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Self-driving labs (SDLs) leverage combinations of artificial intelligence, automation, and advanced

computing to accelerate scientific discovery. The promise of this field has given rise to a rich community

of passionate scientists, engineers, and social scientists, as evidenced by the development of the

Acceleration Consortium and recent Accelerate Conference. Despite its strengths, this rapidly developing

field presents numerous opportunities for growth, challenges to overcome, and potential risks of which

to remain aware. This community perspective builds on a discourse instantiated during the first

Accelerate Conference, and looks to the future of self-driving labs with a tempered optimism.

Incorporating input from academia, government, and industry, we briefly describe the current status of

self-driving labs, then turn our attention to barriers, opportunities, and a vision for what is possible. Our

field is delivering solutions in technology and infrastructure, artificial intelligence and knowledge

generation, and education and workforce development. In the spirit of community, we intend for this

work to foster discussion and drive best practices as our field grows.
1 Introduction

Scientic experimentation and discovery is teetering on the
precipice of a new industrial revolution. Acceleration of science
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by combining automation and articial intelligence (AI) has
begun to revolutionize the structure of scientic experiments
across physics,1 chemistry,2–8 materials science,9–13 and
biology.14 The integration of high-throughput experimentation,
AI, data science, and multi-scale modeling have spawned great
interest,15 notable results,16 and substantive expectations. These
expectations include acceleration of experimental throughput,
new discoveries, technological readiness, and industrial adop-
tion. Such excitement has elicited a suite of conferences (from
a 2017 North American workshop culminating in the rst
Mission Innovation report17 coining the name Materials Accel-
eration Platform (MAP), to the most recent Accelerate Confer-
ence), dedicated publication platforms, and increased funding
from governments and the private sector. Furthermore, as a link
between algorithms and the real world, self-driving labs (SDLs)
are a prerequisite for further advancements of autonomous and
AI-driven research, as targeted by, for example, the Turing AI
Scientist Grand Challenge as a forward-looking roadmapping
effort.18 While this rapid community advancement may not yet
constitute a scientic revolution,19 it does initiate a technical
revolution that will likely change the pace at which we see
scientic breakthroughs (Fig. 1).

A self-driving laboratory (SDL) can be described as a scien-
tic system that performs autonomous experimentation (AE).
That is, it uses automation and AI to operate and select each
successive experiment, without requiring human intervention.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A triptych of stable-diffusion generated images describing
a self-driving lab for autonomous scientific discovery.22
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Several other terms are commonly used in this domain which
are worth disambiguation from SDLs. High-throughput exper-
imentation (HTE) applies automation technology or engi-
neering practices to increase data generation rates, but these
experiments are oen fully designed by human experts or pre-
dened at the start of an experimental campaign.16 Similarly,
“Lab 4.0” refers to “intelligent automation systems and digiti-
zation in modern laboratory environments, and work prac-
tises”; however, these do not strictly imply fully autonomous
experimentation. A common term used for SDLs in the mate-
rials science domain is materials acceleration platform
(MAP).7,17 The major differentiator between platforms is the
degree of autonomy imbued in the system—and increasingly,
the degree of human-AI collaboration. In the following, we will
use the term SDL and focus broadly on (semi-) automated
platforms that accomplish (high-throughput) experiments,
process and analyse results autonomously, and use that anal-
ysis to guide future experiments. While an SDL can be typied
by a closed loop of synthesis and analysis unit operations,20

a single SDL can be incorporated as a unit operation inside
a larger SDL, so long as it meets the criteria above.21

Herein, we describe a community perspective on the state of
SDLs, focused on open challenges and concerns for the future.
This perspective incorporates insights from academia, govern-
ment, and industry, including both users and developers of
SDLs. This work grew organically from discussions started at
the rst Accelerate Conference in September 2022, and is
intended to foster an ongoing discourse to inuence the eld of
autonomous experimentation. While we will rst describe the
current state of the eld, this is by no means a comprehensive
review, and we encourage the reader toward reviews and
perspectives of SDLs and autonomous
experimentation.1–14,16,23–38 Following this, we will turn our
attention to barriers and opportunities associated with data,
hardware, knowledge generation, scaling, education, and
ethics. As the eld of autonomous experimentation grows and
SDLs become more common, we hope to see rapid growth in
scientic discovery. In the community approach to vision that
follows, we look to ethically and equitably accelerate this growth
and adoption.
2 Data, data, everywhere, and not
a piece to parse

A core difference between research using SDLs and conven-
tional research is the amount and structure of data that are
© 2023 The Author(s). Published by the Royal Society of Chemistry
generated. Compared to human-guided experimentation, SDLs
can enable rapid experiments, with improved reproducibility,
and with automatically generated metadata. This presents
many opportunities to reduce the barrier and overheads to
share, collect and use data globally. At the same time, it leads to
challenges in terms of storage, analysis, and even interpretation
of data. Perhaps one of the unique opportunities afforded by
SDLs is that data could be shared in real time with the
community while preserving its provenance. In the following,
we will discuss best practices for data sharing, but also existing
barriers and incentives to lower and overcome those barriers.
Data are foundational to SDLs and leveraging the full potential
of data-driven approaches in science remains an area of rich
opportunity.

Best practices of data sharing and publication are summar-
ised in the FAIR principles,39,40 i.e., data that are ndable,
accessible, interoperable, and reusable. Findable means that
data should be easy to nd and access, with clear and consistent
metadata, and data identiers. Accessible means that data
should be openly available through a trustworthy and stable
digital repository with a clear and simple access mechanism.
Interoperable means that data should be structured with
common standards, shared vocabularies, and standardized
formats that enable integration and reuse. Reusable means that
data should be well-described with provenance and licenses,
allowing it to be used and cited in new research and for new
purposes. FAIR methods are most effective when applied
continuously during research, rather than only at the moment
of data publication.41 These principles enable the linking of
many experiments and simulations, and enable SDLs to save
resources, leverage existing knowledge, and utilize synergies.
Despite the successful implementation of FAIR principles by
some exemplary practitioners,42,43 there remain numerous
technological and cultural barriers to FAIR data sharing. It is
thus important to be forthcoming about these barriers, as we
look to understand what strategies or incentives are viable for
improving the overall data publishing landscape.

