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ical evaluation of data-driven
models for continuous dynamical systems†
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and N. M. Anoop Krishnan *b

Continuous dynamical systems, characterized by differential equations, are ubiquitously used to model

several important problems: plasma dynamics, flow through porous media, weather forecasting, and

epidemic dynamics. Recently, a wide range of data-driven models has been used successfully to model

these systems. However, in contrast to established fields like computer vision, limited studies are

available analyzing the strengths and potential applications of different classes of these models that

could steer decision-making in scientific machine learning. Here, we introduce CoDBench, an exhaustive

benchmarking suite comprising 12 state-of-the-art data-driven models for solving differential equations.

Specifically, we comprehensively evaluate 4 distinct categories of models, viz., feed forward neural

networks, deep operator regression models, frequency-based neural operators, and transformer

architectures against 10 widely applicable benchmark datasets encompassing challenges from fluid and

solid mechanics. We conduct extensive experiments, assessing the operators' capabilities in learning,

zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.

Interestingly, our findings highlight that current operators struggle with the newer mechanics datasets,

motivating the need for more robust neural operators. All the datasets and codes are shared in an easy-

to-use fashion for the scientific community. We hope this resource will be an impetus for accelerated

progress and exploration in modeling dynamical systems. For codes and datasets, see: https://

github.com/M3RG-IITD/cod-bench.
1 Introduction

Nature is in a continuous state of evolution. “Rules” governing
the time evolution of systems in nature, also known as
dynamics, can be captured mathematically through partial
differential equations (PDEs). In the realm of science and
engineering, PDEs are widely used to model and study several
challenging real-world systems, such as uid ow, deformation
of solids, plasma dynamics, robotics, mechanics, and weather
forecasting, to name a few.1–3 Due to their highly non-linear and
coupled nature, these PDEs can be solved analytically only for
trivial or model systems. Thus, accurate numerical solutions for
the PDEs are the cornerstone in advancing scientic discovery.
Traditionally, the PDEs are solved using classical numerical
methods such as nite difference, nite volume, or nite
element methods.4 However, these numerical methods exhibit
major challenges in realistic systems in terms of system size,
timescales, and numerical instabilities. Specically, simulating
India. E-mail: priyanshub@iisc.ac.in;

. E-mail: meermehran777@gmail.com;

tion (ESI) available. See DOI:

–1181
the systems for longer timescale or for large domains is
extremely computationally intensive to the extent that per-
forming them in real-time for decision-making is a major
challenge. Further, in the case of large/highly non-linear elds,
these simulations oen exhibit numerical instabilities,
rendering them ineffective.5

The recent surge in articial intelligence-based approaches
suggests that neural models can efficiently capture continuous
dynamical systems in a data-driven fashion.6 These models are
extremely time-efficient in comparison to traditional solvers
and can capture highly non-linear input–output relationships.
Earlier approaches in this direction relied directly on learning
the input–output map through multilayer perceptrons (MLPs),
convolutional neural networks, or graph neural networks.
However, these approaches faced challenges in terms of
generalizing to unseen initial or boundary conditions, geome-
tries, or resolutions. This could be attributed to the fact that the
neural models essentially learn the input–output relationship
in a nite-dimensional approximation. To address this chal-
lenge, a seminal theory, extending the universal approximation
theorem of neural networks7 to neural operators was proposed,
namely, the universal operator approximation theory.8 This
theory unveiled the neural networks' prowess in handling
innite-dimensional inputs and outputs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Theoretically, directly learning the solution operator through
specialized neural network architectures offers several key
advantages. (i) They can directly learn input–output function
mappings from data, thereby obviating the necessity for prior
knowledge of the underlying PDE. (ii) They offer signicantly
improved time efficiency compared to traditional numerical
solvers. (iii) They exhibit zero-shot generalizability, extending
their applicability to systems of larger scale and complexity than
those encompassed within the training dataset. (iv) They
provide superior approximations of the solution operator
compared to existing neural architectures, spanning from feed-
forward networks to specialized models like convolutional
networks and conditional generative adversarial networks
(GANs). Thus, the neural operators attempt9 to combine the best
of both data-driven and physics-based numerical models.

This motivated the exploration of neural operator architec-
tures,10,11 capable of directly learning the solution operator. For
instance, consider DeepONet,12 which leverages the universal
approximation theorem introduced by Chen and Chen to
directly address PDEs. On a different front, FNO,13 one of the
most widely used Neural Operators, focuses on parameterizing
the integral kernel within Fourier space. Moreover, a note-
worthy study14 highlights the notion that all transformers are
essentially operators. This insight has sparked endeavors to
create operator transformers. Given their proven effectiveness
in sequence-to-sequence learning tasks, these transformer-
based designs open avenues for enhancing the approximation
of spatiotemporal PDEs. Prior studies, such as those by ref. 15
and have delved into the realm of PINNs16 and some neural
operator architectures, like DeepONet, FNO, and their variants.

