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Nanobodies as in vivo, non-invasive,
imaging agents

Thibault J. Harmand, a Ashraful Islam, ab Novalia Pisheshaacd and
Hidde L. Ploegh *a

In vivo imaging has become in recent years an incredible tool to study biological events and has found

critical applications in diagnostic medicine. Although a lot of efforts and applications have been

achieved using monoclonal antibodies, other types of delivery agents are being developed. Among

them, VHHs, antigen binding fragments derived from camelid heavy chain–only antibodies, also known

as nanobodies, have particularly attracted attention. Indeed, their stability, fast clearance, good tissue

penetration, high solubility, simple cloning and recombinant production make them attractive targeting

agents for imaging modalities such as PET, SPECT or Infra-Red. In this review, we discuss the pioneering

work that has been carried out using VHHs and summarize the recent developments that have been

made using nanobodies for in vivo, non-invasive, imaging.

1. Introduction

In vivo imaging allows the investigation of molecular and cellular
events in intact living subjects. Studying the dynamics of biological
processes non-invasively and in their native context may offer new

insights and provide opportunities for the discovery of novel
biology. In vivo imaging has therefore become an indispensable
tool in both biomedical research and medical practice.1–5

A diverse set of in vivo imaging approaches has been devel-
oped. These include Positron Emission Tomography (PET),
Single Photon Emission Computed Tomography (SPECT), Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI),
Infra-Red and Near Infra-Red Imaging (IR/NIR), Ultrasound
(US), and photoacoustic imaging.1,3–8

Regardless of the method used, in vivo imaging requires
differential accumulation of the relevant signal at the target site
to distinguish it from background.9 The major challenge of
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non-invasive in vivo imaging of a target of interest is to achieve
adequate selectivity and discrimination from the background
signal in the targeted area. To achieve specificity, combining
the imaging agent (radio)isotope or fluorophore with a carrier
such as antibodies,10 peptides,11,12 small molecules,13 and
aptamers14,15 has been the method of choice. In particular,
immunoglobulins and immunoglobulin-derived fragments
have long been considered attractive candidates, since they
can be generated to target a wide range of biomolecules16–18

and recognize them with exquisite specificity.
Nevertheless, monoclonal antibodies (mAbs) are large (150 kDa),

which explains their comparatively poor tissue penetration when
administered systemically, with a long circulatory half-life.9,19

Efforts have been devoted to improving the pharmacokinetics
of antibodies without compromising their unique affinity and
specificity. Antibody fragments such as Fab, F(ab0)2, single chain
Fv (scFv), or variants like diabodies and minibodies (molecular
weight ranging from 25–100 kDa) were bioengineered specifically
for the purpose of creating in vivo imaging agents.20–22 More
recently, other types of proteins have been investigated as alter-
natives to antibodies for in vivo imaging. These include nanobodies
(Fig. 1), Affibodies, and anticalins.20–22

Of these, nanobodies have attracted growing interest for use
in molecular imaging across various imaging platforms, including
SPECT, PET, Infra-red (IR) and ultrasound.9,23

Nanobodies are antigen binding fragments derived from
camelid heavy chain-only antibodies, which fold and function in
the absence of light chains. These camelid immunoglobulin (Ig)
heavy chains can be shrunk to just their variable domains to yield
VHHs or nanobodies. The resulting VHHs retain antigen binding
and can be produced in an active form in E. coli, often without the
need of an intrachain disulfide bond. Typically, nanobodies have a
molecular weight of B12–16 kDa and are considered the smallest
immunoglobulin-derived antigen binding fragments.24 Because of
their much smaller size when compared to intact Ig (B150 kDa),
Fab (B50 kDa) and scFv (B25 kDa) fragments, nanobodies can

penetrate tissues more efficiently and bind to antigens less acces-
sible to conventional antibodies or their smaller derivatives.19,25–27

Better tissue penetration is not the only advantage of nanobodies
as compared to intact conventional Ig. Nanobodies are poorly
immunogenic in humans,19 and some nanobodies have been
‘‘humanized’’ to display even less immunogenicity.25,28,29 Further-
more, their small size and the preponderance of beta sheet
secondary structure make them highly stable, even at high tem-
peratures and extremes of pH.30 Finally, owing to their small size,
nanobodies that fail to bind their target are rapidly cleared from
the blood, mostly by renal elimination.19,25,31–34 This, in tandem
with their usually high affinity, can produce a high tumor-to-
background ratio as early as 1 h after tracer injection.32,35,36

Although nanobodies possess the many advantages listed
above, their relatively small size leads to rapid elimination from
the circulation by renal clearance. Their rapid renal clearance
from the body might prevent optimal binding at the desired
site,35 as the concentrations of the imaging agent in the
circulation drop rapidly. This is often accompanied also by
uptake of the imaging agent in the kidneys, making imaging
experiments in neighboring tissues difficult because of the high
background.37 Finally, the binding properties of nanobodies
may be altered when they are conjugated to produce imaging
agents.38

In this review, we describe how nanobodies are equipped
with the corresponding probes for each imaging modality and
how rapid clearance and non-targeted organ uptake, problems
inherent in the use of nanobodies, can be overcome.

