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Flow around a cylinder is a classical problem in fluid dynamics and also one of the benchmarks for testing

viscoelastic flows. The problem is of wide relevance to understanding many microscale industrial and

biological processes and applications, such as porous media and mucociliary flows. In recent years, we

have developed model microfluidic geometries consisting of very slender cylinders fabricated in glass by

selective laser-induced etching. The cylinder radius is small compared with the channel width, which

allows the effects of the stagnation points in the flow to dominate over the effects of squeezing between

the cylinder and the channel walls. Furthermore, the cylinders are contained in high aspect ratio

microchannels that render the flow field approximately two-dimensional (2D) and therefore conveniently

permit comparison between experiments and 2D numerical simulations. A number of different viscoelastic

fluids including wormlike micellar and various polymer solutions have been tested in our devices. Of

particular interest to us has been the occurrence of a striking, steady-in-time, flow asymmetry that occurs

for certain non-Newtonian fluids when the dimensionless Weissenberg number (quantifying the importance

of elastic over viscous forces in the flow) increases above a critical value. In this perspective review, we

present a summary of our key findings related to this novel flow instability and present our current

understanding of the mechanism for its onset and growth. We believe that the same fundamental

mechanism may also underlie some important non-Newtonian phenomena observed in viscoelastic flows

around particles, drops, and bubbles, or through geometries composed of multiple bifurcation points such as

cylinder arrays and other porous media. Knowledge of the instability we discuss will be important to consider

in the design of optimally functional lab-on-a-chip devices in which viscoelastic fluids are to be used.

1 Introduction

Viscoelastic fluids possess intermediate properties between
viscous liquids and elastic solids and are found ubiquitously
in biology (e.g., most bodily fluids), and engineering (e.g.,
foods, paints, cosmetics, detergents). The viscoelasticity arises
due to the presence of mesoscopic structuring in the fluid
(formed by e.g., suspended proteins, polysaccharides,
synthetic polymers, or micellar aggregates), which resist
deformation by an applied stress (i.e., under flow) due to
entropic relaxation mechanisms.1 Since in general, stresses
vary locally in a flow field, microstructural conformations also
vary, leading to local modifications in the stress that feed back
on the flow field. The microstructural conformations induced
in regions of shearing flow typically cause a decrease in the
resistance to flow due to “shear-thinning” of the viscosity. In
contrast, strong stretching of the microstructure induced in

regions of extensional flow can result in a large increase in the
extensional viscosity known as “extension-thickening”.2

Consequently, the resulting flow dynamics of viscoelastic
fluids can be startlingly different from those of constant
viscosity Newtonian fluids (such as water). In particular,
instabilities in flows of Newtonian fluids are typically driven
by inertial forces, quantified by the Reynolds number,
Re = Uℓ/ν, where U is the average flow velocity, ℓ is a
characteristic length scale and ν is the dynamic viscosity.
However, for viscoelastic fluids, instabilities can arise due to
purely elastic forces, even when inertia is negligible.3–10

Elastic forces in the flow can be quantified using the
Weissenberg number Wi = λU/ℓ, where λ is a measure of the
characteristic relaxation time of the fluid microstructure.
Deformation of the microstructure, hence elastic effects, are
expected to become dominant for Wi ≳ 0.5.11,12

The flow around cylinders and spheres have been
considered as benchmark systems for studying the dynamics
of viscoelastic fluids.20–22 The flow field around a confined
cylindrical or spherical object comprises a mix of shearing
and extensional kinematics. At the leading axial stagnation
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point upstream of the object, the compression of fluid
elements causes the divergence of streamlines around the sides
of the object into regions of strong shear and transient
elongational flow between the object and the confining walls.
In the locality of the trailing axial stagnation point downstream
of the object, fluid is subjected to high extensional rates and
residence times.23–25 As demonstrated in Fig. 1, the mixture of
stresses exerted on viscoelastic fluids resulting from this
complex flow leads to a variety of phenomena of relevance to
understanding various industrial and biological problems. The
downstream stagnation point is particularly effective at
restructuring a complex fluid, as illustrated by Fig. 1(a), which
shows the flow-induced birefringence (FIB) in the wake of a
sphere settling under gravity through a solution of high
molecular weight linear polymers. The FIB arises due to the
stretching and orientation of the polymer molecules in the
high streamwise velocity gradients realized near the rear
stagnation point of the sphere. The occurrence of FIB implies
high elastic tensile stress (or extension-thickening) in the fluid
induced by the resistance of the polymer to stretch. The decay
of the FIB with downstream distance behind the sphere is due
to the relaxation of the polymer molecules towards their
equilibrium coiled conformation. The high elastic stress in the
downstream wake of a sphere translating in a viscoelastic
fluid gives rise to effects including so-called “negative
wakes”,26–28 and oscillating settling velocities [illustrated by
Fig. 1(b) for a wormlike micellar (WLM) fluid],13,29 and
influences the pairwise interactions that occur between
vertically and horizontally aligned spheres [illustrated by
Fig. 1(c) for a high molecular weight polymer solution].14,30–33

A comprehensive review of phenomena involving bubbles,
drops and particles in viscoelastic fluids is provided by Zenit
and Feng.34

Quite recently there has been a growing interest in the
area of viscoelastic fluid–structure interactions (or
viscoelastic FSI), whereby viscoelastic flow instabilities cause
the displacement of an object in the flow, which in turn
affects the flow field.15,16,35–38 As in Newtonian FSI, where
inertial vortex shedding downstream of an obstacle causes
the obstacle to vibrate,39 flexible, cantilevered or flexibly-
mounted circular cylinders provide good model systems for
studying viscoelastic FSI [see Fig. 1(d) and (e)].15,16,37 The first
such study by Dey et al. involved the flow of a WLM solution
past a flexible rubbery cylinder pinned at both ends to the
walls of a channel.15 As the flow rate was increased so that
the Weissenberg number exceeded a critical value Wi1, the
authors noted the onset of oscillations of the cylinder in the
primary flow direction, which corresponded to oscillations in
the FIB observed downstream of the cylinder. This behaviour
is analogous to the oscillations in settling velocity of the
sphere shown in Fig. 1(b). Above a second, higher critical
Weissenberg number Wi2, Dey et al. reported the striking off-
axis displacement and oscillations of the cylinder lateral to
the flow direction. A strongly heterogeneous distribution of
the flow occurred, with nearly all of the fluid passing the
cylinder around one of the sides and a stagnant region

developing on the opposite side [Fig. 1(d), left].15 Flow-
induced birefringence imaging using crossed polarizers
[Fig. 1(d), right] showed enhanced elastic stress along the
divisions between fast flowing and stagnant regions, and the
authors noted the possibility that the birefringent strand
below the cylinder may represent an elastic wave. This off-
axis displacement of the cylinder may also have bearing on
the lateral motion of the falling spheres shown in Fig. 1(c).

A study of viscoelastic FSI by Hopkins et al. examined the
flow of a WLM solution around two axially aligned
cantilevered glass cylinders in a microchannel.16 In this
study, at the first critical Weissenberg number Wi1, the flow
field became laterally asymmetric around both cylinders
while the cylinder deflection remained static [top image in
Fig. 1(e)]. The two cylinders became linked by a strand of
highly stressed fluid, as indicated by the FIB [quantified in
terms of the retardation, δ shown in the middle image in
Fig. 1(e)]. For Wi > Wi2 both cylinders began to oscillate
periodically in both the x and the y directions [bottom-left of
Fig. 1(e)]. The cross-correlation function of the displacement
signals showed a peak of close to unity at a time lag too short
for fluid advection between the objects, and likely explained
by the propagation of an elastic wave along the strand of
FIB.16 The authors speculate that elastic strands may form
connections between cilia and flagella translating in
viscoelastic biological fluids like mucous, thus playing a role
in mediating their collective motion.