However, unlike elds like computer vision, comprehensive
comparative evaluations of these neural operators are absent.
Such evaluations are pivotal to discerning the distinctive
advantages of diverse architectural paradigms, especially when
addressing equations from a wide spectrum of scientic
domains (Fig. 1). The challenging nature of these comparative
evaluations is amplied by variations and incompatibilities
among different architectures. While there have been several
attempts at repositories, such as,17–19 featuring implementa-
tions of various neural operators, their scope remains limited
(refer to ESI Table 2†).
Fig. 1 A glimpse of the data diversity under consideration. From left to rig
Darcy flow, and Navier–Stokes.

© 2024 The Author(s). Published by the Royal Society of Chemistry
This study aims to bridge this gap by rigorously evaluating
data-driven models that encompass a wide range of classes and
methods, including the foundational deep operator regression
model, frequency domain parameterization models, and
transformer-based architectures, to achieve state-of-the-art
performance comparison on selected PDE datasets. Moreover,
we integrate conventional neural architectures to underscore
the merits of PDE-specialized structures. Our dataset selection
is methodical, designed to challenge eachmodel with equations
from various scientic disciplines. We incorporate ve preva-
lent equations from uid dynamics and ve standard differen-
tial equations from solid mechanics into the neural operator
domain, ensuring a holistic comparison within the realm of
neural operators.
1.1 Our contribution

In this work, we critically analyze 12 data-driven models,
including operators and transformers, on 10 PDE datasets. The
major contributions of our research are as follows:

(1) CoDBench: we present a package that allows seamless
analysis of several data-driven approaches on PDEs. We thor-
oughly assess state-of-the-art data-driven neural models for
solving PDE datasets across diverse scientic realms, such as
uid and solid mechanics, shedding light on their precision
and efficacy.

(2) Super-resolution: we analyze the ability of neural opera-
tors' to generalize to systems of different resolutions than that
of their training sets' discretizations.

(3) Data efficiency and robustness to noise: we critically
assess the efficiency of these models to learn from small
amounts of data or noisy data. This is an important aspect since
the data available can be scarce and noisy in practical
applications.

(4) Out-of-distribution task: a novel task to gain insights into
what these models are truly learning to determine whether the
underlying operator is genuinely being learned or if the training
dataset is simply being tted. Two closely related stress and
strain datasets are interchanged during training and testing to
dig deeper into whether the solvers are actually operators.
ht, we present visual representations of three distinct datasets— Biaxial,

Digital Discovery, 2024, 3, 1172–1181 | 1173
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2 Preliminaries

This section provides a concise mathematical framework to
illustrate how traditional PDE solving can be transitioned and
addressed using data-driven methodologies via neural
networks.

(1) Function domains: consider a bounded open set D3ℝd,
which serves as the coordinate space. Within this domain, we
dene F and G as separable Banach spaces corresponding to
the input and output functions. They are denoted by
F ¼ F ðD ; ℝdf Þ and G ¼ GðD ; ℝdg Þ. Here, ℝdf and ℝdg represent
the ranges of functions in F and G, respectively.

(2) The solution operator: n our exploration, we introduce
T† : F/G, a mapping that is typically nonlinear. This mapping
emerges as the solution operator for PDEs, playing a pivotal role
in scientic computations. Refer to ESI Appendix A.2† for
examples of F , G and T† in the context of PDEs.

(3) Data generation: for training purposes, models utilize
PDE datasets constructed as D ¼ fðF k;GkÞg1# k#D, where
Gk ¼ T†ðF kÞ. Given the inherent challenges in directly repre-
senting functions as inputs to neural networks, the functions
are discretized using mesh generation algorithms20 over
domainD. For the input function F k, we discretize it on a mesh
{xi ˛ U}1#i#R, and the discretized F k is {(xi,fik)}1#i#R, where
fik ¼ F kðxiÞ. Similarly, For the solution function Gk, we dis-
cretize it on a mesh {yi ˛ U}1#i#R, and the discretized Gk is
{(yi,gik)}1#i#R, where gik ¼ GkðyiÞ. While the majority of datasets
included in the study sample both input and output functions
on a uniform grid to ensure compatibility with all selected
solvers, we also incorporate datasets sampled on irregular grids.
This addition allows us to assess the capability of solvers to
handle complex real-life applications.

(4) Objective: the overarching goal for each model is to cra
an approximation of T†. This is achieved by developing
Fig. 2 An overview of the various models being benchmarked and the
function, derived directly from proper orthogonal decomposition instea

1174 | Digital Discovery, 2024, 3, 1172–1181
a parametric mapping, denoted as T : F �Q/G or, in an
equivalent form, Tq : F/G, where q ˛ Q, is a parameter space.

