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ing for solid–solid phase
transitions by machine learning†

Daisuke Takagi,a Kazuki Ishizaki, b Toru Asahiab and Takuya Taniguchi *c

The solid–solid phase transition inmolecular crystals is generally found by chance empirically. In this study, we

constructed a machine learning framework to screen molecules that will exhibit solid–solid phase transitions

in their crystalline states, based on positive-unlabeled learning. We trained classification models using the

positive dataset we constructed manually and the unlabeled data extracted from the Cambridge Structural

Database. The best classifier works as a suggester, and 9 substances among the suggested 113 molecules

were found to exhibit solid–solid phase transitions according to the literature and experiments. The finding

probability of 8.0% is much higher than the probability of phase transition in the database, suggesting the

effectiveness of molecular selection by this workflow. We also found that the molecular structure is weakly

related to the transition temperature by regression analysis. The findings of this study are useful for

designing functional molecular crystals with solid–solid phase transitions.
Introduction

The functionalities of molecular crystals can change in the
solid–solid phase transition, dened as the reversal point of the
minimum Gibbs free energy between at least two solid states.1 A
solid–solid phase transition sometimes causes a signicant and
dynamic change2 in a property. For example, birefringence can
change in a solid–solid phase transition due to the accompa-
nying change in the electronic states of the crystal.3 As another
example, macroscopic actuation occurs during the solid–solid
phase transition upon temperature change.4–6 Solid–solid phase
transitions of molecular crystals are caused not only by changes
in temperature but also by other stimuli, such as pressure, light,
force, vapor, grinding, and voltage, leading to the change or
expression of various functions.7–10

Despite the importance of solid–solid phase transitions,
predicting their occurrence before actual experiments is
currently difficult. Even though computational methods for
crystal structure prediction have progressed,11 phase diagram
investigations and predictions of solid–solid phase transitions
based on molecular dynamics simulation have been limited to
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explaining known phase transitions of some specic
substances.12–14 This is because it is computationally costly to
accurately calculate the Gibbs free energy of (assumed) solid
states. Therefore, theoretical calculations cannot uncover the
occurrence of solid–solid phase transitions in molecular crys-
tals before actual experiments; they are found by chance aer
many trial-and-error experiments.

An inductive approach may solve this situation. The method
in question, known as materials informatics, has been mainly
applied to inorganic and polymeric materials15,16 and, recently,
to molecular crystals as the next target.17,18 This motivated us to
apply it to the search for a hidden trend of solid–solid phase
transitions in molecular crystals (Fig. 1). We reduced the
problem to using molecular structures without considering
their crystal structures. Although this simplication introduces
the limitation that we cannot incorporate the effect of inter-
molecular interactions, it has advantages for designing new
molecules if we discover a relationship between a solid–solid
phase transition and molecular structure.

In this work, we screened for the possibility of solid–solid
phase transition using positive-unlabeled (PU) learning with
molecular descriptors and found substances that exhibited
solid–solid phase transitions in their crystalline states (Fig. 1).
We accomplished this by constructing a positive dataset of
thermally induced solid–solid phase transitions of molecular
crystals, manually curated from published studies. The reason
we focused on the thermally induced solid–solid transition was
the number of available reports and the practical applications.
Classication models were trained and then compared, and the
best classier suggested molecules that potentially exhibit
solid–solid phase transitions. Among them, we found solid–
solid phase transitions by literature search and our
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Prediction of the solid–solid phase transition using amolecular structure in amolecular crystal composed of a compoundwith CSD codes
URUBOA05, 06. Disordered molecules with minor occupancy were omitted for clarity. The bold arrow shows machine learning workflow:
dataset construction of positive and unlabeled data, prediction task of positive-unlabeled classification which outputs the possibility of a solid–
solid phase transition, and regression of transition temperature and enthalpy.
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experiments. We also performed regression analysis and found
that transition temperature was weakly related to molecular
structure. These ndings should be useful in designing
molecular crystals that exhibit solid–solid phase transitions.
Materials and methods
Dataset preparation