In a very recent paper, Hopkins et al. examined the flow of
WLM and polymer solutions past two rigidly pinned
microcylinders positioned side-by-side in a microchannel.17

They reported a range of behaviour that depended on
the imposed Wi and the dimensionless intercylinder gap
G = L1/(L1 + L2), where L1 and L2 are the cylinder–cylinder and
cylinder-wall separations, respectively [Fig. 1(f), top]. For low
Wi < Wi1, the flow remained symmetric regardless of G, but
for Wi > Wi1 a bifurcation resulted in the flow either
diverging around the two cylinders if G was small (D-state),
or converging between the cylinders if G was large (C-state).17

For small G, and beyond a second critical Weissenberg
number Wi2, the D-state itself underwent a second
bifurcation to an asymmetric-diverging AD-state, where fluid
randomly selected passage around just one side of the two
cylinders. By examining a wide range of values of G and Wi,
the authors constructed a phase diagram for the different
possible flow states, exhibiting regions of bistability and even
tristability [Fig. 1(f), bottom]. The implications are quite clear
for understanding particle–particle interactions in
viscoelastic fluids. For instance, if the D-state arose around
mobile objects, then the two objects would converge. In
contrast, the C-state would cause the two objects to diverge.
Furthermore, these results have clear relevance to the path
selection and switching observed in viscoelastic porous
media flows.18,19,40–42

Porous media are frequently modelled in microfluidics
experiments using many circular cylinders arranged in arrays
[see examples shown in Fig. 1(g) and (h)].18,19,40–42,49–52 In a
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pertinent study, Kawale et al. showed how the nature of
viscoelastic flow instabilities in a staggered square arrangement
of cylinders is qualitatively changed by a simple 45-degree

rotation of the array to make clear flow paths between the now
aligned rows of cylinders [Fig. 1(g)].18 Several more recent
studies have investigated the effect of introducing random

Fig. 1 Study of viscoelastic flow around a cylinder can lend insight into a variety of fundamental problems. (a)–(c) Spheres falling through
viscoelastic fluids: (a) a 10 mm diameter stainless-steel sphere falling through a 3000 ppm 10.2 MDa polyĲstyrene) solution, showing an elastic
birefringent wake, (b) collage of images of a 4.8 mm diameter Teflon sphere falling through a WLM solution, showing oscillations in the settling
velocity. Reprinted with permission from A. Jayaraman and A. Belmonte, Phys. Rev. E 62, 065301 (2003).13 Copyright (2003) by the American
Physical Society. (c) Collage of images of two initially horizontally-aligned stainless-steel spheres (separation 25 mm) in a 11 000 ppm
polyĲacrylamide) solution, showing convergence and reorientation as they settle. Reprinted from ref. 14, with permission from Elsevier. (d) and (e)
Viscoelastic fluid–structure interactions: (d) a flexible PDMS cylinder in a WLM solution is displaced from the channel centerline by a strongly
asymmetric flow pattern (right) and the asymmetric distribution of extensional stress indicated by the FIB (left). Reprinted with permission from A.
Dey, Y. Modarres-Sadeghi, and J. P. Rothstein, Phys. Rev. Fluid 3, 063301 (2018).15 Copyright (2018) by the American Physical Society, (e) asymmetric
flow past two axially-aligned cantilevered glass cylinders, the x and y displacements of the cylinders vary in time and are highly correlated.16 (f) Flow
of WLM fluid past side-by-side cylinders leads to a variety of bifurcation phenomena that depend on Wi and the dimensionless cylinder–cylinder
separation number, G.17 (g) and (h) Viscoelastic flows of polymer solutions through porous media lead to different instabilities depending on the
geometry: (g) staggered or aligned square arrays of cylinders. Reproduced from ref. 18 with permission from the Royal Society of Chemistry. (h)
Introducing disorder to a staggered hexagonal array of cylinders suppresses chaotic fluctuations. Scale bar, 150 μm. Reprinted with permission from
D. M. Walkama, N. Waisbord, and J. Guasto, Phys. Rev. Lett. 124, 164501 (2020).19 Copyright (2020) by the American Physical Society.
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disorder to arrays of posts [e.g., Fig. 1(h)].19,51,52 Depending on
the orientation of the initially ordered geometry (staggered or
aligned) it has been shown that disorder can either suppress or
enhance the strength of temporal fluctuations that develop in
the flow as Wi is increased. It appears that the occurrence of
stagnation points exposed to the flow field is the controlling
factor for the flow dynamics.51,52

Obstacles such as posts are frequently incorporated in lab-
on-a-chip type devices in order to manipulate the flow
dynamics and to perform complex functions (Fig. 2). Often
the fluids of interest are complex and viscoelastic, for
example blood, serum or other biofluids, which can show
significant elastic effects at microfluidic length scales.53–59

Fig. 2(a) illustrates the separation of cells in whole blood by
the technique of deterministic lateral displacement by flow
through an array of microposts aligned at an angle to the
flow direction.43,60–68 Functionalized post structures
[including nanoporous posts formed by carbon nanotube
forests, Fig. 2(b)] are also used for the capture and detection
of cells, bacteria and other biomolecules.44,69–72 Arrays of
flexible post-like structures containing embedded magnetic
nanoparticles are used as magnetically-actuated artificial cilia
for fluid pumping in microchannels [Fig. 2(c)].45,73

Additionally, microposts can be used for performing droplet
manipulations [Fig. 2(d)],46 generating lipid membrane

nanotubes for the study of cellular processes [Fig. 2(e)],47 and
forming functional nanogel materials based on viscoelastic
micelle solutions [Fig. 2(f)].48,74

A circular cylinder is perhaps the most fundamental
model for a two-dimensional (2D) object or obstacle in a flow
field, which can be rendered flexible for study of fluid–
structure interactions, or used as a building block for models
representing aspects of complex geometries such as porous
media. Furthermore the 2D flow around a cylinder provides
insight into the three-dimensional (3D) flows around
particles, droplets or bubbles, while being significantly easier
to study. Experimentally, a cylinder can be fixed in the
laboratory frame by pinning the ends of the cylinder to the
walls of a channel. This facilitates the imposition of a wider
(and more continuous) range of flow rates than possible with
particles, for instance, where the settling velocity in a given
fluid is controlled only by varying the particle's density and
size. Additionally, channels containing cylinders are relatively
straightforward to fabricate and study at the microscale,
where strong elastic effects (Wi ≫ 1) can arise for negligible
inertia (Re ≪ 1),75,76 conditions characteristic of viscoelastic
flows through micro-porous structures, around microscopic
objects like cilia and flagella, and in lab-on-a-chip devices.
Furthermore, at least over the range of Wi for which the flow
remains steady, viscoelastic flow around a cylinder can be

Fig. 2 Flows around obstacles are employed in numerous lab-on-a-chip devices that can involve complex and viscoelastic fluids: (a) flow through
an array of microposts is used for the separation of particles by deterministic lateral displacement, in this case to separate the cells in whole blood.
Reproduced from ref. 43 with permission from the Royal Society of Chemistry. (b) Nano-porous objects can be used for the trapping and detection
of circulating tumor cells, bacteria and other bioparticles: (left) an array of nanoporous microposts, (right) a zoomed image of the nanoporous
structure. Reproduced from ref. 44 with permission from the Royal Society of Chemistry. (c) Arrays of magnetically-activated cilia-like objects are
used to pump a fluid in a microchannel (channel height, H = a = 2 L = 140 μm, where a and L are the cilia spacing and length, respectively). The
white arrows indicate the direction of the magnetic field used to activate the cilia motion. Reproduced from ref. 45 with permission from the Royal
Society of Chemistry. (d) Carefully positioned microposts in a channel can be used for droplet manipulation – here to induce their rapid merging
and mixing. Reproduced from ref. 46 with permission from the Royal Society of Chemistry. (e) Posts in a microchannnel are shown to produce lipid
membrane nanotubes in the form of webs (top), and parallel assemblies (bottom). Scale bars: 4 μm. Reproduced from ref. 47 with permission from
the Royal Society of Chemistry. (f) An array of micropillars is used to generate a nanogel from a viscoelastic wormlike micelle solution, which can
be used as a scaffold for functional materials – here for glucose oxidase in order to form a glucose sensor. Reproduced from ref. 48 with
permission from the Royal Society of Chemistry.
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modelled in 2D, making the problem much more amenable
to numerical simulation than the 3D flow around a sphere.
For these reasons, viscoelastic flow around a circular cylinder
confined in a channel is a widely studied problem both
experimentally23,77–87 and numerically,24,82,88–92 and has
become a common test for confirming the accuracy of
viscoelastic flow simulations.22 A detailed recent review of
the literature on viscoelastic flows around cylinders is
contained in ref. 87.