(5) Metric: evaluating the efficacy of the parametric mapping
involves comparing its outputs, TqðF kÞ ¼ f~gikg1# i#R, with the
actual data, aiming to minimize the relative L2 loss:

min
q˛Q

1

D

XD

k¼1

1

R

kTqðF kÞ � f~gikg1# i#Rk22
kf~gikg1# i#Rk22

; (1)

Here, R denotes the function discretization parameter.
3 Model architectures

We systematically select 12 data-driven models, encompassing
four distinct categories (refer to Fig. 2). We incorporate stan-
dard neural network architectures to establish a baseline for all
neural operators, while deep operator regression models serve
as foundational elements. Advanced state-of-the-art contribu-
tions emerge in frequency-based operators, with FNO repre-
senting a milestone model. Including frequency-based models
enhances the benchmark's utility. Notably, 2023 introduces
three major transformer-based neural operator architectures,
exhibiting state-of-the-art performance in error rates. We
include transformer-based models to compare the latest
research in neural operators with previously established
approaches.
3.1 Standard neural network architectures

UNet, delineated in ref. 21, employs a U-shaped encoder–
decoder design augmented by skip connections, facilitating the
capture of granular and abstract features. ResNet, described in
ref. 22, consists of a series of residual blocks and are commonly
used in computer vision tasks.23 Conditional Generative
Adversarial Networks (cGAN), introduced in ref. 24, are an
evolution of the GAN framework, facilitating conditional
ir relationship. The term ‘pod-basis’ denotes the basis of the output
d of being learned through a neural network.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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generation via the incorporation of label information in both
the generator and discriminators. FNN is a foundational
element for all machine learning models. Meanwhile, ResNet
and UNet exhibit promising results, with UNet demonstrating
competitive error rates among leading neural operators. cGAN
features a distinctive generative-adversarial architecture,
showing promise in learning PDE datasets. Including these
models in the benchmark study reects their simple architec-
ture yet notable performance in addressing partial differential
equations.

3.2 Deep operator-based regression models

Neural Operators represent a novel ML paradigm, predomi-
nantly employed in scientic machine learning to decipher
PDEs. These operators rely solely on data and remain agnostic
to the underlying PDE. DeepONet bifurcates into two sub-
networks: the branch net, which encodes the input function
at xed sensor locations, and the trunk net, encoding solution
function locations.12 The solution emerges from the inner
product of the outputs from these nets. In POD-DeepONet, the
bases are determined by executing proper orthogonal decom-
position (POD) on training data, replacing the self-learned basis
of output functions.25 This POD basis forms the trunk net,
leaving only the branch net as the trainable component, which
discerns the coefficients of the POD basis. These models
exemplify a direct application of the universal operator
approximation theory, highlighting the capacity of neural
networks in learning and embodying operators.

3.3 Frequency-based operators

Frequency-based solvers like FNO employ a nite-dimensional
parameterization using truncated Fourier modes.13 By inte-
grating this with an integral operator restricted to convolution
and instantiated via a linear transformation in the Fourier
domain, the FNO operator is conceived. WNO, or Wavelet
Neural Operator, amalgamates the prowess of wavelets in time-
frequency localization with an integral kernel. By learning the
kernel in the wavelet domain, convolution operates on wavelet
decomposition coefficients rather than direct physical space
convolution.26 SNO, the Spectral Neural Operator, addresses the
oen-overlooked aliasing error in the Fourier Neural Operator.
By representing both input and output functions using coeffi-
cients in truncated Fourier or Chebyshev series, SNO offers an
aliasing-free approach.27 Any transformation between these
coefficients can be executed using neural networks, and
methods employing these series are termed spectral neural
operators. Their approach utilizes a straightforward, feed-
forward neural network architecture in the complex domain.
Although multiple variants of FNO demonstrate commendable
performance, the selected models above are chosen to exem-
plify the most diverse yet effective approaches in solving partial
differential equations (PDEs) within the frequency domain.

3.4 Transformer operators

GNOT introduces the Heterogeneous Normalized (linear)
Attention (HNA) block and a geometric gating mechanism,
© 2024 The Author(s). Published by the Royal Society of Chemistry
specically tailored for enhanced performance on PDE data-
sets.28 This architecture effectively performs a so domain
decomposition,29 treating each decomposed domain indepen-
dently and subsequently integrating them using a mixture-of-
experts approach to predict the underlying truth. In contrast,
the OFormer model builds upon the seminal work presented in
ref. 30. It incorporates random Fourier projection to counteract
spectral bias, enhancing its efficacy on PDEs.31 Another recent
advance in the eld of the neural operator comes with the
Latent Spectral Model. It maps the high-dimensional coordi-
nate space to a compact latent space and learns the solution
operator in latent space. An attention-based neural network is
instantiated to learn the mapping from coordinate to latent
space and vice versa.32 Despite sharing a common foundational
architecture, all the aforementioned models approach the task
of learning partial differential equations (PDEs) differently.
Their varied methodologies and consistent state-of-the-art
performance across multiple datasets make them ideal candi-
dates for inclusion in the evaluation of data-driven PDE solvers.