The information on the phase transition of molecular crystals
was collected based on the criteria that the phase transition has
been conrmed by thermal analysis of differential scanning
calorimetry (DSC) and/or X-ray crystallography. Here, the phase
transition includes reversible and irreversible crystal-to-crystal
phase transitions, and we did not care whether it was in
a single-crystal-to-single-crystal manner. We did not focus on
cryogenic temperatures and collected data at a temperature
above 120 K under atmospheric pressure. We also added the
condition that permitted atoms are H, B, C, N, O, F, Si, P, S, Cl,
Br, and I atom species. A total of 297 datasetswere extracted
from 91 papers, and the number of unique molecules was 88.
The molecular structure corresponding to each dataset was
downloaded from the Cambridge Crystal Database Centre
(CCDC) in simplied molecular input line entry system
(SMILES) format. The numeric information on phase transition,
temperatures (Tendo and Texo), and enthalpies (DHendo and
DHexo) at the endothermic and exothermic phase transitions,
was also collected. When they were written as a specic value in
the papers, the values were extracted. Instead, when they were
written as a range in the papers, the average values were
calculated. When they were not written as a value but shown in
a gure in the papers, we read the values from the gures. We
also collected crystal structure information: CCDC numbers
and phase names, for future analysis.

For molecular crystals that were not conrmed to show
phase transitions, we searched the data in the CSD using the
© 2023 The Author(s). Published by the Royal Society of Chemistry
following conditions: no report on phase transition, R-factor #
0.05, only organic, 3D coordinates determined, no disorder, not
polymeric, and not the results of the powder study. We also
added the condition that permitted atoms are H, B, C, N, O, F,
Si, P, S, Cl, Br, and I atom species. This search was coded using
the CSD Python API (v.3.0.14). The search raised 199 987 data-
setsfrom the CSD (v.5.42). Then, the duplicate of SMILES was
deleted within the unlabeled dataset and between the positive
dataset and the unlabeled dataset. Finally, we obtained unla-
beled data of 185 037 unique SMILESs.

Machine learning implementation

Molecular structures represented as SMILESs were converted
into vectors. We examined seven descriptors: Mordred,
Extended-Connectivity Fingerprint (ECFP), Avalon, ErG, RDKit,
MACCSKeys, and Estate.19–24

For the classication task, we implemented positive-
unlabeled (PU) and binary (BC) classications. In both cases,
we used random forest (RF), support vector machine (SVM),
neural network (NN), and gradient boosting decision tree
(GBDT) as prediction models. PU learning was implemented by
the weighted Elkanoto method.25 The positive and unlabeled
datasets were used for both PU and BC tasks.

Classication models were evaluated based on the product
of true positive rate (TPR) and selection effect (SE) on the
average of 10-fold cross-validation (CV). The TPR is dened as
the proportion of the number of predicted positives in positive
data (npp) to the number of positive data (np):

TPR ¼ npp

np
:

We dened the SE as the multiplier of the number of unla-
beled data (nu) to the number of predicted positives in unla-
beled data (nup) for the selection purpose:
Digital Discovery, 2023, 2, 1126–1133 | 1127
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SE ¼ nu

nup
:

Here, np and nu were 88 and 185 037, respectively. The product
of TPR and SE is represented as

TPR� SE ¼ npp

np
� nu

nup
¼ nu

np
� npp

nup
¼ k � npp

nup
:

When np and nu are xed, this product depends on npp and
nup. The better the performance of the model, the higher the npp
should be, and the more useful the model as a suggester, the
lower the nup should be. The model with a higher value of the
product is expected to perform molecular screening. The rate of
predicted positives in the unlabeled dataset, i.e., the reciprocal
of the SE, was not used because the higher metric value (max. 1)
does not mean better screening. This is why we used the
product of TPR and SE as the score function even though the
range of the metric was large. Hyperparameters of the predic-
tion models are summarized in Table S1.†

For regression, we used the NN, RF, and transfer learning NN
(TL-NN) as prediction models. A 5-fold CV was performed ve
times because the number of positive datasetswas small, and
the results were inuenced by the data split. The mean absolute
error (MAE) was calculated on the average of ve 5-fold CVs.
Hyperparameters of the prediction models are summarized in
Table S1.† In the TL-NN, the scratch model was trained on
a larger dataset of melting points (n = 22 404)26 through
hyperparameter optimization, and then transferred to learn
transition temperature and enthalpy. Fine-tuning was per-
formed by increasing the number of trainable layers from the
nearest to the output.