From the discussion above, the importance of fully
understanding the viscoelastic flow around a single rigid
circular cylinder should be evident. Accordingly, in our
research group we have invested significant effort in this
direction using novel microfluidic geometries, a wide range
of viscoelastic fluids with different rheological properties,
and a combination of experiments and numerical
simulations. In this perspective review, we provide a personal
account of our recent research in this area, with a particular
emphasis on characterizing and understanding the nature of
an unusual steady flow asymmetry that we have observed. We
draw together our results from a number of recent
publications and summarize our overall conclusions as to the
mechanism of this novel flow instability. We believe this
instability underlies many of the phenomena presented in
Fig. 1, and that it will be important to consider in the design
and optimization of devices such as those illustrated in Fig. 2
when viscoelastic fluids are being employed.

2 Experimental methods
2.1 Microchannel design and fabrication

The microfluidic cylinder device used in all the studies
presented in the remainder of this perspective review is
depicted schematically in Fig. 3(a) and photographically in
Fig. 3(b)–(d). The device was fabricated by selective laser-
induced etching (SLE) in fused silica glass using a “LightFab”
3D printer (LightFab GmbH).94–96 The SLE fabrication is a
two-step process: the shape of the channel is first written
within a solid block of fused silica using a femtosecond laser,
modifying the material locally, and next, the modified
material is selectively removed by a wet chemical etchant
(KOH). The volume occupied by the cylinder is left untouched
during the laser writing step and is simply left behind within
the channel following the chemical etching step, resulting in
a monolithic construction with both ends of the cylinder
fixed to the channel walls. The device fabrication is completed by
bonding stainless steel tubing connectors to the inlet and outlet
of the glass channel using a 2-part epoxy, see Fig. 3(d). The
channel has inner dimensions of W = 400 μm and H = 2 mm,
providing a relatively high aspect ratio AR = H/W = 5. The good
approximation to uniform flow through the channel height was
confirmed by some of our first experiments with Newtonian
and viscoelastic fluids.93,97 The length of the channel from
inlet to outlet is 25 mm and the cylinder is located half
way along it. The cylinder radius is R = 20 μm, which
provides a low blockage ratio BR = 2R/W = 0.1. The cylinder

itself is very slender with an aspect ratio H/2R = 50, but
due to the high modulus of fused silica (≈75 GPa), remains
rigid and essentially undeflected under imposed flow.

2.2 Flow control and dimensionless groups

The flow in the rectangular microchannel is driven at
controlled volumetric flow rate Q using two Nemesys low-
pressure syringe pumps (Cetoni GmbH), one infusing at the
inlet and the second withdrawing at an equal and opposite
rate from the outlet. The average flow velocity inside the
channel is then U = Q/(WH). The dimensionless Reynolds
number decribes the relative importance of inertial to viscous
forces in a flow. For flow around the cylinder we define the
Reynolds number as:

Re ¼ ρUR
η0

; (1)

where η0 is the zero-shear-rate viscosity and ρ is the density
of the test fluid. For the maximum flow rates imposed in our
experiments, Re < 0.05, so inertia can be neglected.

The dimensionless Weissenberg number for the flow,
which describes the relative importance of elastic to viscous
forces, is defined as:

Wi ¼ λ ¼ λ
U
R
: (2)

Fig. 3 Graphical depiction of the high-aspect ratio microfluidic device
used in the experiments: (a) schematic drawing of the flow geometry:
a circular cylinder of radius R is located at the origin of coordinates
inside a channel of width W and height H. Q represents the volumetric
flow rate. (b) and (c) show micrographs of the flow geometry taken
from top and side-on views, respectively. (d) Complete device in fused
silica, assembled with stainless-steel inlet and outlet connectors.
Haward et al. (2019)93 – published by the Royal Society of Chemistry.
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This definition of Wi is based on the assumption that the
streamwise velocity gradient (or extension rate) near the
downstream stagnation point of the cylinder is  ∼ U/R.
Microstructural deformation and consequent extension-
thickening is expected for Wi ≳ 0.5.11,12

2.3 Test fluids

We present data obtained from a large number of diverse
viscoelastic fluids including solutions of different kinds of
polymers and also of wormlike micelles (WLMs). Details of
the fluids and their rheological characterization will be given
during the discussion of the respective results.

2.4 Flow visualizations

2.4.1 Streak imaging. Qualitative flow pattern
visualizations (streak imaging) can be performed by seeding
the test fluid with tracer particles and capturing images of
the flowing fluid with a long exposure time. In our lab, we
employ an epi-fluorescence spinning-disc confocal imaging
system (DSD2, Andor Technology Ltd.) equipped with a
mercury lamp and an Andor iXon camera, and installed on a
Nikon Eclipse Ti inverted microscope. Fluids are seeded with
a low concentration of fluorescent microparticles, typically of
≈5 μm in diameter. The excitation and visualization of the
fluorescent particles is enabled by using the appropriate
excitation and emission filters.

2.4.2 Micro-particle image velocimetry (μ-PIV). For
quantitative spatially-resolved flow velocimetry in the
microfluidic cylinder geometry we use a volume illumination
micro-particle image velocimetry (μ-PIV) system (TSI
Inc.).98–100 The measurement system consists of an inverted
microscope (Nikon Eclipse Ti) focussed in the midplane (z = 0)
of the channel, a dual-pulsed Nd:YLF laser with a wavelength
of 527 nm, and a high speed 1280 × 800 pixel CMOS camera
(Phantom MIRO) operated in frame-straddling mode and
synchronized with the laser. The test fluid is seeded with a
low concentration of fluorescent microparticles as tracers.
Twin laser pulses with time separation Δt excite fluorescence
of the microparticles, and corresponding pairs of particle
images are captured by the camera. At each flow rate
examined, the time Δt is set so that the maximum
displacement of particles between the two images in each
pair is around 8 pixels. For the steady flows discussed in this
review, typically 50 image pairs are captured and processed
using an ensemble average PIV cross-correlation algorithm
(implemented on TSI Insight 4G software). The processing
yields 2D velocity vectors u = (u, v). Subsequent image analysis,
generation of contour plots and streamline traces is performed
using the software Tecplot Focus (Tecplot Inc.).

2.4.3 Flow-induced birefringence (FIB). For measurements
of the optical retardation due to microstructural orientation
in the flowing viscoelastic test fluids (normally referred to as
flow-induced birefringence, or FIB) we employ either an

Exicor Microimager (Hinds Instruments Inc.) or a CRYSTA PI-1P
polarizing camera (Photron Ltd.).

For measurements using the Exicor Microimager, a light-
emitting diode sends collimated monochromatic light
(wavelength 535 nm) along an optical line consisting of (a) a
linear polarizer at 0°, (b) a photoelastic modulator (PEM) at
45°, (c) the sample (i.e., the microfluidic device), (d) a PEM at
0° and (e) a linear polarizer at 45°. The transmitted light is
focussed onto a 2048 × 2048 pixel, 12-bit CCD array. A
stroboscopic illumination technique101,102 is used to
determine the elements of the 4 × 4 Mueller matrix necessary
to compute the pixelwise sample retardance δ and angle of
the high refractive index (i.e., slow) optical axis θ over the full
field of view.