Primary technical barriers to entry center around data
acquisition and digitization. An early challenge is the move-
ment of data from unit operations to data storage infrastruc-
ture, databases, or long-term repositories.44–47 While electronic
lab notebooks can help integrate persistent manual processes,
data acquisition in SDLs is mostly challenged by lack of acces-
sibility, as many scientic instruments still produce data in
obfuscated proprietary or binary formats46 and data oen
remains undiscoverable at the point of data generation. Devel-
oping open interfaces to hardware is an ongoing and increas-
ingly solved task, which will enable open soware to collect and
manage the data as they are produced. Data – not only charac-
terization data but also metadata describing sample processing
conditions – should ideally be recorded as close to the source as
possible. If manually recorded later, this will not only increase
the effort of data collection but also potentially lead to data loss
due to incompleteness and missing standardization. Again,
electronic lab notebooks connected to electronic equipment are
one way to digitize (process) data directly during generation,
while removing the effort of additional book-keeping.
Digital Discovery, 2023, 2, 1644–1659 | 1645
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Once created, digital data can easily be stored on a hard disk
as a series of named les, yet this approach does little to ensure
that the data can be found, understood, and reused in the
future by collaborators, the community, or machines, without
insight from the original data creators.48 This problem is further
exacerbated by the fact that most researchers are accustomed to
the le systems of their laptops, but lack the background,
training, or incentive to use shared community databases,
commonmetadata standards, unique data identiers, and well-
dened vocabularies. Furthermore, there are additional tech-
nical challenges connected to choosing appropriate databases
(hierarchical, relational, non-relational) and data storage with
appropriate data protection, safety, and maintenance (local or
cloud). The development of research data management (RDM)
tools, oen driven by bottom-up initiatives within domain
specic communities, help overcome these hurdles. RDM
developments can facilitate FAIR data by providing appropriate
shared metadata standards, domain-specic vocabularies and
ontologies, and also soware and storage solutions. An example
RDM system that provides some of this functionality is con-
tained in the Bluesky project, which implements a standard
“Data API (application programming interface)” that is exposed
to users and other systems rather than requiring knowledge of
internal implementation details on where and how the data are
stored.44

The last set of technical barriers relates to data interopera-
bility, which also extends to the homogenization of heteroge-
neous data sources. Relating data from disparate equipment,
including distributed instrumentation, multi-delity probes, or
even simulations, requires some knowledge of the core meta-
data used to describe each relevant experiment. Unfortunately,
constructing these relationships requires some degree of stan-
dardization and is highly discipline dependent. Attempts at
universal materials formats28,49–52 and ontologies53,54 exist to
address this challenge, with much work remaining. Crystal-
lography provides an excellent example of standardizing data
formats for interoperability (protein data bank and crystallo-
graphic information les).55,56 While this standardization
provides a means of comparing measurements, it does not
provide rich metadata for samples. Data validation and
schema57 can be used to create interoperable sample data. The
use of digitally structured protocols58 and publishing peer-
reviewed methods articles in journals such as may also aid in
this challenge while providing appropriate incentives to
researchers. Overcoming this challenge will take effort, open
communication, and many revisions. Even in a single lab, lean
engineering practices should be applied to a regularly updated
and versioned data model (e.g., ambient humidity or materials
batch numbers may not be required data elds until a keen
researcher notes them as important exogenous variables). We
therefore encourage the community to develop, collaborate on,
and publish data models, particularly in a version-controlled
manner. Even highly specic data models can prove impactful
and be improved upon.

An open challenge in many domains—or sub-domains—
remains the creation and support of easy-to-use, open-access
domain-specic repositories and databases. Similar to the
1646 | Digital Discovery, 2023, 2, 1644–1659
domain-specic nature of sample data models, the possibilities
are innumerable and can start small and iterate. It is important
to note the difference between generic databases and reposi-
tories such as FigShare and GitHub, currently only domain-
specic databases provide data with enough structure to be
reused within the community.59 To improve discoverability,
there are a number of FAIR data databases and repositories in
the materials science community that may prove useful to col-
lecting SDL data and for the SDL community to build upon,
including the Materials Project,60 AFLOW,61 the Materials Data
Facility,62,63 OQMD,64 and NOMAD.65 However, none have yet
been closely integrated with SDL. As more databases become
available, a new opportunity will be present in building infra-
structure to interoperate between them or merge them under
single data models. This again relates back to challenges with
the ingestion of standardized data formats for various hardware
vendors to seamlessly relate measurements.66 Quality control
and continuous integration (QC/CI) are challenging tasks even
for data workows from a single source;67 as interoperation
grows, so will the challenges for quality control and integration.
This will be a welcome opportunity and a hallmark of
community progress. It can be addressed by rst building
internal trust in data through QC pipelines that are incorpo-
rated in a data model. Cloud tools such as AWS and Azure, as
well as workow managers68 can be used to build automation
into the construction, maintenance, and QC of these databases.

Aside from the substantial technical challenges of building
a robust data infrastructure, there are many cultural hurdles.
Some are centered around sharing proprietary data that repre-
sents a material value to its creators. Others reect researchers'
fear of being “scooped” or yielding a competitive advantage.
While technical issues can be solved with clever engineering
and sufficient funding, cultural issues cannot. Instead, work-
shops, conferences, training programs, and higher education
serve as the engines of cultural change. We suggest conceptu-
alizing improved data management as a socio-technical tran-
sition pushing against both technical and cultural lock-in to
existing practices.
2.1 Suggestions for data sharing incentives

We have identied three strategies for incentivizing the
production of FAIR data, putting into focus the human
researcher, rather than MAP technology:

� Reducing friction.
� Providing rewards.
� Demanding requirements.
Creating the technical means to share data in a simple way is

a necessary condition to allow researchers to share data in
a sustainable way. Reducing friction means making it simple
and effortless for researchers to upload their data to the
appropriate places. Whether this is the time it takes to create
a DOI for data, or the effort needed to validate the data into
a given database schema, people will be more likely to engage
with a tool if it does not feel like work. We encourage the
“customer development” required for creating an appropriate
user interface for data tools.69 This ties into the above
© 2023 The Author(s). Published by the Royal Society of Chemistry
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discussion of creating and maintaining eld-specic databases,
which are easily accessible and also integratable into SDLs to
further enable the automation of data publishing pipelines. If
these are accessible with a continually rened user interface,
the community will be more likely to contribute their data.

Even if they are easy to use, technical tools are not enough to
create a sustainable development toward openly sharing data.
To encourage researchers to share datamore broadly, we believe
that data sharing should be met with recognition and rewards.
The recognition could take the form of data citations, which are
tracked by the statistics of access and downloads. Such recog-
nition would directly create incentives to publish in databases
that impose high standards to ensure high quality, reproduc-
ibility, and documentation of data, as such databases will be
used and thus cited more by the community. Furthermore, this
can incentivize the publication of “negative-data”.70 Broad data
availability can further lead to citations by researchers without
access to labs and HPC infrastructure. Citable data can then
lead to the denition of newmetrics. Consider, for instance, the
social and professional impact of the h-index. While there are
systematic challenges associated with over-reliance on a single
metric, the h-index provides a more holistic—if awed—means
for measuring impact. We envision a complementary metric for
data (e.g., a d-index), that could be built off of the unique
identiers for data in a database, allowing data to be referenced
digitally in publications. While new metrics bring new
concerns, integrating these metrics into the traditional
advancement criteria at research institutions would produce
a dramatic cultural shi.