2. Labeling of nanobodies for in vivo
imaging

In order to be observable by any imaging modality (SPECT, PET,
or IR), nanobodies must be equipped with a suitable radio-
isotope or fluorescent dye. Although some aspects of the
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requisite methods for modification are similar, the imaging
modality chosen might require specific considerations with
respect to the labeling method used.

2.1. Radio-labeling for SPECT and PET imaging

Radiohalogens, like 123/125/131I for SPECT or 124I and 18F for
PET, must be covalently attached to the nanobody. Radiometals
such as 67Ga, 99mTc, and 111In for SPECT and 64Cu, 68Ga, and
89Zr for PET are complexed via a chelator and thus require a
two-step process where the nanobody is first equipped with a
chelator and then incubated with the radiometal in solution.
The (His)6 tag often present on recombinantly expressed proteins
to facilitate affinity purification readily coordinates site-
specifically with 99mTc–tricarbonyl.39,40

In either case, a chelator or a prosthetic group must be
attached to the nanobody of choice. Various labeling
approaches can be divided into two major classes: uncontrolled
or site-specific labeling. Uncontrolled labeling relies mainly on
lysine and cysteine conjugation via carbodiimide/N-hydroxy-
succinimide (DIC/NHS) chemistry or maleimide chemistry,
respectively. Although this method is common, straightforward,
and easily accessible, the heterogenous mixture of labeled
products might lead to reduced binding of the nanobody,
especially if the binding site itself is modified.41 Site-specific
strategies aim to obtain homogeneous and more consistent
products, with the desired moiety attached to a specific site of
one’s choosing. Different site-specific methods to modify nano-
bodies have been described, relying on enzymatic methods,
click chemistry, or meticulous and selective incorporation of an
unpaired cysteine residue.24,42

There are a wide range of commercially available chelators
with functionalized handles, such as maleimide, NHS ester,
azido derivatives, etc. (Fig. 2A). However, this is not the case for
the radiohalogens (obtained as salts) for both 18F and 123/124/125/

131I. The Iodogen method allows rapid but uncontrolled iodi-
nation of the desired protein via an oxidation reaction of
tyrosine sidechains, but a more sophisticated synthetic chem-
istry is required to prepare radiohalogen reagents prior to their
use for the labeling of nanobodies (Fig. 2B).43,44

2.2. Fluorescent dye labeling for IR and NIR

In vivo imaging using fluorescent dyes relies on fluorophores
emitting in the near infrared (NIR) or infrared region (IR).
An ideal dye should have a maximum emission in the 650 nm
to 900 nm range (Fig. 2C). This particular range of wavelengths
reduces scattering and nonspecific autofluorescence, produces
a good signal to background ratio, and thus improves
resolution.23 The cyanine dye derivatives: Cy5, AF680, IRDye
680RD IRDye800CW, etc. are commonly used for this
application.45,46 However, their high hydrophobicity has
pushed the development of more water-soluble dyes, such as
the pyrrolopyrrole cyanine family (PPCy) (Fig. 2C).47

Conjugation of fluorophores can significantly affect phar-
macokinetics, biodistribution, quality/stability and aggregation
properties of the engineered construct. Uncontrolled and
multiple-labeling of fluorophores to nanobodies yields pro-
ducts with abnormal distribution, can contribute adversely to
the background signal, produces accumulation in non-targeted
organs such as the liver and results in poor contrast for the
target of interest.36,48–51 Site-specific labeling of IRDye800CW

Fig. 1 Schematics of the different antibodies and antibody fragment structures.
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and IRDye680RD dyes by conjugation to a selectively intro-
duced C-terminal cysteine yields imaging agents with improved
biodistribution: acceptable kidney uptake, rapid binding to the
target of interest and minimal nonspecific uptake (Fig. 3).49

Nanobodies for NIR/IR in vivo imaging can also be prepared as
fusions to a far-red fluorescent protein. This eliminates the need
of further handling of the nanobody but comes with a drawback:
the considerable size of the fluorescent protein (20–30 kDa)
compared to the nanobody (B15 kDa) might disturb binding
and the biodistribution of the resulting fusion protein.23,51

3. Overcoming nanobody challenges:
renal accumulation and rapid
clearance

Long-term renal retention of nanobodies, especially in a radi-
olabeled form, can cause nephrotoxicity. The bright kidney
signals caused by such accumulation make the imaging of
molecular targets in the adjoining areas difficult. Different
strategies have been developed to reduce renal absorption.
For example, co-injection with gelofusin or positively charged

Fig. 3 Effects of the unspecific conjugation of NIR/IR dye on the biodistribution of a nanobody (solid ROI: tumor; dashed ROI: contra-lateral muscle;
dotted ROI: kidney). In this tumor mouse model, the anti-HER2 nanobody (2Rs15d) was labeled with IRDye800CW in a uncontrolled and controlled
manner (top and bottom panel respectively). Adapted with permission from.49 Copyright (2017) American Chemical Society.

