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In this work, we exploit Langmuir adsorption isotherms to compare the performance of different materials
(adsorbents) in removing organic contaminants (adsorbates) from water. The removal efficiency observed
reaches an intrinsic limit at low concentrations. We also demonstrate quantitatively how multi-step
adsorption processes achieve better purification efficiency than single-step adsorption performed using
much smaller amounts of adsorbent material. We demonstrate how such performance is strongly affected
Received 19th August 2022, by adsorbent concentration. Only the use of both the parameters obtained from Langmuir adsorption
Accepted 9th April 2023 isotherm (Qn, and K|) modelling allows one to compare materials tested under different experimental
DOI: 10.1039/d2ew00644h conditions by different groups, whereas most published reviews focus only on Q,, which is rather limited
for comparing the performance of different materials studied under different conditions. Finally, we present

rsc.li/es-water some guidelines for data reporting in future work and reviews.

Water impact

For materials science applied to water purification, it is strategic to compare the performances of different adsorbents, the use of appropriate parameters is
an open question. In the present work we show how a widely used and intuitive parameter as removal efficiency is not suitable for such purpose, while the
isotherm'’s parameters, i.e. Langmuir model, are the effective ones.

Introduction a specific concentration, which is the most intuitive approach
for waste water treatment (WWT) plants and prototypes.'* There
is, however, no scientific evidence that removal efficiency values
measured at different concentrations, or under different
experimental  conditions  (adsorbent, pH, adsorbate,
temperature, efc.) can be compared directly.

The most common method used for modelling the
adsorption of different contaminants on a given material is
based on a semi-empirical equation which takes into
consideration the octanol-water partition coefficient of a target
adsorbate molecule (K,,).* After finding the partition coefficient,
this approach is able to model experimental adsorption data for
many organic molecules® including pesticides," but shows
significant  deviation =~ for  bisphenols,” some  active
pharmaceutical ingredients® and water soluble organics.> An
alternative approach measures the weight of contaminant
adsorbed at equilibrium (g., in mg g™*) for different equilibrium
concentrations of the adsorbate molecule in solution (¢, in mg

o : . L™). Some reviews compare the performance of different
Fotoreattivita, CNR-ISOF, via Gobetti 101, 40129 Bologna, Italy. . . . . .
E-mail: alessandro. kovtun@isof cnr.it materials by reporting removal efficiency, but considering that
+ European Chemicals Agency, ECHA, https://echa.europa.eu/universe-of- the data was acquired under different experimental conditions,
registered-substances retrieved July 27, 2020. the usefulness of these data is questionable.

More than 30000 chemicals including drugs, pesticides,
additives etc. are used every day for domestic and industrial
purposes, and over 21000 chemicals have been registered
under the European procedures of registration, evaluation,
authorisation and restriction of chemicals (REACH).f Thus
fast and reliable tests are required for comparing how
different materials can remove from water a large and
continually increasing number of organic contaminants.”
Adsorption is one of the most important water treatment
technologies, particularly for the removal of organic
contaminants from waste water, drinking water and industrial
effluents.” In many published works the removal efficiency is
reported as a simple percentage (weight of molecules adsorbed/
total weight of molecules in the original solution), measured at
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The aim of this communication is to compare results
based on isotherm approaches to calculate unambiguously
the removal efficiency (R). Most work reported so far focusses
on the calculation of adsorption capacity assuming a
monolayer of adsorbate forms on the material, yielding a
quantity Qp,. This value can be estimated theoretically using
Langmuir’ or similar adsorption models, as well as by
extrapolation of the experimental isotherm curve. The
extensive literature on adsorption phenomena has been used
to validate our approach and show the consistency of our
model of removal efficiency prediction.

Materials and methods

The vast majority of papers studying adsorption report the
data as adsorption isotherms and test different theoretical
models to obtain the main physical parameters. In the
present work we have considered only the Langmuir
isotherms and have collected from the literature parameters
obtained experimentally for validation purposes.