All the above computations were conducted on a computer
(OS: Windows 10, memory: 16 GB, GPU: NVIDIA GeForce GTX
1650). We used rdkit (2022.03.02) and mordred (1.2.0), pulearn
(0.0.7), scikit-learn (0.24.2), tensorow (2.9.1), optuna (2.10.1),
and shap (0.41.0) for the implementation in Python.
Table 1 Comparison of the evaluation criterion, the product of TPR
and SE, obtained by PU learning

RF NN SVM GBDT

Mordred 9.3 0.0 0.3 1.0
ECFP 18.9 299.7 4856.9 1.3
Material preparation and characterization

The compound 1,4-bis(3,5-di-tert-butyl-2-
hydroxybenzylideneaminomethyl)benzene (the crystal of OCA-
PAK27 in the Results section) was synthesized by mixing 3,5-di-
tert-butylsalicaldehyde and p-xylylenediamine in a molar ratio
of 2 : 1 in 2-propanol and by heating for 1 h at 423 K using
a microwave. Differential scanning calorimetry was performed
using a DSC 8500 (PerkinElmer) in the temperature range of
223–523 K at a speed of 10 K min−1. Powder X-ray diffraction
analysis was performed using a Rigaku Ultima III diffractom-
eter, equipped with monochromatic Cu Ka irradiation (l =

1.54187 Å) at 40 kV and 40 mA. The solid appearance was
observed using an optical microscope equipped with a camera
(WRAYCAM-NF300, Wraymer).
Avalon 25.7 415.5 11492.5 32.0
ErG 19.0 79.0 3408.2 33.8
RDKit 49.7 107.2 NaNa 0.7
MACCSKeys 9.8 71.1 2667.4 5.2
Estate 11.5 5.9 0.0 15.8

a The metrics of RDKit-SVM was not obtained because nup was zero.
Results and discussion

In the collected dataset, the total number of solid–solid phase
transitions was n= 297, and the unique SMILES was n= 88. The
1128 | Digital Discovery, 2023, 2, 1126–1133
molecular structures were well diverse (Fig. S1†). The transition
temperatures and enthalpies of the collected positive data are
also summarized in Fig. S2.† The unlabeled data, meaning the
solid–solid phase transition in the molecular crystal not
recognized in CSD, were collected from the CSD by ltering
several conditions (see the Method section). The CSD search
resulted in 185 037 unique SMILESs as the unlabeled dataset.

Positive and unlabeled datasets were used for positive-
unlabeled (PU) and binary (BC) classications. BC is a task
commonly used for determining a discriminant boundary
between positive and negative data. However, this problem
setting should not be appropriate for the current case because
we do not know all the true negatives of the solid–solid phase
transition. We cannot obtain the thermal analysis results of all
molecular crystals in CSD. In this case, PU classication is
a more reasonable setting to nd a discriminant boundary
between positive and unlabeled data. We can determine the
possibility of solid–solid phase transition in unlabeled data by
using the PU setting to predict the synthesizability of
materials.28,29

First, we compared TPRs between PU and BC tasks to ratio-
nalize the PU setting (Table S2†). All combinations solved as PU
yielded a much higher TPR than BC. This result indicated that
the PU task is more reasonable in this work and that the
discriminant boundary in BC failed to predict true positives due
to improper problem setting and imbalanced size of positive
and unlabeled data.

Among the PU results, Avalon-SVM was recognized as the
best classier and suggester based on the highest value of the
product of TPR and SE (Table 1). There were some reasons why
other models were worse than Avalon-SVM. For example, ECFP-
SVM with the second highest metrics had a lower TPR, meaning
less model validity (Table S3†). Mordred-GBDT and RDKit-
GBDT showed higher TPRs, but the products with SEs were
much lower due to low SEs (Table S3†). A low SE means that the
model predicted most unlabeled molecules to be positive. In
such a case, it is difficult for us to select candidate molecules to
be investigated next in detail, and the model should not work as
a suggester. Therefore, the Avalon-SVM was used for molecular
selection. Here, we did not interpret the model due to the
interpretability difficulties of Avalon and used it for the
screening purpose.