An alternative approach to creating incentives within the
currently existing research reward system centered around
publications and citations could include the use of automated
papers that are published regularly, listing all recent contribu-
tors to a public database. This can even be transferred to track
soware impact, e.g., publishing a citable list of contributions
to given repositories. This idea is not entirely new, as large
soware tools regularly publish reports of new versions with all
contributors as authors,71 and some publishers have created
venues for this type of content.72 The main outcome of this
strategy is converting data contributions into publications/
citations and pivots the credit mechanism to an already
imperfect set of metrics. Additionally, it may engender “over-
publishing”73 leading to an oversaturation of the primarily text-
based publishing system. This can be stemmed in part by
limiting the text-based content of the actual journal article and
shiing the reviewers' focus to the quality and presentation of
the data. While the career advancement for a scientic soware
engineer can be as closely tied to their publication record as
their version history of their soware, no such paradigm has
been publicly recognized by an R1 University, especially not in
the context of data provenance. Thus, we think creative solu-
tions to provide micro-incentives to sharing data and exercising
good data practices will be a critical need in making progress in
this eld and encourage social scientists to consider this
research problem.

In continued circumstances where a reward infrastructure
proves lacking, we encourage mandates through peer review
© 2023 The Author(s). Published by the Royal Society of Chemistry
and funding agencies. This policy can be enacted at the journal
or editor level, or be enforced at the level of individual peer
review, as FAIR data are a reasonable pre-requisite for repro-
ducibility. Some journals already enforce code review as part of
their process for scientic soware, and it is sensible to enforce
data review for papers that describe large datasets. With regards
to funding, many government funding agencies require a data
plan, albeit, enforcement is critical. Furthermore, data plans
oen only include positive results. Public access to data created
using public funds is paramount and should be rigidly enforced
by funding bodies. Data plans, however well-designed, are not
useful if they are not used. There is also no reason why this must
be done from scratch: for example, a data management
framework could be developed and highlighted alongside a new
dataset. Best practices will naturally differ between communi-
ties with different measurement techniques, instrumentation,
and gures of merit. It is therefore advisable that data
management frameworks be designed through active collabo-
ration between scientic communities and funding agencies.

3 Integrating hardware into SDLs

The experimental apparatus that constitutes the physical
embodiment of the SDL provides its own set of challenges.
While data and soware solutions are reusable across a large
swath of the research landscape, hardware advancements must
be capable of handling the specics of the research problem at
hand. Further, physical platforms are generally the most
capital-intensive part of an SDL, including the costs of the
scientic instrumentation required for a given experimental
workow, and oen custom automation hardware. Therefore,
we stress an objective that the hardware powering SDLs gener-
alise across different experiments to make the investment
reasonable.

There are three common approaches to hardware in current
SDLs: building hardware from individual components (e.g.,
motors, pumps, controllers, detectors); using workcells (i.e.
integrated systems which bring together automation equip-
ment, analysis tools, and soware, to accomplish rigid pre-
dened tasks); and integrating unit operations with an
anthropomorphic robotic platform. The from-scratch approach
is most common in specialist equipment, such as beam-
lines,44,69 new microscopes,74 or specialist synthesis and char-
acterization approaches.75,76 Much of this equipment came out
of the older high-throughput community.77 Recently, growing
maker communities have driven some build-your-own work-
cells similar to 3D printer technology.78 Workcells rst came to
use in high throughput biological applications,79 and now have
commercial providers across the physical sciences.80 These are
relatively rigid unit operations for a given experiment type,
although it has been demonstrated that a robotic arm can be
integrated internally which could provide more exibility.81 To
add even more exibility, the use of mobile robots for trans-
porting sample vials and using equipment across different
laboratory stations has been demonstrated,20 in addition to the
usage of heterogeneous robotic platforms depending on the
laboratory tasks.82 As such the current state of the art for
Digital Discovery, 2023, 2, 1644–1659 | 1647
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laboratory automation varies depending on the commonality of
the task to automate, and the commercial demand for products;
a generic liquid handler has a much broader market appeal
than a domain-specic workow.

Although building hardware is hard, it pales in comparison
to the challenge of integrating hardware. This has amassed
public42,44,46,82,83 and private efforts. Developing a hardware
approach for an SDL involves a combination of deciding on the
best tools for the laboratory task and building common inter-
faces for those tools. As an example, we contrast a synthesis
workow that can be accomplished in a commercially available
workcell or using custom equipment, an analysis workow that
depends on advanced detectors, and a sample management
workow that uses robotic arms. The synthesis workcell may
include a soware interface that cannot be rebuilt, whereas the
custom synthesis equipment will need to choose an effective
soware interface. Advanced detectors on the other hand are
commonly integrated using open soware tools.84,85 Lastly,
robotic arms are traditionally driven using middleware that,
through already available libraries, have in-built motion plan-
ning, low-level controllers, and perception.83 While these are
fundamental for autonomous robotic platforms, given that
most synthesis or analysis workows are carried out in open-
loop, these functionalities have not been fully exploited. This
then raises the question of how to best integrate these disparate
systems without attempting the mammoth task of rebuilding
them all using a single soware tool.

We encourage the development and reuse of open-source,
non-proprietary hardware communication, as well as inter-
faces between those common platforms. This would facilitate
sample exchange across multiple commercial experimental
tools, in conjunction with bespoke tooling, as well as improving
knowledge transfer, reproducibility, and generalization to new
SLDs. Interfaces should make use of industry-standard message
bus technology, that will enable both local and cloud operation.
Moreover, these interfaces are compatible with streaming data,
that enable in situ and real-time measurements with automated
data-processing pipelines. The materials community has called
for investment in “the redesign of microscopes, synchrotron
beamlines, and other sophisticated instrumentation to be
compatible with robotic sample handling—akin to the multi-
plate-handling robots in the bio-community.”16 Such innova-
tion would be empowered by the adoption of open frameworks
and message buses (e.g., by integrating a Robotic Operating
System (ROS) enabled robot, a Bluesky driven beamline, and
propriety unit operation with a standard message).

The economy of public research requires that SDL plat-
forms—or at least their components—be reusable beyond the
scope of a single research project. One approach to this is to
develop modular systems that can be added to over time tomeet
the new demands of new research questions. This would be
supported by a common physical sample interchange environ-
ment. The details of sample interchange greatly depends on the
form factor of the material being measured.