Many previous works report data giving the removal
efficiency at low concentrations, since for practical purposes
the adsorption is carried out at low concentration and R is
usually reported as a parameter changing as a function of pH
or other external parameters. Here we have considered only
the papers where the isotherms are presented graphically, in
order to allow verification of overall data quality.

The experimental data of the isotherm shown as an
example in Fig. 1 is taken from our previous publication.®

Results and discussion

Fig. 1 shows a typical isotherm obtained for rhodamine B
adsorption on a polysulfone support coated with graphene
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Fig. 1 Adsorption isotherm with Langmuir fit, plotted in logarithmic

scale (log-log plot), QO = 63.0 mg g, K. = 652 mLmg™, V = 25 mL,
M = 50 mg. Inset: Isotherm plot in linear scale.
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oxide.® We see that g. at high concentrations corresponds
approximately to the theoretical value estimated from the
Langmuir isotherm model Q,, (continuous red line in Fig. 1)
assuming the formation of a single monolayer of molecules
on the available adsorbent surface.

The Langmuir isotherm equation, which should ideally
contain all the information about the adsorption mechanism,
is:

_ QnKice
¢ 1+Kyce

(1a)

Here g. is the ratio between the mass of the contaminant
adsorbed and the mass of adsorbent at equilibrium with an
adsorbate in solution; Q,, is the theoretical value obtained
from the Langmuir isotherm model, assuming only a
monolayer of adsorbed molecules; K; is the equilibrium
constant of the adsorption reaction, which is often seen as a
coefficient proportional to the affinity of the adsorbate for
the adsorbent. From eqn (1a) we can see that 1/K, is also the
concentration reached assuming 0.5 of a monolayer (ML)
coverage. In the low concentration regime (¢ < 1/Kg), the
Langmuir isotherm can be approximated using the simpler
Henry isotherm:®
ge = QmKice when ¢, < 1/K;, (1b)
At each point of the isotherm g¢.(c.), the g. adsorbed at
equilibrium is estimated from the initial concentration of
adsorbate ¢, and the adsorbent concentration expressed as
mass M in volume V (eqn (2)).
4. = (@0=c0); ©)
Combining eqn (1a) and (2) we obtain a quadratic equation
where the variable is the equilibrium concentration ce.

ace

——— =y —C 3a

1+Kice € (32)
—a+Kico-1+ \/(a—I(Lco +1)> + 4K1co

Ce = 3b)

2K,

where a = QK M/V. The physical meaning of « is the ratio of

the mass of adsorbate molecules forming a monolayer

coverage (Q,M) divided by the mass of molecules in solution

when the coverage reaches 0.5 ML (V-1/Ky). The solution of

eqn (3a) is valid for all concentrations. The fraction of

contaminants removed R can be calculated if c. and ¢, are

known:

Ce

c

—a+Kico-1+ \/(a—KLCO +1)% 4 4Kyco
2K1.Co

RF=1-

—1-

For low concentrations'® (¢ < 1/Ky), we can, however calculate
R using the approximation in eqn (1b) (Henry adsorption
isotherm):
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e = Co — Ce (5a)
C 1
Z=— (5b)
¢ a—-1
Thus, the removal efficiency becomes:
4 a-2
Rf=1-===-— (6)
Co a-1

Noteworthy, eqn (6) indicates that, in low-concentration
regimes, R does not depend on the initial concentration co;
which is evident in Fig. 2A, which plots R vs. ¢,. The
approximated Henry model (blue line, eqn (6)) slightly
underestimates the exact solution (Langmuir model, red line,
eqn (4)) but the difference is within experimental error (ca.
3%). Fig. 1 also confirms that eqn (6) is valid only at low
concentration (o > 2, or C < 1/Kp) although this low-
concentration regime is, in fact, the most important one
when dealing with water purification. As the concentration
becomes ¢ > 1/K;, the removal efficiency rapidly decreases,
as has been shown experimentally."" ™ Fig. 2B shows how
the removal efficiency can be tuned by changing the
concentration of the adsorbent (M/V), this plot is sometimes
reported for low concentration studies."* A primary
conclusion of this analysis is that the removal efficiency is
not an intrinsic parameter of the adsorption process. Both
the plots in Fig. 2 are commonly reported in the literature,
but they are wunivocally derivable from isotherm and
adsorbent concentration (M/V)."?