The suggester must nd molecules likely to exhibit solid–
solid phase transitions. The unlabeled data were input into the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The distribution of the number of substances in the unlabeled
dataset and the predicted probability

p
Number of
substances

1.0 1
0.9 0
0.8 0
0.7 0
0.6 0
0.5 1
0.4 1
0.3 11
0.2 99
0.1 184 924
0 0
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trained 10 models obtained by 10-fold CV, and the number of
times they were predicted to be positive divided by 10 was used
as the probability of the solid–solid phase transition. Therefore,
probabilities are obtained discretely such as 0.1, and 0.2. Most
of the unlabeled data were predicted to have p = 0.1, while 113
substances resulted in higher probabilities of p $ 0.2 (Table 2).
Therefore, the 113 substances were checked in detail to see if
any phase transitions were reported in the literature that were
not recognized in the CSD.

Among 14 molecules with p $ 0.3, three substances were
identied to be positive, and one substance may probably
exhibit the solid–solid phase transition (Fig. 2).30–32 For
example, the crystal of KUDDUK02 (CSD code) has been re-
ported to transform from a into b irreversibly at 342.9 K upon
heating.31 In addition, we experimentally prepared the crystal
reported as OCAPAK27 and found the irreversible crystal-to-
Fig. 2 Suggested substances with p $ 0.2 by PU prediction. Unidentifie
conclude whether it is positive or negative. Positive means we confirmed
and experiments. Potential means that the solid–solid phase transition w
peak-like behavior before reaching themelting point. CSD codes are also
to the limitation of space and are supplied in the ESI.†

© 2023 The Author(s). Published by the Royal Society of Chemistry
crystal phase transition upon 450 K (Fig. S3†). This phase
transition has not been reported anywhere, and the novel solid
phase transition was found owing to the molecular screening.
Furthermore, although the solid phase transition of the crystal
of AREDIN has not been described in the literature,30 the DSC
curve of the compound displayed a small endothermic peak
upon heating without weight loss before decomposition, sug-
gesting a potential phase transition.

For molecules with p = 0.2, we identied 6 substances as
positive among 99 suggested molecules (Fig. S4†). We also
identied 10 substances as being negative at least in the
temperature range of DSC measurement. Determining whether
positive or negative required the description and/or gure of
DSC measurements. The reason why most substances are still
unlabeled is that new crystal structures are oen reported in
papers focusing on organic synthesis. In such cases, the
conduction of DSC measurement is rare, and a gap in the
available amount of data between the crystal structure and
thermal measurement is generated. This situation should also
support the rationality of PU learning.

These above results showed that at least 3/14 (21.4%)
compounds with p$ 0.3 and 9/113 (8.0%) compounds with p$

0.2 were positive. These positive rates are higher than the
positive rate used in model training (88/(185 037 + 88)= 0.05%).
Moreover, the CSD contained 532 unique molecules assigned
with the word “phase transition”, and the occurrence of phase
transition in the CSD is 0.29% (=532/(185 037 + 532)), which is
much lower than the occurrence from suggested substances.
This insists that potential solid phase transitions are hidden
even in known crystals, and the machine learning model con-
structed by PU learning provides us guidance for molecular
selection.
d means we did not find the DSC result of the crystal and we cannot
the solid–solid phase transition of the crystal according to the literature
as not reported in the literature, but the thermal profile of DSC showed
supplied to identify crystal data. Molecules with p= 0.2 are omitted due

Digital Discovery, 2023, 2, 1126–1133 | 1129
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Table 3 Regression performance using the Mordred descriptor

MAE RF model Mean model

Tendo(max) (K) 58.7 (8.1) 75.4
Texo(max) (K) 66.2 (14.4) 71.5
DHendo(max) (kJ mol−1) 5.3 (1.3) 4.6
DHexo(max) (kJ mol−1) 3.6 (1.0) 3.2