Samples can generally be clustered into three varieties:
liquid, bulk solids (including thin lms on substrates) and
powders. Liquid handling is the most common in current SDL
1648 | Digital Discovery, 2023, 2, 1644–1659
setups, having been pioneered by the bio-pharmaceutical
sector. Samples can be physically handed between instru-
ments in vessels, moved through the use of pipetting,80 or
directly pumped through piping.76 Handling of bulk solids is
also relatively straightforward. Robotic arms are able to move
samples between processing and characterization tools.86 The
sample surface is also readily available in this form factor for
characterization. Each sample may be homogeneous or contain
multiple sub-samples.87,88 Powders are perhaps the most chal-
lenging to deal with using automation. While precursor
powders can be readily dispensed, powders as a product can be
difficult to handle. While powders can be moved in a vial, this is
oen not a form factor that is amenable for characterization.
For example, X-ray diffraction typically requires creating a at
surface or packing the powders into a capillary. Conversely,
powders for catalysis or absorption of gasses typically require
these powders to be packed into specialized columns for
testing. Further complicating this process is the fact that
powders can have a great variety of ow properties, requiring
adaptive manipulation. We encourage robotics and mecha-
tronics research in this area, as automation of powder handling
would solve a particularly impactful tactile challenge.
3.1 Applying robotics to SDLs

Deploying anthropomorphic robotic systems in SDLs is
a promising area of research in that it enables the use of existing
or standard instrumentation, empowers human collaboration
for non-automated tasks, and is generally more exible.89

Despite the increased cost and complexity, there have been
several research efforts in this area, spanning applications from
autonomous solubility screening,81,82,90 photocatalysis,20 and
automated synthesis.91 SDLs provide an exciting semi-
structured environment where the robotics community can
transfer their methods to novel applications. Robotics
researchers have focused their attention on various applica-
tions—from household environments to extreme environments
such as nuclear and space—that possess common underlying
challenges with SDLs. For example, the challenges of assistive
home robots related to grasping transparent glassware are also
present in SDLs. Towards this goal, learning-based methods e.g.
TranspareNet92 and MVTrans93 have been demonstrated for
detecting laboratory glassware. In addition, there exists the
need to have more task-specic grippers, such as grippers that
are specically designed for laboratory containers and well-
plates.94 While a universal gripper that would exhibit the
dexterity of a human hand may seem ideal, we are still quite far
from this and most laboratories have to either adapt their
current grippers with 3D printed parts and/or use tool
exchangers. Alternatively, laboratory tools e.g. pipettes can be
made more robot-friendly.95 Amongst others, these approaches
will pave the way to having more robust laboratory robotics for
experiments over long periods of time.

While there is an increasing interest towards using anthro-
pomorphic robotic platforms, primarily due to their attractive
nature of being deployed in human labs, there still exist a large
number of challenges with having these platforms carry out
© 2023 The Author(s). Published by the Royal Society of Chemistry
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long-term experiments. As a robot can be described as any
system of sensors and actuators that can perform a complex
task, it is worth noting when a workcell or other automated unit
operation can be used to substitute or supplement an anthro-
pomorphic robot. To this end, modular systems that can—in
principle—handle a wider range of experiments due to the
closed nature of their subsystems have been demonstrated as
alternatives.96,97 To date, the state-of-the-art in using anthropo-
morphic robotic systems in SDLs have carried out experiments
on open benches, which limits the generalisation of experi-
ments towards materials that have a higher degree of toxicity.

Democratization of laboratory automation is a crucial path
for the contemporary developments of individual lab groups to
transcend beyond local, bespoke solutions. It has thus far been
exceptionally difficult for the community to transfer knowledge
between laboratories regarding their hardware development
and integration. We are calling for a focus and investment in
modularity30 and open hardware,32,98–104 that makes use of the
aforementioned communication approaches. Publishing
modular hardware components—either through new journals
or maker spaces—will enable the community to take advantage
of rapid prototyping and manufacturing. The combination of
open hardware and open control soware will have the accel-
erating effect of democratizing access to lab automation and
ensuring our brilliant peers have this technology regardless of
resources.
3.2 Miniaturization

Notably, we see multiple opportunities in miniaturization and
reducing the footprint of hardware to both reduce the barrier to
entry and reduce material consumption and waste production.
Digital microuid platforms have a high capability for minia-
turization because they replace moving mechanical parts with
a liquid that needs to be moved.105 The HTE community in
biology and chemistry has long used microwell plates to reduce
sample volumes to the microliter scale.106,107 In materials
science and chemistry, miniaturization can have a high
impact108,109 but is to date underexplored. In addition to
adopting microwell plates,110 microuidic reactors allow for
samples in SDL to reach the nanoliter scale.111 SDLs built
entirely using ow chemistry can take advantage of established
chemical engineering without anthropomorphic robots. Flow
reactors are also easier to integrate with online characterization
techniques.2 Milli- or micro-uidic reactors have the advantages
of higher rates of heat, mass, and photon transfers as a result of
the enhanced surface-to-volume ratio. Nonetheless, ow reac-
tors suffer from the possibility of clogging when dealing with
solid-state materials or precipitates.112 These cases (including
thin-lm preparation, battery materials, or polymerization with
precipitation of solid products or byproducts) are better suited
for parallel batch reactors.2 Modular microuidic units could
accelerate process optimization and formulation discovery;
however, a standardized protocol in modular conguration for
a targeted reactive system needs to be established.113

In addition to the application of microuidic reactors,
miniaturization has also been applied to devices and solids
© 2023 The Author(s). Published by the Royal Society of Chemistry
sample arrays. This has been approached using combinatorial
synthesis in small areas (<1 mm2),114 multinary thin lm
synthesis,115,116 and microdroplet array synthesis.117–119 Recent
work with scanning probes has shown that sub-femtoliter
solutions can be patterned and combined on surfaces,
providing further opportunities to miniaturize experi-
ments.120,121 Such samples can also serve as miniaturized reac-
tors,122 having the broad effects of reducing material
consumption and increasing experimental throughput. In
addition to miniaturizing samples, it is also powerful to mini-
mize the analytical instrument to study these samples, as
exemplied by scanning droplet cells to study corrosion123 and
adapting electrochemical characterization techniques.124,125

While not all characterization techniques can be applied in
miniaturized platforms,2 we encourage further developments in
this area that increase automated capacity while reducing
material consumption.
3.3 Actions for the community

Advancements in hardware oen demand tailored consider-
ations, tightly aligned with the unique demands of specic
research endeavors. Nonetheless, these physical platforms
constitute a signicant portion of an SDL's investment,
encompassing scientic instrumentation and bespoke auto-
mation hardware. Therefore we emphasize a crucial objective:
the hardware underpinning SDLs must demonstrate versatility
and transferability, transcending individual experiment
boundaries.