In this work we have chosen to focus the attention to
Langmuir isotherms, since it is the most used model for
describe the monolayer adsorption on an homogenous
surface, but with the consideration developed here above the
multilayer adsorption can be considered: the Brunauer-
Emmett-Teller (BET) isotherm can be approximated to the
Henry isotherm as well, by substituting Kj, = Cggr/Cs, where
Cggr is the thermodynamic equilibrium BET constant and Cg
the solubility of adsorbate, both obtained from BET fit. While
the Freundlich model has no analytical approximation at low
C, since the derivate of the Freundlich isotherm is a
singularity at zero concentration, thus cannot be used for a
similar comparison at low concentration. In a practical case
was reported that for low concentration — when often the
isotherms is well described by Henry (linear) model - the fit
of Freundich equation (g. = Kg-ct™™) can be performed with n
=1,"" but in this specific case no advantages can be found by
using Freundlich instead of Henry.

We tested the accuracy of eqn (6) using a wide range of
data published in the literature, since the parameter « can be
calculated from such data. Different adsorbate groups were
chosen: organic molecules, arsenic and other heavy metals.
In order to understand how ¢ influences the removal
efficiency, Fig. 3 shows the experimental values available in
the literature together with those calculated using eqn (6).
The points with R > 90% are nicely aligned along the plateau
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Fig. 2 (A) Removal efficiency (%) as a function of initial concentration

of adsorbed molecules, showing also a common numerical value of
low concentration (5 ppm, magenta dotted line) and the low
concentration limit, 1/K;, = 15 ppm (black dotted line). (B) Removal
efficiency (%) as a function of adsorbent concentration.

of the curve, and the best accuracy is obtained for o > 10.
Fig. 3 can be considered as a different way of visualizing the
isotherm in Fig. 1, providing an intuitive validation of the
Langmuir fit at low concentrations. It should be stressed
that, for a good fit, a consistent set of measurements is
required over a wide range of concentrations: in the example
reported in Fig. 1, 7 different concentration values are
reported, correctly spaced along a logarithmic scale. In other
works, however, a good fit was obtained by acquiring more
points at only at low concentrations."®

The previously published data show that the relative
experimental error in Kj, is the most influential factor in the
overall uncertainty in the removal efficiency, R: typically, this
error reaches 20%, and in some cases even 50%.° Fig. 3
shows how a 20% error could lead to considerable
uncertainty in the determination of R at low a.

This journal is © The Royal Society of Chemistry 2023
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Fig. 3 Removal efficiency (%) as a function of parameter o = Q,,K\M/
V: the experimental points from the literature are compared to the
expected behaviour of eqn (6) (red line). Upper and lower confidence
ranges, calculated by assuming a 20% relative error in the
determination of «, are shown as red dotted lines. The experimental
points are from papers reported in Table 1. Different adsorbates were
considered: (A) arsenic. (B) Organic molecules and (C) other heavy
metals.
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Once the single parameter approach for calculating R is
validated these results can be used to solve a more practical
problem, the optimization of adsorbent mass. The amount of
adsorbent necessary to achieve a target removal efficiency R
can be calculated from eqn (6):

_V 2-R
T QuKL1-R

(7)

Taking as an example, the need to decrease the
concentration of a pollutant from 500 ppb (ug L") to 5 ppb
(i.e. removal efficiency 99%), for a given material (Q,, and K;)
and solution volume V, we can calculate the necessary mass
of adsorbent required,'®'” M*™8'¢ using eqn (7). However, a
value of R = 99% can also be achieved by two sequential
purification steps, each having R = 90%: the first step
decreases the concentration from 500 to 50 ppb and the
second from 50 to 5 ppb. As can be seen from eqn (7), the
same removal efficiency using a single step would require
~4.5 times the material (M8 = 4.5M9°""!¢) ysed for the
two-step approach. The better efficiency of multi-step
processes is due to the weak dependence of R on «
(proportional to the amount of adsorbent used), as clearly
shown in Fig. 2B. Taking another example, in order to
increase R from 90% to 99% it would be necessary to increase
a (i.e. the mass of adsorbent) by a whole order of magnitude.