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
gi

ug
no

 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
8/

07
/2

02
5 

16
:2

8:
12

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
While the model worked well as a suggester as mentioned
above, there is a limitation to the adaptability of the model.
Because the discriminant boundary in PU learning is affected
strongly by the positive data, the suggested substances among
the unlabeled molecules should have similar features to posi-
tive ones. Data points of suggested molecules with p $ 0.2 are
located near those of positive data as evidenced by the 2D
visualization of the Avalon descriptor using t-distributed
stochastic neighbor embedding (t-SNE), which is a typical
method of manifold (Fig. 3). This result insists that the
suggestion is limited to the known positive data. We calculated
average distances between known positives and predicted
positives and between known positives and the unlabeled data.
The former was 1.68, and the latter was 4.71 in the embedding
space, showing quantitatively that predicted positives are closer
to known positives than other unlabeled data. From a different
perspective, the addition of positive data will broaden the
variety of suggested molecules. There is also a limitation in that
the difference between polymorphs cannot be distinguished
because molecular descriptors of the same molecule are enco-
ded into the same vector. The incorporation of crystal structure
information will improve model accuracy, and this kind of
model extension should be tackled in the future.

Next, we performed the regression of transition temperature
and enthalpy. The motivation was to determine whether tran-
sition temperature and enthalpy are related to the molecular
structure. If this regression captures some hidden relationship,
we can interpret which molecular substructure inuences
transition temperature and enthalpy and design molecules
potentially expressing the solid–solid phase transition at an
expected temperature. The positive dataset we manually
collected made this analysis possible. In regression, target
properties were endothermic and exothermic temperatures
(Tendo and Texo) and the corresponding transition enthalpies
(DHendo and DHexo). When multiple solid–solid phase transi-
tions corresponded to a substance, the maximum and
Fig. 3 Two-dimensional visualization of Avalon vectors embedded by
t-SNE. Red and orange points represent 88 positive datasetsand 113
suggested molecules, respectively. Sky-blue points represent 500
unlabeled datasets, randomly sampled for clarity.

1130 | Digital Discovery, 2023, 2, 1126–1133
minimum values were used in independent regressions (deno-
ted as, for example, Tendo(max) and Tendo(min)).

We show the regression results using the Mordred
descriptor, which was better than other molecular descriptors
in regression (Table S4†). For Tendo(max), the mean model
resulted in a mean absolute error (MAE) = 75.4 (K), which is the
criterion for no relationship between Tendo(max) and the molec-
ular structure (Table 3). The NN and the transfer NN (TL-NN)
models yielded worse metrics than the mean model (Table
S4†), whereas RF outperformed the mean model (Table 3). The
same trend, RF better than the mean model, was also observed
for Tendo(min), Texo(max), and Texo(min) (Table S4†). These results
suggested that Mordred-RF captured a hidden weak trend
between transition temperature and molecular structure. The
scatter plot of experimental and predicted values also supports
this result because orange points are distributed almost along
the reference line (Fig. 4). On the other hand, there was no clear
trend for the regression of DHendo and DHexo (Tables 3 and S4†).
Although enthalpy and entropy are directly related to transition
temperature in thermodynamic physics, we did not obtain the
relationship between transition enthalpy and molecular struc-
ture. This probably results from the relatively larger deviation of
enthalpy and the smaller number (n∼ 40) of datasets compared
with that of the transition temperature (n ∼ 80).

To further validate the regression results of the transition
temperature, the generalization ability of the regression model
was checked using positive data found in the unlabeled dataset.
Fig. 4 Scatter plot of experimental and predicted values of Tendo(max).
The dashed black line represents the reference line when predicted
values are perfectly matched with experimental values. Molecular
structures of two outliers are shown.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00034f


Fig. 5 Model interpretation using SHAP values. (a–d) Top 10 descriptors among 946 features. Target variable is (a) Tendo(max), (b) Tendo(min), (c)
Texo(max), and (d) Texo(min). Commonly observed descriptors are marked with colored squares. (e) Scatter plot of VSA_EState4 versus Tendo(max).
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Among 9 substances found by molecular screening, 8 datasets
were available for the inference of Tendo(max). A comparison of
experimental and predicted values shows that 6 predicted
values were well matched with the experimental values,
although 2 predicted values resulted in larger errors (Fig. 4).
Even though this inference afforded MAE= 57.1 (K), which is in
good agreement with the regression result in Table 3, this
validates that transition temperature is weakly related to the
molecular structure.