4 Datasets

Here, we briey describe the 10 datasets used in the present.
While previous approaches have mostly focussed on uid
datasets, here we present 5 datasets on uid ow and 5 on the
deformation of solids; for complete dataset details, refer A.2.

(1) Burgers equation: this dataset models the one-
dimensional ow of a viscous uid. The input is the uid's
initial velocity distribution at time t = 0, and the output is the
uid's velocity at a time t > 0.19

(2) Darcy ow equation: the Darcy ow dataset describes the
steady-state ow of a uid through a porous medium in two
dimensions. The input is the spatial distribution of the
medium's resistance to ow (viscosity), and the output is the
uid's velocity distribution across the domain at steady-state.19

(3) Navier Stokes: this dataset models the time evolution of
a 2D viscous, incompressible uid. The input includes the
uid's initial swirling motion (vorticity) and external forces
acting on the uid. The output is the uid's velocity distribution
over a specied time period.19

(4) Shallow water equation: the shallow-water equations
simulate the behavior of water that ows over a shallow surface
in 2D. The input consists of the initial water depth and velocity
distribution, and the output predicts the water ow dynamics in
response to gravitational forces and varying underwater terrain
(bathymetry).19

(5) Stress dataset: this dataset models the stress distribution
in a 2D binary composite material subjected to mode-I tensile
loading. The input is the material microstructure (distribution
of two materials), and the output is the stress eld (stress)
distribution of the digital composite.33

(6) Strain dataset: the strain dataset describes the deforma-
tion of a 2D binary composite material subjected to mode-I
tensile loading. The input is the material microstructure, and
the output is the resulting strain elds (strain).33

(7) Shear dataset: part of the mechanical MNIST collection,
this dataset simulates the deformation of a heterogeneous
Digital Discovery, 2024, 3, 1172–1181 | 1175
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material block when forces are applied parallel to its surface
(shear). The input is the material microstructure, and the
output captures element-wise displacements subjected to shear
loading.34

(8) Biaxial dataset: another subset of the mechanical MNIST
experiments, this dataset models the material's response when
stretched equally in two perpendicular directions (equibiaxial
loading). The input is the material microstructure, and the
output records the full eld displacement under biaxial
stretching.34

(9) Elasticity dataset: for this dataset, an external tension is
exerted on an incompressible material featuring an arbitrary
void at its center. The input to the system is characterized by the
material's structure, which is highly irregular and provided in
the form of point clouds. The output is the inner stress within
the material.35

(10) Airfoil dataset: the dataset characterizes the transonic
ow of a uid over an airfoil. Input to the system comprises the
locations of mesh points congured in an irregularly structured
mesh. The output corresponds to the captured Mach number
associated with these specic locations.35
5 Benchmarking results

We present the results of rigorous experimentation on PDE
solvers across six tasks, each designed to elucidate the unique
capabilities and strengths of the models. The diversity of the
selected PDEs, sourced from,19,33–35 encompasses both time-
dependent and time-independent challenges, capturing the
intrinsic computational complexity inherent to these tasks.
Additionally, irregular grid datasets are included to evaluate the
models' capabilities in handling datasets with real-life, general
geometries, as opposed to uniform grids. The experiments
conducted on novel mechanical datasets not previously
encountered by the solvers offer invaluable insights for the
broader scientic community.

In alignment with established experimental protocols, the
dataset was split as follows: ∼80% for training, ∼10% for
Table 1 Performance of different models across diverse datasets from
evaluation metric. Lower scores denote better performance. The optima
best in bold, and the third-best is underlined

Models

Datasets

Burgers Darcy Navier Stokes Sh

FNN 5.853�1.416 3.47�0.14 34.77�0.19 2.4
ResNet 11.327�1.208 5.14�0.23 29.52�0.14 0:2

UNet 30.870�2.000 2.10�0.08 24.02�0.95 0.2
cGAN 34.906�0.506 1:88�0:04 24.00�0.48 0.2
FNO 0.160�0.004 1.08�0.06 14.13�0.34 0.1
WNO 7.332�0.307 2.23�0.14 37.08�1.23 0.5
SNO 40.623�8.437 8.55�1.03 98.46�0.25 94.
DeepONet 10.561�1.182 4.27�0.24 55.48�1.06 8.6
POD-DeepONet 3.999�0.654 3.43�0.04 33.37�1.30 1.5
OFormer 0.165�0.016 3.21�0.06 10.97�3.03 6.5
GNOT 0:677 �0:021 2.04�0.05 23:73�0:97 0.1
LSM 3.047�0.434 1.10�0.11 25.12�0.12 0.3