In a more demanding example, we can reduce the
concentration of a test contaminant from 50 ppm to 5 ppb
(corresponding to a removal efficiency 99.99%) with either
four purification steps (each step having R = 90%) or one
single purification step, using a large excess of adsorbent.
The single step will, in fact, require ~227 times more
adsorbent (in mass) than the four-step process. Practical
considerations such as the cost per purification step may
influence decisions on optimisation of the contaminant
removal in question.

Concluding, we would like to point out some aspects of
the extensive literature on adsorption for pollutant removal
purposes and especially, contrary to common assumptions
made there, the value of R, removal efficiency, cannot be
used for a direct comparison between different adsorbents
under different conditions. In fact, some papers and reviews
(other examples are given in Table 2) report only the removal
for one specific case, rendering such data clearly pointless
for any realistic comparison of performance with other
systems. While most of the reviews focus on the value of Qy,,
this is not enough for comparing different materials, often
giving only a partial view of adsorption performance for a
given adsorbate. One example, for arsenic removal (of those
given in Table 1) reports that As(m) removal has a larger Qp,
with respect to As(v) removal, but As(v) removal shows a
larger Ky, and thus the product Q,,Kj, is similar for both As
species and their removal under the same conditions are
usually similar too. Here, our model provides a simple
explanation of the phenomena observed and described in the
literature.
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Table 1 Summary of papers used for validate eqn (6) and create the plot in Fig. 3. Various adsorbates were selected: heavy metals (HM), arsenic (As),
dyes and emerging organics contaminants (EOCs). Methylene blue (MB), trichloroethylene (TCE), bisphenol A (BPA), bisphenol B (BPB), bisphenol AF

(BPAF), rhodamine B (RhB)

Ref. Adsorbate  Adsorbent Om(mgeg™) K. (mLmg') M(g V(mL) « R™ (%) R™ (%)
Gupta (ref. 12) Cr(1v) Sawdust 42 438 1 100 184 99 100
Posati (ref. 18) Cu(u) Polydopamine + polysulfone 4.5 1100 0.015 8 9.3 88 90
Aluigi (ref. 19) Cu(u) Wool keratin nanofiber 18 130 1 1000 2.3 25 40
Chakravarty (ref. 20)  Cd(u) Heartwood powder 10.6 857 0.5 100 454 98 97
Sitko (ref. 21) Pb(u) Graphene oxide 1119 140 0.1 1000 15.7 93 95
Sui (ref. 22) Cu(u) Graphene 157 69 2 1000 21.7 95 97
oxide + polyethylenimine 157 69 0.6 1000 6.5 82 70
157 69 0.2 1000 2.2 14 25
Ocinski (ref. 23) As(v) Chitosan + MnFe oxides 27 395 4 1000 43 98 99
Zhou (ref. 24) As(m) Reduced graphene 22.4 3500 0.2 1000 15.7 93 90
As(v) oxide + MnFe oxides 22.2 17300 0.2 1000 76.8 99 99
Zhu H. (ref. 25) As(m) Activated carbon 18 8900 0.5 1000 80.1 99 99
Altundogan (ref. 13)  As(m) Red mud 0.664 334 10 1000 2.2 18 30
As(m) 0.664 334 20 1000 4.4 71 65
As(m) 0.664 334 40 1000 8.9 87 80
As(v) 0.513 1642 100 1000 84.4 99 99
Manju (ref. 11) As(1) Husk carbon 146 24 2 1000 7.0 83 85
As(m) 146 24 0.05 50 3.5 60 60
Wu (ref. 5) BPA Polyvinyl chloride 0.923 1721 1.5 1000 2.4 28 60
BPB 0.993 2101 1.5 1000 3.1 53 68
BPAF 1.05 2574 1.5 1000 4.1 67 70
Kovtun (ref. 8) RhB Graphene 63.2 65.2 0.05 25 8.2 86 94
oxide + polysulfone
Erto (ref. 9) 203 127 0.6 100 155 99.3 99.4
TCE Activated carbon 203 127 0.4 100 103 99.0 99.1
203 127 0.45 200 58.1 98.2 97.6
Melli (ref. 26) MB Agroindustrial wastes 17.4 171 0.5 100 149 93 90
Aluigi (ref. 27) MB Keratin nanofibrous 167 385 1.0 1000 64.3 98 97
membrane
Fu (ref. 28) MB Polydopamine 89 272 0.01 20 121 91 99
Thus, as supported by the above equations and  different adsorbents, only one review was found in such
considerations, the performance of materials (removal  form.