In navigating this challenge, fostering open-source hardware
communication and interfaces proves paramount. Standard-
ized interfaces that facilitate seamless sample exchange across
a spectrum of commercial experimental tools and bespoke
setups become imperative. Adopting industry-standard
message bus technology, compatible with streaming data for
real-time measurements and automated data-processing pipe-
lines, holds promise to enable communication between plat-
forms. We expect leveraging anthropomorphic robots to
integrate bespoke equipment to be a crucial area of future
research, and encourage the adoption of open solutions such as
the Robotic Operating System to prevent vendor lock-in and
enable technology transfer.

Furthermore, the democratization of laboratory automation
stands as a crucial aspiration. The path forward advocates for
a thoughtful interplay of modular hardware, open communi-
cation standards, strategic integration of robotics, and the
pursuit of miniaturization. We expect this to be achieved in part
by facilitating the publication of modular hardware compo-
nents and fostering their integration with open-source soware.
This paves the way for sustainable, accessible, and efficient
SDLs, wherein hardware seamlessly caters to the ever-evolving
landscape of scientic exploration.
4 Algorithms

At present, many algorithmic approaches to governing self-
driving laboratories are in the category of global optimizers.
Digital Discovery, 2023, 2, 1644–1659 | 1649
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These tools aim to nd the optimal solution within a specied
search space. Evolutionary and genetic algorithms, being
prominent members of this framework, draw inspiration from
the process of natural selection to iteratively evolve a population
of candidate solutions, progressively converging towards
optimal or near-optimal solutions. These algorithms excel in
exploring vast and complex search spaces, making them
particularly suited for optimization problems with high-
dimensional or non-convex landscapes. Bayesian optimiza-
tion, another pivotal component, addresses the trade-off
between exploration and exploitation in the search for
optimal solutions. By constructing a probabilistic surrogate
model of the objective function, Bayesian optimization intelli-
gently chooses points to evaluate, signicantly reducing the
number of function evaluations required for optimization.
Reinforcement learning, on the other hand, mimics the process
of learning through trial and error in an interactive environ-
ment. It allows an agent to optimize decisions by receiving
rewards based on actions, ultimately learning an optimal policy.
These algorithms have been deployed in domains like robotic
control and games, and found recent adoption in SDLs.126 The
integration of global optimization techniques represents
a powerful approach to solving a wide array of real-world
problems by efficiently navigating complex search spaces and
nding high-quality solutions. In the following, we will high-
light where global optimizers have supplanted other experi-
mental design techniques, and discuss where they have fallen
short.
4.1 Autonomous decision making for optimization
problems

The traditional design of experiments (DoE) becomes rapidly
impractical for high dimensional problems due to the expo-
nential growth of the number of required experiments. Incor-
porating ML in SDLs has emerged as an efficient way to explore
the chemical space and to speed up experimentation. Taking
advantage of the information generated during the optimiza-
tion process itself, ML enables an iterative experimental design
that maximizes the information gained per sample and that
requires a smaller number of experiments with respect to
traditional DoE.112,127

At present, a variety of ML approaches have been applied to
SDLs. Genetic algorithms (GA) are a class of adaptive heuristic
search algorithms inspired by the process of natural selection
that can be used for solving both constrained and uncon-
strained optimization problems. GAs have been applied recently
to optimize the conditions to produce gold nanoparticles.128

Reinforcement learning (RL) has also been successfully applied
in SDLs.126,129,130 This is an ML paradigm that enables an agent
to learn through trial and error in an interactive environment by
taking actions and receiving rewards, with the goal to learn
a generic approach that maximizes the total reward over time.
The most widely used decision-making algorithm in SDLs is
Bayesian optimization (BO), a method particularly suited to
balance the trade-off between exploration and exploitation of
the input parameter space. BO has been applied to SDLs both in
1650 | Digital Discovery, 2023, 2, 1644–1659
the single objective setting3,81,131 and, more recently, for the
simultaneous optimization of multiple objectives.132 There are
two main strategies for the implementation of multi-objective
BO: combining multiple objectives into one (e.g., Chimera133)
and identifying a Pareto front that trades off among the
multiple objectives (e.g., qNEHVI134). The second approach has
the advantage of not requiring the experimentalist to select the
trade-off among the different objectives a priori.

A challenge in SDLs is selecting suitable algorithms for each
specic scenario. Open-source soware packages for SDLs offer
an easy-to-use starting point for non-experts in machine
learning to begin autonomous experimentation (ChemOS,127

EDBO+3,135). Other general-purpose libraries are becoming more
user-friendly and are constantly updated with SOTA methods,
such as BoTorch,136 or Ax, an adaptive experimentation platform
built on top of BoTorch. Oen, off-the-shelf decision-making
algorithms in general require further tuning, which can slow
research and even undermine an experimentalist's intent in
purpose of applying them. In this sense, the lack of open-access
datasets for experimental campaigns is a current issue. Relating
back to our discussions around data (Section 2), the availability
of data would allow researchers to evaluate novel algorithms on
multiple surrogate systems based on real experiments, while the
absence of such datasets could considerably impede the
development of dedicated algorithms and create obstacles for
the development of autonomous platforms.137,138

An open challenge is the incorporation of generative
models139–141 for compositions,142–146 crystals,147–152 and
molecules142,153–156 in SDLs. While being very successful in
nding hypothetical molecules with tailormade properties, i.e.
solving the inverse problem of materials design, generative
models frequently suggest molecules with complex or unknown
synthesis routes,157,158 which limits their real-world impact and
prevents their application in automated labs. Including syn-
thesizability or even synthesis planning in generative models
for inverse design, as well as developing versatile multi-
objective generative models is a promising path toward their
integration in SDLs.159,160

A further open, yet more technical challenge in SDLs is the
systematic exploitation of existing data and also process
descriptions161 that are published in the literature. Automatic
extraction of that data and conversion from natural, i.e.
informal language to computer-readable, i.e. formal language is
an open challenge, currently requiring a large amount of
manual work.162 Large language models can potentially help in
that task163–166 but further research is required to reliably extract
data and knowledge from scientic literature.
4.2 Knowledge generation

The ultimate goal of scientic experiments is typically not (only)
the generation of data, but the generation of knowledge and
understanding.167 From that aspect, the main objective of SDLs
should go beyond solving optimization problems in high
dimensional spaces of materials and processing conditions.
Rather, they should aim to interpret that data, link it with other
data (potentially from other SDLs and databases), and help to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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generate and test scientic hypotheses (potentially in a semi-
autonomous or autonomous manner168). To come closer to
the goal of autonomous generation of scientic knowledge and
understanding, we propose multiple considerations for the
future.