The CRYSTA PI-1P system combines a “micropolarizer
array” in front of a high-speed CMOS imaging sensor. The
micropolarizer array consists of 1024 × 1024 linear polarizing
elements, each the size of one pixel of the 1024 × 1024 CMOS
sensor. The polarizing elements are arranged in sets of 2 × 2
with orientations of 0°, 45°, 90°, and 135°. White light is
passed through a band-pass filter (wavelength 527 nm) and a
circular polarizer, before passing through the sample and
being focussed through the micropolarizer array and onto
the imaging sensor of the camera. By analysing the light
intensity received at the individual pixels in each 2 × 2
grouping, a spatially-resolved and quantitative measurement
of the retardation, δ and orientation angle θ is obtained.93

The retardation is an extrinsic quantity that describes the
total phase shift occurring as light polarized at θ and θ + 90°
passes through the sample. The phase shift is due to the
difference in the refractive indices (n1 and n2) along the two
directions (i.e., due to the birefringence Δn = n1 − n2). The
birefringence itself is an intrinsic quantity related to the
retardation by Δn = δ/ℓ, where ℓ is the pathlength through the
birefringent material.103,104 For imaging through the channel
height (z-direction), an approximation can be made that ℓ ≈ H,
however we prefer to report the measured values of δ without
assuming a value for ℓ.

At this point it may be instructive to demonstrate the
various flow visualization techniques described above. This
also provides an opportunity to outline some common effects
observed for viscoelastic flows around cylinders and to
highlight some important features of our SLE-fabricated
microfluidic device compared with more typical devices
fabricated by soft lithography. Fig. 4(a)–(d) shows streak
imaging carried out for flows in microchannels fabricated by
soft lithography using polyĲdimethyl siloxane) (PDMS), which
has long since been the most common method of making
microfluidic devices.105 Due to the low modulus of PDMS
(≈750 kPa), cylinders fabricated in this material must have a
low aspect ratio in order to avoid large deformations under
imposed flows. The resulting channels therefore also typically
have a low aspect ratio AR ≪ 1 (also limited by the thickness
of photoresist that can be applied to make PDMS moulds)
and are blocked significantly by the presence of the cylinder,
BR ≳ 0.5.84,106–109 In such channels, the flow of a Newtonian
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fluid at low Reynolds number appears as expected, with good
symmetry of the streamlines both laterally (side-to-side) and
longitudinally (fore-aft), see Fig. 4(a) for the flow of an
aqueous glycerol solution at Re ≈ 0.01 and BR = 0.5 visualized
by streak photography. However, as shown in Fig. 4(b), when
the fluid is viscoelastic (here a solution of polyĲethylene oxide),
or PEO, in an aqueous solvent) and the Weissenberg number
is sufficiently high, the development of recirculations
upstream of the cylinder is observed. Fig. 4(c) and (d) show
similar effects with the same PEO solution at higher blockage

ratios of BR = 0.67 and BR = 0.83, respectively. Dominant effects
upstream of the cylinder are typical in microscale viscoelastic
flows with high BR ≳ 0.5 and generally attributed to the build
up of elastic stress due to the transient extensional flow and
high shear rates where fluid elements are squeezed between
the cylinder and the channel walls.84,106–109

Fig. 4(e) shows quantitative μ-PIV obtained for low-Re
Newtonian flow through our SLE-fabricated high aspect ratio
AR = 5 and low blockage ratio BR = 0.1 microfluidic device
illustrated in Fig. 3. As expected, the flow appears highly
symmetric both laterally and longitudinally about the
cylinder. Data extracted from this measured flow field in fact
shows that flow profiles across the channel width uĲy)
upstream and downstream of the cylinder agree well with the
analytical prediction for fully-developed Poiseuille flow in a
rectangular channel of AR = 5.97,110 Furthermore, the flow
profile along the channel centreline passing through the
cylinder uĲx)|y=0 is in agreement with a full 3D numerical
prediction.97 Fig. 4(f) shows the flow of a solution of high
molecular weight polyĲstyrene) flowing through the low-BR
cylinder device at Wi = 54.2. In contrast to the behaviour seen
at high BR [Fig. 4(b)–(d)], at low BR the dominant effect of
elasticity on the flow field is seen downstream of the cylinder.
Here, a long downstream wake of low flow velocity [blue
region in Fig. 4(f)] is observed, which corresponds to a region
of intense FIB, as shown by Fig. 4(g).97 The long downstream
wake effects observed for low BR are associated with the
strong stretching and alignment of polymers (and the
consequent extension-thickening) due to the high velocity
gradients and residence times experienced near the axial
stagnation points.24,86,97,111

It is clear that, by causing a variation in the relative
importance of the stagnation points and the squeezing and
shearing flow around the sides of the cylinder, BR plays a
fundamental role in determining the dynamics of viscoelastic
flows around cylinders.

3 2D numerical simulations

In the numerical simulations, we consider the 2D creeping
flow (i.e., Re → 0) of a non-Newtonian fluid in a planar
channel (width W) that features a circular cylinder (radius R)
located at the coordinate origin mid-way between the walls
[see Fig. 5(a)]. The fluid is incompressible with constant
density ρ, solvent viscosity ηs, zero shear rate viscosity η0 and
characteristic relaxation time λ. The length of channel is
L = 250R, and in all simulations the flow domain spans
−125 ≤ x/R ≤ 125. The fluid is driven into the channel
by the action of a pressure gradient generating a volumetric
flow rate Q = UW per unit depth, where U is the average flow
velocity of the fluid far from the cylinder. We scale all lengths
with the cylinder radius R, velocities with the average flow
velocity U and times with the characteristic flow time R/U.
The dimensionless groups that arise are the blockage ratio,
the Weissenberg number, and the Newtonian solvent-to-total
viscosity ratio β = ηs/η0.

Fig. 4 Geometry can have a profound effect on the dynamics of
viscoelastic flows around cylinders. (a)–(d) Streak imaging with
fluorescent tracer particles for flows through PDMS-fabricated
microfluidic devices with W = 600 μm, H = 100 μm (AR = 0.167): (a)
Newtonian flow at low Re and BR = 0.5; (b)–(d) flow of a 10000 ppm
PEO solution at the indicated Wi and BR = 0.5 (b), BR = 0.67 (c), and
BR = 0.83 (d). Scale bar indicates 250 μm. (e)–(g) Flows through the
microfluidic device shown in Fig. 3: (e) flow velocimetry with a
Newtonian fluid at low Re; (f) and (g) flow velocimetry and flow-
induced birefringence (respectively) for the flow of a 700 ppm 6.9 MDa
polyĲstyrene) solution at Wi = 54.2. The colour scales in (e) and (f)
indicate the normalized velocity magnitude in the range 0 < |u|/U < 1.8.
The colour scale in (g) indicates the retardation in the range 0 < δ < 24 nm.
Parts (e) to (g) are reprinted from S. J. Haward, K. Toda-Peters,
and A. Q. Shen, J. Non-Newtonian Fluid Mech. 254, 23–35 (2018),
with permission from Elsevier. In all images the flow is from left to
right.
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3.1 Governing equations

The non-Newtonian flow is described by the incompressible
and isothermal Cauchy equations coupled with a constitutive
equation, which accounts for the contribution of the non-
Newtonian stresses. Neglecting inertia, the forms of the
continuity, momentum and constitutive equation are
expressed, respectively, as:

∇·u = 0, (3)

∇·(−PI + τ + ηs) = 0, (4)

g(τ, ) = 0, (5)

where u is the velocity vector, P is the thermodynamic
pressure, I is the identity tensor, and τ is the non-Newtonian
contribution to the total stress tensor. The deformation rate
tensor, , is defined as:

 = ∇u + (∇u)T, (6)

where the superscript “T” denotes the transpose operator.
No-slip and no-penetration boundary conditions (i.e., u = 0)

are imposed on the cylinder surface and channel walls
[Fig. 5(b)]. Fully-developed velocity and stress fields are
imposed at the inflow boundary (x = −125R), hence, one-

dimensional (1D) equations for the velocities and the
components of the stress tensor are solved together with the
2D equations for the rest of the domain. More specifically, in
each time-step we solve the governing equations for 1D flow in
the channel, under the constraint of a flow rate that is
gradually increased from zero to Q:

Q =
RW/2
−W/2u|x=−125R dy = UW(1 − e−tU/R), (7)

where t is the time from the initiation of flow. The 1D flow
profiles obtained (i.e., velocity and logarithm of the
conformation tensor) are then imposed as Dirichlet conditions
at the inflow boundary. The open boundary condition113 is
applied along the outflow boundary at x = 125R.