1176 | Digital Discovery, 2024, 3, 1172–1181
validation, and ∼10% for testing (refer to ESI Table 3† for more
details). We ensured a level playing eld for each operator by
dening a hyperparameter range and selecting the best subset
for experimentation (see ESI Table 4†). Model optimization was
achieved using Adam36 and AdamW37 optimizers (refer to ESI
Table 5†). Depending on the specic task, we employed either
step-wise or cycle learning rate scheduling.38 While we have
attempted to standardize the comparison by tuning on multiple
optimizers, schedulers, different learning rates, scheduler
hyperparameters as well as architectural hyperparameters, we
acknowledge that additional techniques such as regularization
could further level the playing eld.

The training was conducted under optimal hyperparameter
congurations, introducing variability through distinct random
seeds and data splits. All experiments adhered to a xed batch
size of 20 and were executed on 1–8 NVIDIA A6000 GPUs, with
memory capacities of 48 GBs. To ensure fairness and accuracy
in results, each experiment was replicated thrice with different
seeds, and we report the mean and deviation in r relative L2
error.
5.1 Accuracy

Table 1 shows the performance of the models on the eight
datasets. FNO architecture stands out on the majority of data-
sets. Subsequently, GNOT and LSM showcase exemplary
performance on a signicant proportion (5/8) of datasets.
Similar results are observed in experiments conducted on
irregular grid datasets.

FNO's strength lies in its frequency space transformation. By
capturing and transforming the lower frequencies present in
the data, the FNO can approximate the solution operators of
scientic PDEs. This approach, which uses the integral kernel
in the Fourier space, facilitates a robust mapping between input
and output function spaces, making it particularly adept at
handling the complexities of the datasets in this study. GNOT
employing a mixture-of-experts approach and its unique so
domain decomposition technique divides the problem into
distinct domains. The relative L2 error, expressed as (×10−2), is the
l outcomes are highlighted in bold italic font, followed by the second-

allow water Stress Strain Shear Biaxial

24�0.656 25.69�0.59 23.09�7.08 1.11�0.06 3.69�0.01

87 �0:093 20.05�0.19 14.64�0.31 3.02�0.95 13.58�2.67

95�0.097 10.57�0.19 9.05�0.33 7.09�0.46 16.63�2.30

91�0.027 6.66�0.84 6:12 �0:80 5.63�0.50 15.74�1.40

28�0.018 8:08 �0:15 5.61�0.23 2.25�1.14 7.40�1.91

72�0.036 17.24�0.46 12.05�0.26 4.37�0.08 22.22�2.86

891�0.060 51.31�0.01 62.34�1.17 4.37�0.87 21.93�0.57

02�0.431 24.59�0.98 23.75�0.20 2.85�0.18 8.28�0.37

03�0.145 29.63�0.52 18.31�1.17 4.14�0.44 30.46�0.59

97�0.352 27.33�0.28 25.08�1.36 41.75�0.19 61.16�0.49

02�0.007 13.02�0.81 9.99�0.62 0.43�0.02 0.71�0.04

77�0.014 6.17�0.23 4.07�0.12 1:40 �0:12 7:11 �0:31

© 2024 The Author(s). Published by the Royal Society of Chemistry
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multiple scales, allowing it to capture diverse features of the
underlying PDE. Each expert or head in the model focuses on
a different aspect of the PDE, and their combined insights lead
to a comprehensive understanding, especially for challenging
datasets like shear and biaxial.

In contrast to other transformer-based approaches, LSM
initially projects high-dimensional input data into a compact
latent space, eliminating redundant information before
learning the underlying partial differential equation (PDE). It
utilizes a neural spectral block to learn the solution operator
within this low-dimensional latent space, leveraging universal
approximation capacity with favorable theoretical convergence
guarantees. By employing attention for efficient data projection
to and from the latent space and employing theoretically sound
methods to learn the PDE from a lower-dimensional space, LSM
consistently achieves low error rates.

The OFormer architecture that employs an innovative
approach to solving spatio-temporal PDEs, exhibits best results
in Navier Stokes dataset. It efficiently forwards the time step
dynamics in the latent space by unrolling in the time dimension
and initiating with a reduced rollout ratio. This method
conserves signicant space during training on time-dependent
datasets while achieving high accuracy.