In order to leverage data generated across labs and use it to
train models, further data analysis, and generate new scientic
knowledge, we underscore the efforts highlighted in Section 2 to
link data through shared data formats, metadata denitions,
vocabularies and ontologies. This will move SDLs beyond the
discovery of singular, interesting data points. From these
innovations, data can be subsequently used for transfer
learningmodels, multi-delity andmulti-taskmodels, as well as
representation learning methods, which can learn from
heterogeneous datasets.169 Such pre-trained models enhance
the decision-making process in SDLs. In particular, they not
only learn from locally generated data but already have prior
knowledge that enhances decision-making early in an experi-
mental campaign. Lastly, we encourage the development of AI/
ML methods for SLDs that reach beyond optimization prob-
lems. SDLs are very good at nding optima, which can act as
sources of inspiration for scientic understanding, as dened
in Krenn et al.167 Furthermore, increasingly sophisticated
explainable and self-explaining machine learning models for
molecules,170,171 materials science172,173 and particularly
SDLs174,175 pave ways towards autonomous loops of hypothesis
generation. Methods such as automated generation of coun-
terfactuals176 offer further opportunities for automated
hypothesis testing, when combined with fully automated
synthesis and characterization, or accurate predictive simula-
tion workows.

5 Scaling autonomous discovery

Taking the opportunities of data, hardware, and soware in
concert, we can turn our attention to economies of scale. In this
section, we focus our discussion on scaling via interconnection
of multiple distinct hardware modules and SDLs,21 or via
increasing the size, capacity, or extent of a given SDL. The
scalability of SDLs supports a faster, more efficient exploration
of experimental parameter space, as well as a larger volume
output of manufacturing processes.

SDLs at the laboratory scale already empower HTE
increasing throughput by orders of magnitude. Scaling an SDL
beyond the single lab will increase experimental throughput
proportionately. Moreover, moving from local autonomy to
distributed autonomy will enable optimization and search over
multiple length scales, characterization methods, and related
systems. For example, a lab-scale SDL within a single conned
system, such as glove box handling of liquids, may enable
a higher experimental throughput. Coupling this with an SDL at
a different scale, such as a synchrotron, may enable new
discoveries by bridging techniques across multiple length
scales. Scalable computational approaches can capitalize on
a greater experimental throughput and the interplay between
modular SDLs for a more efficient search through space.
Designing SDLs that act in concert over multiple delities and
© 2023 The Author(s). Published by the Royal Society of Chemistry
length scales will enable materials verication and validation
that is nearer to industrial requirements. This ties in with the
“advanced manufacturing” movement that has received signif-
icant attention in the last decade.177

Building scalable SDLs requires a particular landscape of
considerations. Broadly these include the manufacturing
considerations and the transition from automation to local
autonomy to distributed autonomy. There are challenges in
scaling the volume of experiments, synchronizing data (Section
2), algorithms for handling multidelity and multimodal data
(Section 4), and soware that enables distributed orchestration
across platforms. As the number of experiments performed per
unit of time increases, it is crucial that experimental platforms
are found that minimize the amount of material required per
experiment (Section 3). This reduces the costs of experiments,
makes them more amenable to parallelization, and reduces the
time required for some types of processing steps. However, this
may change the relevance to manufacturing scale, so there is
a case to be made for multi-scale automation that features high-
throughput experiments at a highly miniaturized scale and
lower-throughput experiments at larger scales.

Scaling beyond single-laboratory SDLs creates some open
questions in cost analysis. How do we model the cost of
implementing and operating such a large-scale high-
throughput discovery architecture? Can we quantify the
aspects of scale that result in cost efficiency? The capital
expenses would include oor space, instrumentation (sample
production, characterization, storage), and mechanical infra-
structure (robotics, table space, resource garages). The opera-
tional expenses would include materials, power, maintenance,
and replacement. There are broad considerations around
architectural design, and efficiently accommodating the dispa-
rate instrumentation sets required by different workows. We
encourage such engineering and feasibility analyses by public
research centers to be made broadly available, to inform
continual improvement cycles.178 Calling back to our discussion
on modularity, we further highlight the economic analyses of
“platform” (i.e. incremental) vs. “bespoke” (i.e. single-leap)
development strategies for large projects, and resoundingly
encourage the former.179

When considering the transition from automation to local
autonomy to distributed autonomy, we are focusing rst on the
distinction between HTE and AE/SDLs, with a second distinc-
tion between an isolated SDL and a distributed SDL or network
of distributed SDLs.21 Mobility may be a key component to
making the transition from local to distributed autonomy. As
discussed in Section 3, this can be accomplished by xed
material transport systems (robotic rail systems, custom
feeders) or by more generalized mobile robotic technology.

Large-scale autonomous experimentation also creates ample
opportunities for soware innovations in orchestration,
communication, and algorithms. Scaling SDLs will require
actional workow systems—mediated perhaps by powerful
workow languages—designed to enable a description of the
requirements for each sub-task in a workow as well as the
specics needed to connect intermediate products from one
sub-task to the input of subsequent sub-tasks.28,34,44,180,181
Digital Discovery, 2023, 2, 1644–1659 | 1651
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Intelligent search or orchestration that scales is a second
opportunity for soware innovation in an ongoing area of rich
study. This requires a capacity for evaluating incoming results
from experiments carried out in parallel on the work oor, and
converting this new data into new experimental queries. This
computational component connects the stream of outputs from
in ight experiments back around to the process that injects
new experiments into the available resource pool. It does so in
light of all previously collected experimental data, models of the
processes being studied, and a growing model of the abstract
landscape dened by the problem goal specication.

Scaling global optimization algorithms is a critical endeavor
to handle increasingly complex and data rich problems. Tech-
niques like distributed computing, parallel processing, and
hardware acceleration have been leveraged to process immense
amounts of data and execute computationally intensive tasks
more efficiently. Moreover, advancements in approximate and
variational GPs have played a pivotal role in scaling Bayesian
optimization, a key global optimization approach. For instance
exact GPs scale as Oðn3Þ for computational complexity, but
using sparse approximations (e.g., inducing points) reduce that
complexity to Oðnm2Þ or Oðm3Þ where m is the number of
inducing points. Algorithms that enable uncertainty quanti-
cation at scale will be a core need of SDLs moving forward.
6 Education

A large span of educational backgrounds is currently required to
drive the development of SDLs, ranging from traditional
sciences, technology, engineering, and math (STEM) to
humanities. This raises the question of how to approach
educating the next generation of students and researchers so
that they are prepared to develop and responsibly use auto-
mated and self-driving labs. With this section, we hope to
promote discussion amongst educators as to how to integrate
the ideas and techniques of SDLs into a curriculum and provide
resources that will enable such development. This section is
organized into three subsections, (1) the topics that researchers
in this eld should know, (2) mechanisms for teaching them,
and (3) thoughts on how to assess success. On a larger scale, we
hope to spur discussion as to what should be considered
foundational knowledge in higher level education and how we
enable future generations of scientists to contribute to and
advance these growing sectors of research and discovery.
6.1 Fundamental knowledge underpinning AI-accelerated
science

As we have already discussed in great detail, SDLs bridge
a broad range of topics such as AI, computing, engineering and
automation of experiments. Prospective scientists entering the
eld of acceleration will typically have one domain of expertise
but maybe little to no experience in other domains. Thus, it may
be challenging for an individual to master all skills necessary in
addition to their experience in their application area. The
multidisciplinary nature of the eld poses challenges to
educators in both deciding on the prerequisites and lecturing
1652 | Digital Discovery, 2023, 2, 1644–1659
for an audience with diverse academic backgrounds and
research interests.