The form of the operator g (given as a function of τ and 
in eqn (5)) depends on the choice of the constitutive model.
We have considered the behaviour of various non-Newtonian
models including the shear-thinning but inelastic Carreau–
Yasuda (C–Y) generalized Newtonian fluid (GNF) model and
the elastic but non-shear-thinning Chilcott–Rallison finitely
extensible non linear elastic dumbbell (FENE-CR) model.112

However, in this perspective review we focus mainly on one
particular model known as the linear Phan-Thien and Tanner
(l-PTT) model, which allows us to vary the strength of both
the shear-thinning and the elasticity of the fluid. The l-PTT
constitutive equation is given in terms of the conformation
tensor C as:

C
∇ þY

λ
C − Ið Þ ¼ 0; (8)

where the overset “∇” denotes the upper convected derivative
and Y is the linear PTT function:

Y = 1 + εtr(C). (9)

The magnitude of the parameter ε governs the degree of
elasticity (or extension-thickening) of the fluid at high Wi:
lower ε implies stronger extension-thickening. For the range
of values of ε that we will consider, shear-thinning is mainly
controlled by the solvent-to-total viscosity ratio β: smaller β

implies stronger shear-thinning.90,114 The stress tensor is
related to the conformation tensor as follows:

τ = G(C − I), (10)

where G is the elastic modulus.

3.2 Numerical method

The Petrov–Galerkin stabilized finite element method for
viscoelastic flows (PEGAFEM-V),90 is used to solve the governing
equations. The aforementioned finite element (FE) method
makes use of linear interpolants for all variables and combines
classical finite element stabilization techniques115–117 with the
log-conformation representation of the constitutive equation.118

The variational formulation along with a detailed explanation of
the FE method is given by Varchanis et al.90

Fig. 5 Illustrations of the two-dimensional problem set up in the
numerical simulations. (a) A circular cylinder of radius R is located at
the origin of coordinates inside a channel of width W and subjected to
flow at an average velocity U. (b) A zoomed-in view of one of the
numerical meshes employed. The boundary conditions are no slip and
no penetration on the solid walls of the channel and the cylinder
(marked red), fully-developed at the inlet upstream of the cylinder
(blue), and open at the downstream outlet (green). Reprinted from
S. Varchanis, C. C. Hopkins, A. Q. Shen, J. Tsamopoulos, and S. J.
Haward, Phys. Fluids, 32, 053103 (2020),112 with the permission of AIP
publishing.
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The mesh is generated by the quasi-elliptic mesh
generator introduced by Dimakopoulos and Tsamopoulos.119

In all simulations we use triangular elements. Fig. 5(b) shows
the least refined of the three consecutively-doubled meshes
used to confirm mesh convergence. Time integration is
performed using a fully implicit 2nd order backward finite
difference scheme preceded by a quadratic extrapolation step
for the prediction of the solution at each new time instant.
Consequently, the numerical method features 2nd order
accuracy in space and time.

4 Experimental investigations

Our first experiments on the flow through the glass
microfluidic cylinder geometry shown in Fig. 3 involved using
μ-PIV to confirm the expected behaviour for a Newtonian
fluid at low Re [see Fig. 4(e)], and using a combination of
μ-PIV and FIB imaging to examine the steady viscoelastic flow
of a dilute polymer solution [see Fig. 4(f) and (g)].97 The fluid
used in those experiments was an elastic, but almost non-
shear-thinning solution of a 6.9 MDa polyĲstyrene) dissolved
in dioctyl phthalate. For this fluid, as Wi was increased the
formation of a long, laterally symmetric downstream wake of
low flow velocity and high birefringence was observed [see
Fig. 4(f) and (g)]. However, the first experiments we wish to
discuss in detail involve the flow of a particular wormlike
micellar (WLM) solution.

4.1 Flow of a WLM solution

WLMs are elongated semiflexible aggregates formed by the self-
assembly of surfactant molecules in aqueous solution.120 WLM

solutions have viscoelastic properties similar to polymer
solutions, but possess additional relaxation mechanisms due to
the ability of the aggregates to break and reassemble.121–124 As a
result, WLMs impart unique rheological properties to fluids that
make them useful in a wide range of industrial applications
and consumer products.125–130 Understanding the behaviour of
WLM systems in complex flows is therefore of considerable
importance and interest.131,132

The wormlike micellar test solution we employed in our flow
experiments around microfluidic cylinders was composed of
100 mM cetylpyridinium chloride and 60 mM sodium salicylate
(both supplied by Sigma Aldrich) dissolved in deionised (DI)
water. This is a well-studied surfactant/counterion system known
to form long and entangled wormlike micelles at the selected
concentrations.123,133 The steady shear rheology of the test
solution, measured at 24 °C (ambient laboratory temperature)
using a combination of rotational rheometer (DHR3, TA
Instruments Inc.) and m-VROC microfluidic slit rheometer
(Rheosense Inc.)134 is presented in Fig. 6(a). The flow curve
shows a constant viscosity region (where η() ≈ η0 = 50 Pa s) at
low shear rates followed by a stress-plateau region indicative of
shear-banding,135,136 that spans ≈3 decades before the shear
stress begins to increase again at higher shear rates. The steady
shear rheology is well described by the C–Y GNF model,137 as
shown by the solid lines in Fig. 6(a). The storage (G′) and loss
(G″) moduli measured by small angle oscillatory shear at 24 °C
on the rotational rheometer are well-described over most of the
frequency range using a single mode Maxwell model that
provides a value for the relaxation time of λ = 1.8 s [see Fig. 6(b)].
The viscometric properties of the fluid are typical for this
WLM formulation.138–140

Fig. 6 Flow of a WLM solution in the microfluidic cylinder device. (a) Steady shear rheology of the WLM solution fitted with the Carreau–Yasuda
model. (b) Oscillatory shear rheology of the WLM solution fitted with a single-mode Maxwell model giving a relaxation time λ ≈ 1.8 s. (c) and (d)
Velocity fields (left) and retardation fields (right) for the flow of the WLM solution past the microcylinder at two different Wi. (e) The absolute value
of the asymmetry parameter |I| as a function of Wi. Haward et al. (2019)93 – published by the Royal Society of Chemistry.
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In examining the flow of the shear-banding WLM solution
around the slender glass cylinder, a sequence of flow
transitions was observed as the Weissenberg number was
increased, starting with the onset of a laterally asymmetric
flow regime for Wi > Wic.

93 Examples of time averaged flow
velocimetry and FIB imaging results for Wi < Wic and
Wi > Wic are presented in Fig. 6(c) and (d), respectively.
For Wi < Wic [e.g., Wi = 37.5, Fig. 6(c)], the flow field was
steady and approximately symmetric both laterally and
longitudinally. A birefringent strand developed downstream
of the cylinder, centred along the x-axis, and which increased
in size and intensity with increasing Wi. For Wi > Wic (see
e.g., Fig. 6(d) for Wi = 93.8), the flow remained steady, but a
clear lateral asymmetry became apparent in the flow field,
with the fluid taking a preferential path around one side of
the cylinder and an almost stagnant region developing on
the opposite side. In the example shown the flow is faster
for y > 0 than for y < 0, but it is important to note that the
asymmetry could also develop in the opposite sense, with
the direction being selected randomly. The asymmetry was
also evident in the birefringent strand downstream of the
cylinder, which followed the division between the almost
stagnant and fast-flowing regions and became shifted
towards the channel side wall at y = −0.2 mm.