Among the models, only four inherently support datasets
with irregular grids (refer to Table 2). To facilitate a compre-
hensive comparison, we introduce variants of LSM (Geo-LSM)
and FNO (Geo-FNO). Notably, GNOT, tailored for practical
applications involving irregular meshes, excels on both data-
sets. It utilizes MLP for initially encoding data into feature
embeddings and leverages transformers to handle diverse input
structures. While FNO and LSM demonstrate prociency in
handling uniform grid datasets, their effectiveness is main-
tained when an additional geometric layer learns the trans-
formation from irregular input domains to a uniform
transformed domain. However, this approach has limitations,
particularly in tasks where efficient transformation from the
input grid to a uniform grid space is challenging to learn.

Interestingly, most models, with the notable exception of
GNOT, struggle to accurately learn the underlying PDE for the
biaxial and shear datasets. The simpler FNN architecture
demonstrates signicant prociency in learning these datasets.
Interestingly, architectures like cGAN, originally designed for
2D image data analysis with its U-Net encoder, demonstrate
impressive performance across tasks. This underscores the
versatility of such architectures, even when they aren't explicitly
designed as operators.
Table 2 Performance of different models on irregular grid datasets. The
capable of handling irregular datasets are included

Datasets

Models

Geo-FNO DeepONet POD-De

Elasticity 2.33�0.16 10.14�0.76 9.99�0.0

Airfoil 1:36 �0:19 14.77�0.30 12.07�0

© 2024 The Author(s). Published by the Royal Society of Chemistry
5.2 Robustness to noise

In practical applications, it's common to encounter noise in
measurements. We simulated conditions with noisy data to
understand how various neural operators handle such real-
world challenges. We intentionally introduced corrupted
input function data to eachmodel during our testing phase. The
goal was to see how well these models could still predict the
ground truth amidst this noise.

Fig. 3 shows the performance of the models on noisy data.
Transformer-based architectures have shown commendable
performance on the Darcy dataset. Even when noise is intro-
duced, these models continue to perform well. However, the
resilience of OFormer and GNOT is tested when faced with the
Stress dataset. In scenarios where they already nd it chal-
lenging to learn the underlying PDEs, the addition of noise
exacerbates their performance issues.

On the other hand, SNO shows superior robustness to noise.
While its performance in a noise-free environment is far from
the best, it performs remarkably when exposed to noisy data-
sets, especially on the stress dataset. This resilience can be
attributed to its unique approach: unlike other frequency-based
methods that transition between the time and frequency
domains, SNO exclusively processes data in the frequency
domain. This design choice allows it to lter out noise, identi-
fying it as a high-frequency disturbance.

A similar scenario is evident in the performance of LSM, as it
remains largely unaffected by noisy input when tested on the
Darcy dataset. Even when subjected to the demanding stress
dataset, LSM consistently ranks among the best-performing
models. This resilience is attributed to its projection into
a compact latent space, eliminating redundant information,
including the noise introduced from the coordinate space.
5.3 Data efficiency

We utilized the Darcy dataset with 1700 samples of 47 × 47
dimensions for the data-efficiency experiments. To assess the
data efficiency of the models, we trained all models on reduced
subsets: 25% (425 samples) and 50% (850 samples) of the
original dataset.

The exceptional performance of frequency-based methods,
notably FNO andWNO, even with limited data, is rooted in their
operation within the frequency domain (see Table 3). The
notable capability of these methods to capture the essential
dynamics of the underlying PDEs through the lower frequencies
present in the data enables data-efficient learning, a crucial
relative L2 error, expressed as (×10−2), is presented. Only the models

epONet GNOT OFormer Geo-LSM

8 1.27�0.04 1.85�0.28 2:26�0:46

.13 0.83�0.06 2.33�0.49 0.70�0.05
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Fig. 3 Robustness analysis against noise: performance metrics, in terms of relative L2 error, are presented for models subjected to random
Gaussian noise. (a) This plot illustrates the performance evaluation of models on the Darcy dataset under varying levels of noise. (b) Detailed
comparison of the most noise-resilient models on the stress dataset, specifically SNO, LSM, OFormer, and ResNet.

Table 3 Data-efficiency analysis: the relative L2 error (×10−2) is reported when trained with reduced subsets of 25% and 50% of the training
dataset (left column). The testing and validation datasets remain consistent across all experiments

Dataset size

Models

FNN ResNet UNet cGAN FNO WNO SNO DeepONet POD-DeepONet OFormer GNOT LSM

25% 4.80�0.27 6.23�0.23 2:60�0:14 3.28�0.13 1.87�0.13 2.94�0.20 24.70�1.08 7.50�0.45 5.09�0.20 3.94�0.13 3.61�0.20 2.41�0.22

50% 3.95�0.24 5.20�0.29 2:10�0:11 2.54�0.13 1.32�0.10 2.37�0.18 24.70�1.12 6.15�0.41 4.17�0.28 3.32�0.08 2.70�0.13 1.57�0.16

100% 3.47�0.14 5.14�0.23 2.10�0.08 1:88�0:04 1.08�0.06 2.23�0.14 8.55�1.03 4.27�0.24 3.43�0.04 3.21�0.06 2.04�0.05 1.10�0.11
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feature for realistic data where the number of observations may
be limited.