The intellectual barrier to entry into AI-accelerated research
involves fundamental theoretical knowledge as well as practical
skills, both of which must be acquired through training and
practice. Specically, practitioners must understand the
fundamental topics of:

� How and when to conceive of scientic research as an
iterative workow, involving the selection and performance of
experiments together with the subsequent analysis of results.

� How one can go from an existing gap in knowledge to
dening critical bottlenecks that limit the speed at which that
gap can be lled.

� The mathematics and computer science underpinning
SDLs, e.g. statistics, probability theory, linear algebra,
programming, automated data analysis, basic machine learning
and automated planning/decision-making.

� Lab automation including existing solutions, modular
setup of SDLs, communication protocols of automated
equipment.

� And the history of AI- and automation-accelerated research.
� Lab automation including existing solutions, modular

setup of SDLs, communication protocols of automated
equipment.

� And the history of AI- and automation-accelerated research.
In addition, practitioners should have the following skills:
� Data management and curation.
� Algorithmic data processing including scripting the

extraction, analysis, and presentation of large datasets from
possibly heterogeneous sources.

� Interdisciplinary teamwork combining soware, hardware,
and domain experts.

� And uency across these disciplinary intersections for
effective communication with diverse researchers.
6.2 Mechanisms for training in AI-accelerated science

There are a number of approaches to learning and teaching
about AI-accelerated science that can appeal to a wide array of
educational backgrounds, experience levels, and time commit-
ments. We envision a multi-faceted approach to training new
students and existing researchers in SDL-accelerated research.
Here we provide a list of a few such facets that are organized
from lowest barrier to entry to those that require more time,
expertise, and resource commitment.

� Freely available videos are a great resource for beginners
and the community would benet from repositories of such
videos that allow learners to sort and search to nd topics of
interest among curated or trusted videos. Such methods have
been used systematically in engineering education.182

� For students excited about active participation, workshops
at conferences are an excellent resource, especially those that
are paired with large meetings. For instance, the MRS Data
Science Tutorial Organizers hosted two machine learning
competitions in recent years, one in fall 2021 focusing on active
learning and another in fall 2022 on supervised machine
learning.183
© 2023 The Author(s). Published by the Royal Society of Chemistry
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� More formal courses can be helpful for some learners and
be longer and more substantial than workshops and tutorials.
The collaborative nature of the AI-accelerated materials
community raises the possibility of jointly developing a course
that can have a presence at multiple universities and touch on
many material or chemical domains. One example of how such
a course may be developed collaboratively by many researchers
comes from the area of computational chemistry, where
a shared course has been developed between multiple
institutions.

� As a powerful resource for either advanced users of
instructors developing curricula, shared digital resources such
as datasets and code can be directly shared. While these oen
require a certain degree of expertise to incorporate, they provide
access to powerful techniques. However, it is necessary to effi-
ciently share these with attribution. One avenue for doing this
are repositories of materials informatics resources such as
REMI: REsource for Materials Informatics.†

� Student internships in companies that develop robotics
hardware and soware as well as companies that have long-
standing experience in advanced automation will help to
transfer existing industry know-how into academic environ-
ments and apply it to advance SDL technology.

� As in many elds, there is no substitute for learning with
hands-on experience. SDLs provide some unique opportunities
for such hands-on learning. Suitable cost-effective SDLs can be
adopted by instructors for teaching settings.184 Alternatively,
enthusiastic learners can directly leverage these resources to
learn independently. Furthermore, students should be incor-
porated in existing and currently developed SDLs through thesis
projects or research internships, to be exposed to SDL tech-
nology as early as possible, and also to transfer knowledge and
know-how between labs.

A number of these examples show the value of openly
sharing soware, hardware, and data. As such, we view this as
a strong encouragement to continue and expand the practice for
education in AI-accelerated research.
6.3 Assessment of educational activities

It is important to evaluate the effectiveness of coordinated
training and education efforts in the community. Moreover, the
insight from these assessments should be shared to collectively
improve practices. While there is no single metric that can
address all facets of education activities, the following avenues
stand out as promising processes to gather and act on feedback.

� Workshops and tutorials can be evaluated by quantifying
attendance, soliciting feedback, and student outcomes. While
attendance itself is not especially important as different venues
lend themselves to different scales, the uctuation of this
quantity over time can speak to the impact and reputation of the
event. Feedback on educational events should always be soli-
cited following the event when thoughts are still fresh in the
minds of the attendees. This can be through informal short
surveys administered online. For classes with certicates, lling
† https://pages.nist.gov/remi/.

© 2023 The Author(s). Published by the Royal Society of Chemistry
out feedback can be made a prerequisite for receiving the
certicate. Actual learning outcomes are more challenging but
more important to measure. The key question is whether the
educational efforts led to research action. While open to
conrmation bias, a starting point would be to interview
successful students to learn what facets of their education were
most effective.

� Open-source educational resources can be assessed
through the degree to which they are accessed. Basic analytics
can help determine how many new users are present and how
long these users spend with the resources. Such results can help
guide the renement of further resources. That said, there is
a difference between useful, popular, and correct, which means
that raw user numbers do not tell the whole story. It would be
useful to couple such metrics with expert-curated recommen-
dations to highlight effective resources.

� One avenue that has already been impactful in machine
learning and computer science is the use of competitions. In
addition to generating excitement about the eld, these can
serve as an avenue for assessment in evaluating the results from
typical participants. In addition to competitions with a broad
scope, in-class competitions have several advantages,185

including encouraging learning by doing and providing an easy-
to-implement platform for evaluating student progress.

Just as self-driving labs represent an iterative cycle in which
experiments are performed and the outcome is used to learn
and choose subsequent experiments, it is important to view
pedagogy along the same lines and use assessment to build on
and improve past efforts. This reects the dynamic and evolving
nature of this eld and our expectation that it will grow and
evolve in the years to come.

7 Ethics and community

Research on and with autonomous experiments could have
a powerful impact on society. A development and deployment
process that does not include careful planning, broad consul-
tation, competent execution and ongoing adaptation might
create long-term harms that outweigh SDLs' benets. Although
anticipating all potential complications is impossible, exploring
possible problems—as well as solutions and mitigations—early
and frequently could reduce the expected cost of such issues.
The space of ethical considerations relevant to SDLs is too
broad to canvass comprehensively here, but this section high-
lights a few key categories.