To interpret which molecular substructure inuences the
transition temperature, we employed two different approaches
for model interpretation. One is the feature importance obtained
from the RF model, and important features can be identied by
their magnitude in reducing the MAE. The other method is
Shapley additive explanations (SHAP).33 This method calculates
the SHAP value for each feature of each dataset, and the distri-
bution of SHAP values for each feature affords which molecular
feature has a positive or negative effect on the target variable.

First, we show the distribution of SHAP values for Tendo(max),
Tendo(min), Tendo(max), and Tendo(min) (Fig. 5a–d). Here, the top 10
features among 946 features aer sorting by the averaged SHAP
value are shown for each target variable. The commonly ranked
feature was VSA_Estate4, which is dened as the sum of the
electrotopological state values of atoms in the molecule with the
van der Waals surface area between 5.41 and 5.74.24 In all cases,
low feature values (shown as blue points) of VSA_EState4 tended
to distribute in the negative region of SHAP values and high
feature values (red points) tended to distribute in the positive
region of SHAP values. This result suggests that higher
VSA_EState4 tends to increase transition temperature. This
interpretation can be rationalized by the scatter plot of
VSA_EState4 and Tendo(max) (Fig. 5e). Although there is an
outlier, a roughly positive correlation between VSA_EState4 and
© 2023 The Author(s). Published by the Royal Society of Chemistry
Tendo(max) was observed. The tendency is also applied to positive
data found in the unlabeled dataset (Fig. 5e). VSA_EState4 was
also ranked in the top 10 based on the feature importance of RF
(Table S5†), and thus this feature should have the largest
inuence on the transition temperature.

There are 4 other features common for Tendo(max) and
Tendo(min) and 2 features common for Texo(max) and Texo(min)

based on SHAP values (Fig. 5a–d). Three out of 4 features
common to Tendo(max) and Tendo(min) were also ranked in the top
10 based on the feature importance of RF (Table S5†). Thus,
ATSC2d, AATS0p, and ATSC3v should affect the temperature of
endothermic transition, and their effects should be positive
based on SHAP values (Fig. 5a and b). In the same way, 2
features common to Texo(max) and Texo(min) raised by SHAP values
were also ranked in the top 10 based on the feature importance
of RF (Table S5†). ATSC1are and Xc-3d should affect the
temperature of exothermic transition, and their effects should
be positive and negative, respectively, based on SHAP values
(Fig. 5c and d). Although intuitive chemical understanding is
difficult for these important features, we can calculate each
feature value of a molecule and obtain prior knowledge of
whether the phase transition temperature is likely to be high or
low.

Conclusions

In summary, we have successfully screened molecules for solid–
solid phase transitions aided by PU learning and veried it by
nding solid phase transitions of suggested substances. The
positive rate of suggested substances was 8.0%, which is much
higher than the rate used for model training and the rate in the
database. This result validated the effectiveness of the current
workow, although there is a limitation in that the suggestions
Digital Discovery, 2023, 2, 1126–1133 | 1131
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are around known positive data. We also found a hidden rela-
tionship between the molecular structure and transition
temperature by regression. A feature, VSA_EState4, was raised
as a commonly important feature for the temperatures of
endothermic and exothermic transitions. The effect should be
a positive relationship, and some other features were also
found. Although this analysis neglected intermolecular inter-
actions and 3-dimensional conformation, the obtained insight
enables us to efficiently nd molecules manifesting a solid–
solid phase transition in the crystal. This work will aid in the
design of functional molecular crystals for the future applica-
tions of organic optoelectronics and actuators.

Data availability

(1) The code for executing the workow of the paper can be
found at https://github.com/takuyhaa/PUmolecules. The code
was also archived to Zenodo with the following URL. https://
doi.org/10.5281/zenodo.7710534.

(2) Data and processing scripts for this paper are also avail-
able at GitHub and Zenodo at the above URLs.

(3) This study was carried out using a manually curated
dataset and the Cambridge Structural Database v.5.42. The
manually curated dataset has been uploaded as part of the ESI†
and is also available at GitHub and Zenodo at the above URLs.

(4) The data analysis scripts of this paper are available in the
interactive notebook, uploaded to GitHub and Zenodo at the
above URLs.
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