Transformer-based neural operator architectures have
demonstrated potential in approximating operators. However,
their efficacy diminishes when data is sparse. GNOT, which
typically excels with a rich dataset, struggles to outperform even
basic neural network architectures in a data-limited scenario.
On the other hand, LSM consistently remains the second best
model in terms of error rates. However, more than a two-fold
increase in the error shows the data dependence of the
attention-based projection method used within the model. This
trend underscores the inherent data dependency of transformer
architectures, highlighting the challenges faced by many
models, except frequency-based operators, when trained on
limited data.
5.4 Out-of-distribution generalization

The equations for stress and strain are intrinsically linked,
differing primarily by the coefficient of elasticity, commonly
known as Young's modulus. Given that our training and testing
processes utilize normalized data, it's reasonable to anticipate
that the models trained on the stress dataset should be adept at
1178 | Digital Discovery, 2024, 3, 1172–1181
predicting strain in the material microstructures and vice versa.
This expectation is particularly true for neural operators that
grasp the underlying partial differential equations (PDEs) gov-
erning such relationships. Table 4 shows the OOD evaluation on
all the models. Interestingly, for SNO, the error on the strain test
dataset remains consistent, whether it was trained on the strain
or stress datasets. The same holds when tested on the stress
dataset. This consistency underscores SNO's ability to learn the
underlying PDE. In stark contrast, other models don't exhibit
this adaptability. Their accuracy levels decline when the testing
set is swapped, indicating a potential limitation in their ability
to generalize across closely related tasks.
5.5 Zero-shot super-resolution

Directly approximating the solution operator offers a theoretical
advantage: the potential for a mesh invariant continuous
dynamical system. Once trained, such a system can ideally
maintain accuracy even when applied to larger systems than
those it was trained on. This capability is termed “zero-shot
super-resolution”.

Note that FNO and GNOT enables zero shot super-resolution
without any modications. Upon closer examination, other
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Out-of-distribution evaluation: models are trained on the stress dataset and subsequently tested on both the stress dataset and the out-
of-distribution strain dataset. The experiment is reciprocated with strain as the training set. relative L2 error (×10−2) is reported

Dataset Models

Train Test FNN ResNet UNet cGAN FNO WNO SNO DeepONet
POD-
DeepONet OFormer GNOT LSM

Stress Stress 25.69�0.59 20.05�0.19 10.57�0.19 6.66�0.84 8:08 �0:15 17.24�0.46 51.31�0.01 24.59�0.98 29.63�0.52 27.33�0.28 13.02�0.81 6.17�0.23

Strain 91.11�0.04 89:83 �0:79 95.79�3.40 95.34�1.57 95.39�0.89 93.71�4.97 62.36�0.46 92.70�3.30 596.33�23.70 68.70�0.76 94.35�1.09 96.31�1.14

Strain Strain 23.09�7.08 14.64�0.31 9.05�0.33 6:12 �0:80 5.61�0.23 12.05�0.26 62.34�1.17 23.75�0.20 18.31�1.17 25.08�1.36 9.99�0.62 4.07�0.12

Stress 75.63�1.49 77:29 �0:72 77.41�0.93 79.49�1.07 79.50�0.86 80.56�1.27 51.65�1.10 77.49�1.50 86.32�2.24 80.26�0.81 80.24�0.95 80.35�0.94

Table 5 Zero-shot super-resolution. Comparing various resolutions
(left) with corresponding model performance (right). The original
training resolution and its associated performance are highlighted in
bold

Dataset Resolution

Models

FNO GNOT

Darcy 47 × 47 1.08�0.06 2.04�0.05

64 × 64 60.50�5.49 55.32�5.65

128 × 128 59.99�5.48 55.42�5.68

Strain 48 × 48 5.61�0.23 9.99�0.62

104 × 104 16.92�0.36 20.26�0.65

200 × 200 18.74�0.24 20.89�0.20
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models, such as SNO and DeepONet, cannot have a straight-
forward application on zero-shot super-resolution. Instead, they
lean on certain workarounds to achieve the desired results.
While these modications might enable super-resolution in
practice, they diverge from the concept of zero-shot super-
resolution from an architectural perspective.

Accordingly, we consider only FNO and GNOT for our eval-
uation. Tests on both Darcy and strain datasets are conducted,
with the original training data having a lower resolution, and
the neural operators are evaluated on higher resolution data.