efficiency) depends on the product of Q,, and K. Only these
two main parameters allow a direct comparison between
different adsorbents at the same concentration. Q,, and K,
reported correctly when

should always be

comparing

It should become a basic requirement when publishing
scientific work, whether reviews or individual studies, on the
comparison of removal performance of different materials
that Qy, and Kj, values be reported instead of using the value

Table 2 Summary of reviews that report adsorption on different adsorbents of heavy metals (HM), arsenic (As), dyes and emerging organics

contaminants (EOCs). Q,, and K, columns report whether the review reports the data

Ref. Adsorbate Adsorbent Qm Ky, Comment

Wau (ref. 29), 2010 HM Chitosan Y Y All data reported correctly

Bhatnagar (ref. 30), 2011 Fluoride Various materials Y N Removal is used in text for comparison

Gupta (ref. 31), 2013 Dyes Nanotubes Y N —

Hua (ref. 32), 2012 HM Various materials Y N Removal used in text for comparison

Gupta (ref. 33), 2008 Dyes Various materials Y N Removal used in tables for comparison

Ngah (ref. 34), 2011 Dyes & HM Chitosan composites Y N Removal used in text for comparison

Ngah (ref. 35), 2008 HM Plants wastes Y N Removal used in text for comparison

Bailey (ref. 36), 1999 HM Low cost adsorbent Y N Does not use removal

Crini (ref. 37), 2006 Dyes Low cost adsorbent Y N Does not use removal

Mohan (ref. 38), 2007 As Various materials Y N Removal used in text for comparison

Sag (ref. 39), 2001 HM Fungal biomass Y N Does not use removal

Anastopoulos (ref. 40), 2014 Dyes Agricultural peels Y N Removal used in text for comparison

Kyzas (ref. 41), 2015 EOCs Various materials N N Uses only removal values for comparison

Sousa (ref. 42), 2022 EOCs Microalgal N N Uses only removal values for comparison

Ahmad (ref. 43), 2021 EOCs Biochar-Iron N N Uses only removal values for comparison

Zheng (ref. 44), 2022 EOCs Metal organic frameworks Y N Removal used in text for comparison
and graphene oxide

Gogoi (ref. 45), 2018 EOCs Various materials N N Uses only removal values for comparison
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of removal efficiency, since the latter can not provide valid
comparisons for choosing, in practice, the most effective and
inexpensive approach. Removal efficiency should be
considered as a target value, which can be potentially reached
by any adsorbent by tuning suitable concentrations of M/V,
and which should be the effective cost parameter.

Conclusions

The removal efficiency R of contaminants through adsorption
depends critically upon isotherm parameters (Q,, and K)
and adsorbent concentration (M/V), and can be modelled at
low concentration as a function of the combined parameter «
= QmKiM/V. The removal efficiency R reaches its largest value
at low contaminant concentration (¢ < 1/Ky); at these levels,
removal efficiency can be considered constant. An increase in
single-step removal efficiency from 90% to 99% requires an
increase in the quantity of adsorbent materials of one order
of magnitude. Compared to single-step adsorption processes,
multi-step processes allow greater removal of contaminants
with lower quantities of adsorbent material, and such
increased efficiency should thus be preferred and encouraged
whenever possible. Future reviews comparing the adsorption
performances of different materials must be encouraged, if
not obliged, to report both the parameter isotherms Q,, and
K.
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