At the time this work was carried out, the only similar-
looking lateral flow asymmetry reported in the literature was for
the flow of another WLM fluid around a flexible low modulus
PDMS cylinder inside a macroscale channel [see Fig. 1(d)].15

The authors of that work attributed the asymmetry to the off-
axis lateral displacement of the cylinder in the flow. However,
in our experiment the high-modulus glass cylinder was
effectively rigid. Based on the solution to the Euler–Bernoulli
equation for a circular cylinder with two pinned ends and
estimates of the force per unit length on the cylinder at the
highest imposed flow rates, the maximum streamwise
deflection of the cylinder at its midpoint, Δxmax ∼ O(1 μm),
which is on the same order as the cylinder roughness.
Therefore, the occurrence of the asymmetry required an
explanation that did not depend on geometric modification
caused by the flow.

The extent of the asymmetry was characterized by
measuring the flow velocity on either side of the cylinder
u1 = u|x=0, y=Ĳ0.5W+R)/2, u2 = u|x=0,y=−(0.5W+R)/2 and comparing
them to provide an asymmetry, or bifurcation, parameter:

I ¼ u1 − u2ð Þ
u1 þ u2ð Þ : (11)

Eqn (11) returns a value of zero if the flow on both sides of
the cylinder is equal (symmetric) and becomes non-zero
when the flow is asymmetric, with I → 1 if u2 → 0 and I → −1
if u1 → 0. Fig. 6(e) shows the absolute value of I measured as
a function of Wi. The asymmetry occurs for Wi > Wic ≈ 60
with good reproducibility over several tests. The value of |I|
exceeds 0.8 for Wi > 100 indicating that almost all of the
fluid passes on just one side of the cylinder or the other.
Furthermore, we found no hysteresis in the transition when

we performed quasistatic increasing or decreasing ramps in
Wi. The transition is well described by minimizing a 4th-
order Landau potential, indicating that the transition to
asymmetry is a supercritical pitchfork bifurcation. Note that
the increased scatter of data for Wi ≳ 130 in Fig. 6(e), is
caused by the onset of time-dependence in the flow,93 which
will not be discussed further in this review.

Based on our observations, we proposed (speculatively) that
the asymmetry develops from an initially random sideways
fluctuation of the highly-stressed downstream birefringent
wake at Wi = Wic. We argued that such a fluctuation would
cause an (initially small) imbalance between the flow resistance
around either side of the cylinder, such that the fluid would
preferentially select the least resistant path. This would cause a
shear rate imbalance and hence, due to the strong shear-
thinning of the fluid, a mismatch between the fluid viscosity
on either side of the cylinder that would compound the
imbalance in flow resistance and maintain the asymmetry.
Further increases in Wi would then cause the instability to
grow as the viscosity mismatch increased. However, since such
asymmetries had until now only been observed in WLM
solutions, several questions remained: (1) what is the
importance of shear-banding? (2) what is the importance of
relaxation mechanisms peculiar to self-assembled WLM
systems (i.e., breakage and reformation)?121,122 In addition, if
the hypothesized mechanism is correct, then what is the
relative importance of extension-thickening in the downstream
wake and shear-thinning at the sides of the cylinder, and how
do they interact?

An obvious way to check the importance of the highly
specific rheological properties of WLM solutions in the
generation of this flow instability is to see whether or not the
same situation arises in polymer solutions.

Assuming a polymer solution would show the same effect,
then two strategies would allow for testing the hypothesized
instability mechanism: (1) varying the geometry through BR,
or (2) varying the rheology through degrees of shear-
thinning and elasticity. In method (1), by keeping the
cylinder radius constant, varying BR would provide different
shear rates around the cylinder for a given Wi. However, we
considered that spanning a sufficient range of shear rate
between the low and high shear rate plateaus would be
complicated. On the other hand, considering method (2),
experimentally it is unfeasible to vary the shear-thinning and
elasticity of a fluid independently. On balance of likely
success, our first experimental approach to the problem was
to test a range of polymer solutions in our existing
microfluidic device, as we describe in the following
section.

4.2 Flow of polymeric solutions

Our first effort to gain a deeper understanding of the cause of
the lateral flow asymmetry observed for WLM flow around the
microfluidic cylinder93 involved the study of a range of
viscoelastic polymer solutions.141 The viscoelastic test fluids
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were composed of a high molecular weight (Mw = 18 MDa)
sample of partially hydrolyzed polyĲacrylamide) (HPAA,
Polysciences Inc.) dissolved in DI water over a range of
concentrations 50 ≤ c ≤ 3000 ppm (by weight). The viscosities
of the fluids were measured at 25 °C in steady shear using an
Anton-Paar MCR 502 stress-controlled rheometer fitted with a
stainless steel double-gap geometry. The results are presented
in terms of shear stress σ versus shear rate  [Fig. 7(a)]. The
fluids are all shear-thinning with flow curves that are well-
described by the C–Y GNF model (shown in the plots by the
correspondingly-coloured solid lines).

To characterize the importance of shear-thinning at any
given flow rate imposed in the microfluidic cylinder device,
we employed the “shear-thinning parameter” S:142,143

S ¼ 1 − dlnσ
dln 

; (12)

which is simply 1 minus the slope of the stress versus shear
rate plot in logarithmic scale [Fig. 7(a)], and is easily

evaluated for any given shear rate from the C–Y fit to the
data. If a fluid behaves in a pseudo-Newtonian way (i.e., on
the low and high shear rate plateaus where there is no shear-
thinning), then dln σ/dln  = 1 and S = 0. For a general shear-
thinning fluid, 0 < dln σ/dln  < 1 and S attains a positive
value 0 < S < 1. For a shear-banding fluid such as a WLM
solution exhibiting a stress plateau, S can reach its maximum
value of unity.

Fig. 7(b) shows S versus  for the various polymeric test
solutions. S is close to zero at low shear rates (i.e., the
fluid is only weakly shear-thinning) and increases to a
maximum at some intermediate shear rate as shear-
thinning increases. At higher shear rates, S decreases again as
the high shear rate plateau in viscosity is approached. In
general, the curves are all of similar shape, but S becomes
increasingly large over a wider range of shear rates as the HPAA
concentration increases.

In the microfluidic cylinder geometry we evaluated eqn (12)
at a nominal value of the wall shear rate in the gap between

Fig. 7 Flow of hydrolyzed polyĲacrylamide) (HPAA) aqueous solutions through the microfluidic cylinder device. (a) Steady shear rheology of the
polymer solutions over a range of concentrations, fitted with the C–Y model. (b) Shear-thinning parameter, S, derived from the C–Y model fits
shown in part (a). The open symbols indicate the characteristic shear rate and value of S at the lowest Wi imposed in the cylinder flow experiments.
(c) Capillary breakup measurements from which the fluid relaxation times λ are obtained. (d)–(f) Velocity fields for the flow of the HPAA solutions
past the microcylinder at the indicated concentration for progressively increasing Wi. Adapted from Haward et al.141
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the cylinder and the channel side wall, w,gap ≈ 6 U/0.5W.
Note that the open symbols marked on the plots of S
versus  shown in Fig. 7(b) indicate the minimum value of
w,gap accessed for each fluid in the cylinder flow
experiments.141

The characteristic relaxation times (λ) of the fluids at 25 °C
were determined by measuring the diameter as a function of
time of the liquid bridge generated in a capillary thinning
extensional rheology device (Haake CaBER 1, Thermo Scientific)
and finding the time constant of the exponential decay in the
elasto-capillary thinning regime [see Fig. 7(c)].144,145

In the cylinder flow experiments with HPAA solutions, we
assumed that the importance of elasticity (or extension-
thickening) in the cylinder wake was quantified by the
magnitude of the Weissenberg number (computed as before,
Wi = λU/R).141 Note that both Wi and S depend on the applied
flow rate so are not varied independently for a given fluid.