The inherent architecture of FNO fails to respect the
continuous-discrete equivalence, leading to aliasing errors.39

These errors exacerbate as the test data resolution differs from
the training data; see Table 5. Although GNOT performs slightly
better, its results are still suboptimal. Further theoretical
research is necessary to comprehend the mathematical
Fig. 4 Time efficiency: we report the time taken by each model during
collected during the training on Darcy dataset.

© 2024 The Author(s). Published by the Royal Society of Chemistry
foundations of learning a discretized version of PDE using
transformer-based architectures and the limitation and scope
of improvement regarding generalization capability to contin-
uous domains.
5.6 Time efficiency

Neural operators are gaining traction over traditional numerical
solvers due to their promise of rapid inference once trained. For
this assessment, we've bench-marked various continuous
dynamical systems on two criteria: the duration required to
train on the Darcy dataset and the time needed to predict output
function values for 200 test samples, eachmapped on a uniform
47 × 47 grid. As anticipated, the FNN, with its straightforward
architecture, stands out by requiring the least time for training
and inference. However, when we delve into the other models,
those based on deep operator regression methods show
training duration on par with some complex but standard
neural network architectures. For better visualization, see Fig. 4.
When considering inference time, a pivotal metric in practical
applications, the narrative shis. While FNO is relatively effi-
cient during training, it, along with the transformer-based
models, takes a longer inference stride. While LSM outper-
forms other transformer-based architectures in both metrics, in
the broader context of assessed operators, it doesn't rank as
a highly time-efficient model in either training or inference
time. Though all these models show promising performance on
different metrics, inference time efficiency remains chal-
lenging. In stark contrast, most other models edge closer to
offering real-time inference, highlighting the inherent time
training (on left) and inference time on test set (on right). Results are

Digital Discovery, 2024, 3, 1172–1181 | 1179
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complexity trade-offs one must consider when opting for
a particular neural operator.
6 Concluding insights

The key insights drawn from this work are as follows.
(1) Operator and transformer: FNO, GNOT and LSM emerge

as the superior models across various metrics, suggesting that
the architectural novelty in these models can indeed capture the
maps between innite-dimensional functional spaces.

(2) SNOs' promise to generalize: despite modest overall
performance, SNO stands alone in demonstrating remarkable
adaptability to related datasets. Its exceptional generalization is
facilitated by singular Fourier and inverse Fourier trans-
formations, mapping input to output entirely in the frequency
domain.

(3) Spectral resilience to noise: LSM and SNO demonstrate
robust predictions in the face of noise through a transformation
to reduced dimensional space. By employing effective
approaches for dimensionality reduction even before the
prediction process begins, they efficiently eliminate noise as
redundant information.

(4) Attention alone is not enough: OFormer, employing the
attention-based transformer architecture, showcases notable
advantages on the Navier Stokes dataset. It also demonstrates
commendable results on specic PDEs like Burgers, Darcy.
However, a glaring limitation surfaces when these architectures
are applied to other PDEs, whether of comparable complexity or
even simpler ones. They fail to generalize. This shortcoming
starkly contrasts with one of the primary advantages anticipated
from data-driven PDE solvers: the capacity to discern the solu-
tion operator solely from data, independent of prior knowledge
of the underlying PDE.

(5) Data-driven models work: surprisingly, the cGAN, a stan-
dard architecture for image tasks, excels in performance, even
though it isn't inherently an operator. This prowess, however,
wanes during cross-dataset evaluations, underscoring the
importance of truly learning the underlying PDE rather than
merely excelling on a given dataset.

(6) Challenges with shear and biaxial datasets: The collective
struggle of most operators with the shear and biaxial datasets
underscores the importance studying complex deformation
patterns. Specically, it suggests clear and well-dened operator
failure modes where future works can be focused.

(7) Time efficiency should be improved: while the models
give reasonable performance, they grapple with time efficiency.
Signicantly, the best-performing models, such as transformer-
based architectures, are time-intensive during training and
inference, FNO is relatively swi in training but still intensive in
inference.
6.1 Future work

Although FNO, GNOT and LSM exhibit consistent superior
results, their results in cross-dataset evaluations and zero-shot
super-resolution raise the questions of whether they are truly
learning approximate solutions to the underlying PDE (see App.
1180 | Digital Discovery, 2024, 3, 1172–1181
A.8). Similarly, although resilient to noise and OOD, the internal
neural network architecture of SNO remains largely unexplored
and oen yields subpar outcomes. Future endeavors leveraging
SNOmight pave the way to operators with improved robustness.
Failure modes of operators in datasets require further investi-
gations to build more robust operators that can capture
complex shear deformations. Finally, the model's inference
time requires improvement to be applied to large-scale real-
world problems.
Data availability

For codes and datasets, see: https://github.com/Priyanshu-bee/
cod-bench.
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