First, by lowering the cost and increasing the accessibility of
scientic R&D, SDLs could prolerate destructive capabilities as
well as research progress. For example, these facilities might
enable actors with malicious intent to develop hazardous
materials of biological, chemical and nuclear origin. Research
has already shown that relatively simple machine learning
methods can generate novel toxins that are potentially more
fatal than previously-known substances and that do not feature
on chemical controls and watch lists, creating new governance
challenges.186 SDLs, if not managed carefully, could enable
further experimentation along these lines and possibly the
large-scale production of dangerous substances.187 SDL
Digital Discovery, 2023, 2, 1644–1659 | 1653
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governance will have to balance responsiveness to these
concerns with sensitivity to researcher privacy. Physical and
cyber security will also play a critical role, since poorly-secured
labs, regardless of the soundness of their governance, could be
vulnerable to hijacking by hostile actors.

Second, neglect and AI safety failures could lead to risks
similar to those of malicious intent. Equipment malfunctions,
insufficient cleaning and maintenance, poor storage practices
and so forth might inadvertently create harmful substances, for
instance by contaminating a procedure that would otherwise be
safe. This issue is of course not unique to SDLs—is a general lab
safety concern—but the absence of regular human supervision
removes a critical auditing layer. Relatedly, the increased role of
automated systems in SDLs raises the importance of addressing
AI safety issues: a powerful, unaligned system prone to mis-
interpreting user requests or unfamiliar with a comprehensive
range of lab safety practices, standards and risks could, given
access to a well-stocked scientic facility, do tremendous
damage by, for instance, mixing volatile substances or devel-
oping and dispersing toxins or pathogens188,189 These are among
the scenarios that most concern AI safety researchers.190,191

Third, SDLs, like prior automation, could have adverse social
and political consequences. Historical parallels from the
industrial revolution to the recent rise of the gig economy show
that these costs can include unemployment and underemploy-
ment, reduced mental health, a sense of diminished commu-
nity and security, and inequitable economic impacts. These
problems in turn can trigger escalatory cycles of political
backlash, and can result in regulation that slows technical
progress. To minimize the likelihood and impact of such
dangers, the SDL community should not only study technical
aspects of the technology, but also investigate adjacent social
systems and relevant historical precedents. To this end, SDL
developers should partner with economists, historians, social
activists and stakeholders likely to affected by the development
and deployment of these technologies. However, given the
impossibility of perfectly predicting complex social systems,
individuals working on SDLs should also prioritize ongoing
monitoring of and adaptation to unexpected developments.

Fourth, as a form of economic activity that involves indus-
trial components and processes, SDLs could have negative
environmental impacts. For instance, a rise in the use of heavy
machinery as the costs of experimentation drop might raise
carbon emissions, and increasing chemical R&D might damage
local ecosystems. Guarding against these risks will, like
addressing social and political consequences, require a combi-
nation of foresight (in this case, making the most of the growing
environmental science literature) and responsiveness to unex-
pected developments. Unlike social and political risks, however,
environmental issues stand to benet fairly directly from the
research that SDLs could enable.192,193 We encourage the SDL
community to make climate-related topics a top area of
investigation.

Fih, even if none of the above risks transpire, SDLs could
cause harm via incurring inequitable impacts, for instance by
concentrating economic gains, additional research prestige, etc.
amongst privileged groups. We encourage building working
1654 | Digital Discovery, 2023, 2, 1644–1659
environments that promote equity, support diversity and
require inclusion. As a uniquely interdisciplinary community,
we celebrate the strengths that derive from differences. In
creating working environments where all are welcomed, valued,
respected, and invited to participate fully, we will accelerate
SDLs' positive impact. The community should incorporate
equity and justice in the selection and implementation of
education, research, development, policy, and commercializa-
tion. This includes openly distributing the results of early-stage
research and development in line with FAIR practices, as well as
continued commitment to ethical and reproducible research.

Identifying risks does not solve them, but it represents an
important rst step. Ideally, SDLs could create products and
processes that actively counter these dangers, e.g. by enabling
people to concentrate on the safest, most enjoyable aspects of
discovery, contributing to climate change mitigation and
adaptation, and making scientic knowledge and experimen-
tation more equitable and accessible. However, this will not
happen without active guidance; realizing this vision will
require a concerted effort from the SDL community.

8 Conclusion

The eld of AE and SDLs has the potential to power a new
revolution in the pace and nature of scientic discovery. As with
any revolution, the community shapes the process and
outcome. At this pivotal nascent moment, we acknowledge that
there are rich opportunities at every intersection of our
community, from soware to hardware to education and ethics.
It is crucial that we take deliberate action to ensure that our
collective progress as fruitful and positive as possible. Impor-
tant considerations that must be addressed include how we
acquire, store, manage, and share our data, as well as how we
develop, disseminate, and scale our hardware and soware
solutions. These innovations do not happen in a vacuum and,
as such, we have also highlighted the ethical implications of the
eld and future education and community needs. Born out of
a diverse discourse and community feedback, we hope this
perspective will provide guidelines, encouragement, and facili-
tate community building.

Disclaimer

These opinions, recommendations, ndings, and conclusions
do not necessarily reect the views or policies of NIST or the
United States Government. Certain equipment, instruments,
soware, or materials are identied in this paper for informa-
tional purposes. Such identication is not intended to imply
recommendation or endorsement of any product or service by
the authors or their respective institutions, nor is it intended to
imply that the materials or equipment identied are necessarily
the best available for the purpose.

Data availability
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results, data, soware or code have been included.
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133 F. Häse, L. M. Roch and A. Aspuru-Guzik, Chem. Sci., 2018,
9, 7642–7655.

134 S. Daulton, M. Balandat and E. Bakshy, Advances in Neural
Information Processing Systems, 2021, vol. 34, pp. 2187–
2200.

135 J. A. G. Torres, S. H. Lau, P. Anchuri, J. M. Stevens,
J. E. Tabora, J. Li, A. Borovika, R. P. Adams and
A. G. Doyle, J. Am. Chem. Soc., 2022, 144, 19999–20007.
1658 | Digital Discovery, 2023, 2, 1644–1659
136 M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham,
A. G. Wilson and E. Bakshy, Advances in neural
information processing systems, 2020, vol. 33, pp. 21524–
21538.

137 Q. Liang, A. E. Gongora, Z. Ren, A. Tiihonen, Z. Liu, S. Sun,
J. R. Deneault, D. Bash, F. Mekki-Berrada, S. A. Khan, et al.,
npj Comput. Mater., 2021, 7, 188.

138 R. W. Epps, A. A. Volk, M. Y. Ibrahim and M. Abolhasani,
Chem, 2021, 7, 2541–2545.

139 B. Sanchez-Lengeling and A. Aspuru-Guzik, Science, 2018,
361, 360–365.
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