In flow around the cylinder, the behaviour of the
polymeric test solutions depended on the polymer
concentration.141 At lower concentrations [exemplified by the
flow velocimetry shown in Fig. 7(d) for c = 100 ppm] the flow
remained essentially laterally symmetric for all imposed Wi,
although the development of an extended downstream wake
of low flow velocity was observed as Wi was increased. HPAA
is only very weakly birefringent, but the form of the wake is
reminiscent of that previously observed in a birefringent
polyĲstyrene) solution [cf., Fig. 4(f) and (g)] so it is reasonable
to assume that the wake in the HPAA solution is also a result
of polymer stretching, i.e., extension-thickening.

For intermediate HPAA concentrations [e.g., 200 ppm,
Fig. 7(e)], the lateral flow asymmetry was observed as Wi was
initially increased starting from a low value, but surprisingly,
the symmetry was recovered at higher Wi.

At higher HPAA concentrations [e.g., 1000 ppm, Fig. 7(f)],
the lateral asymmetry developed and became increasing
intense with increasing Wi, with the flow adopting a very
similar pattern to that observed previously with the WLM
solution [see Fig. 6(d)].

The fact that the same asymmetric flow patterns are
exhibited by polymer solutions obviously means that any
peculiarities of the rheology of WLM fluids, such as shear-
banding, are of no importance to the onset of the laterally
asymmetric flow profiles. We evaluated the asymmetry
parameter I (eqn (11)) as a function of the imposed flow rate
for each of the HPAA test fluids and assembled the data as a
function of Wi and S in a 3D plot, see Fig. 8. Here, the
coloured lines mark the trajectories of the test solutions
through the 3D space as the flow rate is varied, and the mesh
surface is a fit through those trajectories using a combination
of sigmoidal functions in S and Wi.141 Plotted in this way, it
becomes clear that for lower polymer concentrations where
flow stays symmetric (e.g., 50 ppm, black line), S is high only
when Wi is low and S rapidly diminishes as Wi increases.
The strongly asymmetric flows observed at higher polymer
concentrations (e.g., 3000 ppm, dark yellow line) arise when
there is a combination of high S and high Wi (i.e., strong

shear-thinning and high elasticity, or extension-thickening).
For intermediate polymer concentrations (e.g., 300 ppm, blue
line), there is a limited region where shear-thinning and
elasticity are sufficient to induce asymmetry, but with
increasing flow rate the shear-thinning is lost and symmetry
is recovered, even though elasticity (as quantified by Wi)
continues to increase.

These results provided strong support to our original
hypothesis regarding the roles of shear-thinning at the sides
of the cylinder and of extension-thickening in the wake
downstream of the cylinder. However, as discussed above, it
would be more ideal if elasticity and shear-thinning could be
varied independently. For this reason we pursued the
possibility of simulating the flow numerically with the l-PTT
viscoelastic constitutive model.

5 Numerical modelling
5.1 Rheological effects

Our 2D numerical modelling of the flow around the cylinder
was validated by comparison against three experimental
polymer solutions with contrasting rheological characteristics.
The first fluid was a strongly shear-thinning but nearly
inelastic solution of xanthan gum (XG), which was modelled
by the inelastic C–Y GNF model. The second fluid was a
highly elastic but almost constant viscosity solution of 4 MDa
PEO (PEO4) in a mixture of glycerol and water, which was
modelled using the non-shear-thinning FENE-CR model. The
third fluid was a both shear-thinning and elastic solution of
8 MDa PEO (PEO8) in water, which was modelled using the
l-PTT model (see sec. 3.1). The steady shear rheology of the
three experimental test fluids and the three corresponding
models is shown in Fig. 9(a). Fig. 9(b) shows the extensional
rheology given by the three models.

Fig. 8 Magnitude of the asymmetry parameter |I| as a function of S
and the imposed Weissenberg number. The coloured lines represent
the trajectories of the various test fluids through the 3D space. The
continuous mesh surface is formed by fitting the trajectories of the
fluids with the product of two sigmoidal functions.141
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Despite the strong shear-thinning, the inelastic XG fluid
and C–Y model fluid showed no signs of lateral flow
asymmetry, and the flow remained qualitatively Newtonian-
like [see Fig. 4(e)] even at the highest flow rates we could
impose. Also, the flow of the strongly elastic but constant
viscosity PEO4 fluid and FENE-CR model fluid remained
laterally symmetric for all imposed Wi, although in both the
real fluid and the model, the development of long elastic
downstream wakes was observed at higher Wi, in qualitative
similarity to Fig. 4(f). Contrastingly, the PEO8 fluid and the
corresponding l-PTT model fluid, characterized by both
shear-thinning and elastic effects, both showed the onset of
the lateral flow asymmetry at comparable critical values of Wi
[see Fig. 9(c)].112

Having validated the l-PTT model as being able to
reproduce the instability around the cylinder, we proceeded
to investigate the influence of the shear-thinning parameter β
and the extension-thickening parameter ε in the response of

the model. Recall (sec. 3.1) that lower β implies stronger
shear-thinning and lower ε implies stronger extension-
thickening with increasing Wi. The results of varying β and ε

in the model are summarized concisely in the stability
diagram in Wi–β parameter space shown in Fig. 9(d), where
the boundaries between symmetric and asymmetric flow
states are marked along lines of constant ε. Following
lines of constant ε from high to low β, Wic decreases (i.e.,
shear-thinning is destabilizing). As ε is decreased for fixed
β, Wic also decreases (i.e., extension-thickening is also
destabilizing). However, for a given value of Wi, the flow
destabilizes at lower β as ε is increased (or at lower ε as β is
increased). Clearly there is an interplay between the shear-
thinning and the extension-thickening. Low levels of shear-
thinning can be compensated for by high levels of extension-
thickening and vice versa. However, our results showed that
as β → 1, then infinite extension-thickening is necessary to
induce asymmetry. Conversely, if extension-thickening is

Fig. 9 Numerical investigation of rheological effects on the steady flow asymmetry. (a) Numerical models are selected to represent the shear
rheology of three contrasting experimental test fluids: a shear-thinning but inelastic 1000 ppm XG solution represented by the C–Y model, a non-
shear-thinning but elastic 2000 ppm PEO4 solution represented by the FENE-CR model, and a both shear-thinning and elastic 5000 ppm PEO8
solution represented by the l-PTT model. (b) Extensional rheology of the fluids as indicated by the representative models. (c) Flow velocity fields
obtained from numerical simulations with the l-PTT model (β = ε = 0.05) show the onset of asymmetric flow above a critical Wi, in good
agreement with experiments carried out with the PEO8 solution. (d) Stability diagram in Wi–β parameter space obtained from simulations with the
l-PTT model by varying β and ε, where the critical Wi for the onset of asymmetry lie along contours of constant ε (see text for the full description).
Reprinted from S. Varchanis, C. C. Hopkins, A. Q. Shen, J. Tsamopoulos, and S. J. Haward, Phys. Fluids, 32, 053103 (2020),112 with the permission
of AIP publishing.
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weak, then asymmetry can only be induced if β → 0. Thus,
simulations with the l-PTT model confirm that both shear-
thinning and extension-thickening are required to induce the
instability.112

5.2 Geometric effects

2D numerical simulations with the l-PTT model were also
used to investigate the influence of the blockage ratio BR of
the flow geometry for fixed conditions of shear-thinning
β = 0.05 and extension-thickening ε = 0.05. BR was varied by
keeping the cylinder radius R constant and adjusting the
channel width W. Thus, for a given average flow rate U, the
Weissenberg number remained constant but the nominal
shear rate around the cylinder w,gap increased with
increasing BR.

