PCCP

CORRECTION

Check for updates

Cite this: Phys. Chem. Chem. Phys., 2023, 25, 25055

(a)

10^t

 Sb_2S_3

Correction: Lone pair driven anisotropy in antimony chalcogenide semiconductors

Xinwei Wang,^a Zhenzhu Li,^{ab} Seán R. Kavanagh,^{ac} Alex M. Ganose^a and Aron Walsh^{*ab}

DOI: 10.1039/d3cp90185h

Correction for 'Lone pair driven anisotropy in antimony chalcogenide semiconductors' by Xinwei Wang et al., Phys. Chem. Chem. Phys., 2022, 24, 7195–7202, https://doi.org/10.1039/D1CP05373F.

Sb₂S₃

rsc.li/pccp

The authors regret that **Fig. 5(b)** was incorrect in the original manuscript due to a minor error in the code used for calculating the orientation-dependent radiative limit to photovoltaic conversion efficiency. The corrected figure is shown here. The optical absorption spectra of Sb_2S_3 and Sb_2Se_3 result in a weak orientation-dependent radiative limit of conversion efficiencies. When the film thickness is 500 nm, the difference between the maximum and minimum efficiencies along different directions is 1.31% and 2.40% for Sb_2S_3 and Sb_2Se_3 , respectively. The authors note that the correction of **Fig. 5(b)** does not change the central conclusions of the paper.

(b)

30

the direction of the electric polarisation vector of light.

gaps are shown in grey dotted lines. (b) Thickness-dependent maximum efficiencies based on the radiative limit of Sb₂S₃ and Sb₂Se₃. x, y and z refer to

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK. E-mail: a.walsh@imperial.ac.uk

View Article Online

View Journal | View Issue