 3.2). This
increased interval width reflects the intricate interplay of
various predictions within the MOO framework. Similarly,
the reactor power consumption prediction intervals larger
which can be explained as it includes the wind energy
forecasting model within the MOO framework, which had a
lower accuracy (R2: 0.82) when compared to other models.
The application of conformal prediction to this framework
provides a robust mechanism for quantifying the uncertainty
associated with the MOO's decisions, enabling more
informed and well-grounded choices in the pursuit of
optimising both CO2 capture rates and power consumption
within a dynamically evolving system.

Fig. 7 Comparison of CO2 capture rate (A) and reactor power consumption (B) predictions against actual values, including prediction intervals
determined using conformal prediction, over a 24 hour operation of the reactors using unseen data.
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4. Conclusion

Carbon capture and storage (CCS) technologies play a pivotal
role in mitigating the environmental impact of power plants
and facilitating the transition to a net-zero emission future.
Nevertheless, the formidable energy costs associated with
CCS technologies and the demand for flexible operational
strategies present barriers to their widespread adoption. This
study aimed to address these challenges by developing an
integrated framework that harnesses recent advancements in
machine learning and model predictive control. The work
focused on increasing the CO2 capture rate of an innovative
CCS adsorbent technology known as enhanced weathering
(EW), while concurrently reducing its reliance on non-
renewable power sources.

Dynamic models of the EW reactor treating flue gas
emitted from a coal power plant were developed to predict
CO2 capture rate and power consumption during a 500-
hour operation. A two-stage multilayer perceptron network
dynamic modelling method was proposed. The model
exhibited remarkable predictive accuracy for both desired
outcomes, attaining R2 values of 0.99 and 0.98 for CO2

capture rate and power consumption, respectively. This
performance surpassed that of traditional long short-term
memory (LSTM) modelling techniques, which yielded R2

values of 0.99 and 0.92 for CO2 capture rate and power
consumption, respectively. The dynamic models were used
within a model predictive control framework that utilises
the ensured the efficient operation CO2 capture system.
Additional, machine learning models were developed to
extend the capabilities of MPC framework to include
forecasting external system variable to improve the control
performance. Forecasting models based on LSTM were
developed to predict wind energy (R2: 0.908) and inlet flue
gas CO2 concentration (R2: 0.981) using publicly available
datasets. A multi-objective NSGA-II genetic algorithm is
then applied that utilised the inlet flue gas CO2

concentration and wind energy predictions to pre-
emptively self-optimise the reactor process conditions (i.e.,
superficial liquid flow rate and superficial gas flow rate)
to maximise the carbon capture rate and minimise non-
renewable energy consumption. The dynamic modelling
and MPC framework, as proposed in this study,
culminated in a substantial average increase of 16.7% in
the CO2 capture rate within a month-long operation of
the EW reactor. Simultaneously, the framework reduced
the average non-renewable energy consumption from
92.9% to 56.6%.

Overall, this study has demonstrated the effectiveness of
the proposed model predictive control framework. By
integrating real-time data, dynamic prediction models, and a
multi-objective optimisation genetic algorithm, the
framework successfully optimises reactor conditions to
maximise CO2 capture rate while minimising non-renewable
energy consumption. The incorporation of forecasting
methodologies enables proactive optimisation, providing

valuable insights into future conditions. The research
contributes to the efficient control of CO2 capture systems
and offers significant environmental benefits.
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