First, we considered the magnitude of the asymmetry
parameter, |I|, as a function of Wi at various values of BR, see
Fig. 10(a). Clearly, geometry has a significant effect on the
instability. With decreasing BR, Wic progressively increases.
For a fixed value of Wi (say Wi = 25, dashed vertical gray
line), the degree of asymmetry progressively decreases with
decreasing BR [Fig. 10(b)]. Moving the channel walls further
from the cylinder reduces w,gap, with an apparent stabilizing
effect on the flow.112

An alternative approach to the problem, which yielded
further insight, was to vary BR for fixed Wi. Fig. 10(c) shows |I|
as a function of BR at various values of Wi, revealing a
“bubble” of asymmetry between two critical values of BR. As
BR is increased for a given Wi, the flow destabilizes to the
asymmetric state at a first critical value BR,c (marked by star
symbols). However, the flow restabilizes and recovers

Fig. 10 Numerical investigation of geometrical effects on the steady flow asymmetry. (a) Asymmetry parameter I as a function of the Weissenberg
number Wi for various values of the blockage ratio BR. (b) Normalized velocity fields at Wi = 25 for different blockage ratios. (c) I as a function of
BR at various values of Wi. For increasing BR, stars mark the points where the flow loses symmetry and circles mark the points where symmetry is
recovered. (d) Flow curve of the l-PTT fluid, with the critical shear rates for loss and recovery of symmetry marked by the stars and circles
(respectively), coloured according to the imposed Wi in part (c). The inset plot in (d) shows the critical blockage ratio at the onset of asymmetry
BR,c as a function of 1/Wi, demonstrating the scaling predicted by McKinley et al.4 Reprinted from S. Varchanis, C. C. Hopkins, A. Q. Shen, J.
Tsamopoulos, and S. J. Haward, Phys. Fluids, 32, 053103 (2020),112 with the permission of AIP publishing.
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symmetry at a second critical value BR,c2 (marked by circles).
In the range of Wi covered, this instability “bubble” expands
with increasing Wi. The recovery of symmetric flow for
BR > BR,c2, is reminiscent of the recovery of symmetry seen in
the experiments with polymer solutions at intermediate
concentration (cf., Fig. 7(e) and 8). The difference is that in
the experiments, w,gap was varied by controlling the flow
velocity (which also varied Wi); here w,gap is varied
independently of Wi by controlling BR.

112

For BR,c (stars) and BR,c2 (circles), we computed the
corresponding nominal values of w,gap and placed them on
the l-PTT model flow curve in Fig. 10(d). For all investigated
values of Wi, the instability bubble occurs when the nominal
shear rates lie on the most strongly shear-thinning region of
the flow curve. As Wi is increased, BR,c2 progressively extends
towards the high shear rate, pseudo-Newtonian plateau [i.e.,
instability is supported by weaker shear-thinning, as
anticipated by Fig. 9(d)]. However, the value of w,gap at BR,c
appears to be almost independent of Wi, hinting at some
universality for the onset of asymmetry at this point.

McKinley and coworkers4,5,7 presented a well-known and
well-established criterion for the onset of purely elastic
instabilities based on the effects of elastic tensile stresses
acting along curving streamlines. Using simple arguments
based on experimental measurements, and linear stability
analysis near the rear stagnation point of a cylinder, they
provided a prediction for how the onset of instability in
the downstream wake of a cylinder depends on BR, giving
1/Wic ∼ BR (or alternatively BR,c ∼ 1/Wi).4 As shown by the
inset plot in Fig. 10(d), our simulation results gave an
excellent agreement with this prediction.

6 Discussion and conclusions

We have carried out extensive experimental and numerical
investigations of a novel viscoelastic flow instability observed
around cylinders, whereby the flow field breaks symmetry
but remains steady in time while the fluid passes the cylinder
on a randomly-chosen preferential side. Our results indicate
that extension-thickening in the wake downstream of the
cylinder and shear-thinning in the fluid passing the sides of
the cylinder are both required for the asymmetric flow state
to develop. All of our results are, in fact, explained in the
framework of our speculative mechanism outlined in sec. 4.1,
which with greater confidence, we now summarize
schematically in Fig. 11.

When the flow is symmetric for Wi ≲ Wic [Fig. 11(a)],
shear rates w,gap, hence also the shear-rate-dependent fluid
viscosity η(w,gap), are equal on both sides of the cylinder and
the extensionally-thickened strand of fluid (indicated by the
coloured region around the grey cylinder) lies symmetrically
about the flow axis. At the onset of critical conditions [i.e.,
Wi = Wic, inset to Fig. 10(a)], the accumulation of elastic
tensile stress along the streamlines curving near the rear
stagnation point of the cylinder causes a disturbance that
perturbs the elastic downstream wake randomly to one side

or the other. As outlined in Fig. 11(b), the deflection of the
elastic wake to one side causes an increased flow resistance
around the same side of the cylinder. Consequently, the
shear rate is reduced and the local viscosity is increased. To
maintain a constant volumetric flow rate, the shear rate on
the opposite side of the cylinder must increase, hence the
local viscosity is decreased, acting to decrease the flow
resistance around that side. Thus, for a shear-thinning
viscoelastic fluid, an initial pertubation of the elastic
downstream wake by a purely elastic mechanism can be fixed
in place by the positive feedback resulting from the shear-
thinning. If shear-thinning remains significant as Wi is
increased beyond Wic, strongly asymmetric flow patterns like
those in Fig. 6(d) and 7(f), can arise. We note the recent
publication of numerical simulations of viscoelastic flow
around cylinders using the two-species Vasquez–Cook–
McKinley model for WLM solutions, in which long chains
can break into two shorter chains, and two shorter chains
can combine to form one longer chain.92,146 Those authors
also found a general agreement with our basic outlined
mechanism, although with additional complexity arising
from varying the model parameter controlling the chain
breakage and combination rates specific to WLM solutions.
The onset of asymmetric flows around two aligned cylindrical
posts has also been reported in recent simulations using the
FENE-P constitutive model.147 In that study, varying the
degree of shear-thinning, dumbbell extensibility, and channel

Fig. 11 Schematic illustration of the instability mechanism for
asymmetric flows of shear-thinning elastic fluids around cylinders.
Coloured regions are indicative of the FIB measured in experiments, or
the principle stress difference obtained from numerical simulations. (a)
Symmetric flow at Wi ≲ Wic and (inset) perturbation of symmetric flow
due to the onset of elastic instability at Wi = Wic. (b) Situation in the
asymmetric flow state where a positive feedback loop (indicated by
grey arrowed lines) leads to growth of the instability for Wi > Wic.
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blockage ratio all had effects consistent with the predictions
of our proposed mechanism.

In conclusion, the onset of asymmetric flow of viscoelastic
fluids around cylinders is a complex phenomenon that
depends on a combination of fluid rheological properties
and flow geometry. A given imposed flow rate must (1) cause
the formation of an elastic wake downstream of the cylinder,
and (2) provide shear rates at the sides of the cylinder that lie
in the shear-thinning region of the flow curve. Although such
conditions sound rather specific, they seem to be quite
readily achieved in microscale channel flows, since the
asymmetric flow state has been experimentally demonstrated
for a wide variety of fluids, and numerically demonstrated for
a range of blockage ratios. We believe this instability (in a
benchmark flow configuration) may be fundamental to the
understanding of non-Newtonian phenomena observed for
sedimenting particles, rising bubbles and for flows through
more complex geometries composed of e.g., flexible or
cantilevered posts, arrays of cylinders, and porous media
flows in general (cf., Fig. 1). The possibility of this effect
arising in a given flow configuration should therefore be
considered in the optimal design of many lab-on-a-chip type
devices in which viscoelastic fluids are employed (cf., Fig. 2).
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