Fig. 2 Examples of potential probes for in vivo labeling. Most of them are commercially available as maleimide, NHS ester, azide, etc. derivatives. (A)
Metal chelators used for SPECT and PET imaging. (B) Typical radio halogen-based reagents. (C) IR and near IR dyes for infra-red imaging.
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amino acids like lysine can reduce renal uptake for radio-
labeled biomolecules.52,53 This strategy has also been applied
to nanobodies.31,54 Another approach consists of removing the
affinity tags often used for purification purposes: these tags,
typically myc or (His)6 tags, consist of negatively- and positively-
charged amino acids respectively, and can directly impact the
degree of renal accumulation of the nanobody.54,55 Attachment
of PEG moieties can decrease renal uptake. The availability of
differently sized PEGs allows simple screening and tuning of
the desired construct to optimize its imaging characteristics.
Rashidian et al. used nanobody constructs bearing differently
sized PEG moieties and showed a direct correlation between the
size of the PEG moiety and the amount of tracer accumulating
in the kidney (Fig. 4).56

Unmodified VHH X118, a nanobody that targets CD8+T
cells, fails to cleanly show the spleen (located near the kidneys),
although the spleen is a main reservoir of CD8+T cells. In
contrast, the 20 kDa PEG-derivative of VHHX118 readily allows
visualization of secondary lymphoid organs.

PEGylation tackles yet another variable associated with the
use of nanobodies, which is their rapid clearance from the
circulation. While quick elimination from the body allows
nanobodies to be used for same-day imaging, it also can lead
to poor accumulation in the area of interest. Attachment of PEG
of different sizes, e.g. 5, 10 or 20 kDa, increases their molecular

weight/Stokes’ radius and thus their circulatory dwell time,
with an improvement in the signal to noise ratio.56 Increasing
the half-life of nanobodies by increasing their size has been
accomplished by methods other than PEGylation. Wardners
et al. used a tri-paratopic nanobody construct, consisting of two
nanobodies that bind to two different HER3 epitopes and a
third that binds to albumin in order to extend the circulatory
half-life of the construct. This construct showed less renal
accumulation than a ‘regular’ HER3-targeting nanobody and
circulated longer, as measured by radioactivity remaining in
the blood.57 Size and targeting properties must be properly
balanced, parameters that cannot be predicted and therefore
require systematic experimentation.

Interestingly, the degree of kidney retention for radio-
halogenated (fluorinated and iodinated) nanobodies is signifi-
cantly lower than their radiometal-labeled counterparts.
Catabolites of radiohalogenated compounds formed in the
kidneys are thought to be non-residualizing and hydrophobic.
They are rapidly excreted via the urine.23

With the exception of this kidney accumulation – which can
be overcome at least in part by the methods described here–
accumulation in other non-targeted organs is usually very low.
The unique characteristics of nanobodies (efficient tissue
penetration, fast tissue diffusion and fast clearance) thus allow
same-day imaging with high target-to-background ratios.9,23

Fig. 4 Selective labeling, using sortase A, of a nanobody with a metal chelator for 89Zirconium-based PET imaging. (A) Structure of the bioorthogonal
sortase substrate. (B) Schematic representation of preparing PEGylated 89Zr-labeled VHHs for PET imaging. (C–G) PET-CT images of anti-CD8 89Zr-
labeled (VHHX118) with and without different-size PEG in wild-type C57BL/6 and RAG�/� mice. Images were acquired 24 h post-injection of the
radiolabeled VHHs. Adapted from ref. 56.
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This is impossible to achieve with conventional antibodies,
where several days of equilibration between circulation and
target tissues are required after administration before it is
possible to acquire high quality images.

4. Application and examples of
nanobodies for in vivo imaging
4.1. Radio imaging: SPECT and PET

Radionuclide-based techniques such as PET and SPECT are
commonly used because they are sensitive, quantitative, and
clinically relevant.58,59 SPECT and PET have the sensitivity
needed to visualize most interactions between physiological
targets and ligands, enabling non-invasive detection of tracers
down to the picomolar level.

4.1.1. SPECT imaging using nanobodies. Single-photon
imaging exploits the g rays emitted by a radioactive atom. A
y-emitting element with an energy of 100–250 keV is ideal.1 The
spatial resolution of single-photon imaging is on the order of 8–
10 mm, although somewhat better resolution can be obtained
with recently developed special-purpose imaging systems.60–63

Although 99mTc, 123/131I, 111In and 155Tb are the four radio-
nuclides suitable and commonly used for SPECT imaging,64

only two of them have been used with nanobodies: 99mTc and
111In. A few examples describe nanobody-based SPECT imaging
using 111In as a radionuclide: Chatalic et al. developed an anti-
PSMA nanobody conjugated to the metal chelator diethylene-
triaminepentaacetic acid (DTPA), which showed good tumor
targeting and minimal uptake by the non-targeted organs.54

Bala et al. used 111In in combination with a VCAM-1 targeting
nanobody in a study to compare the pharmacokinetics of the
imaging agent with the use of the different tracers: 68Ga, 18F,
111In and 99mTc.65

The reason for the success of 99mTc as a radionuclide for
SPECT imaging derives not only from its favorable nuclear
decay characteristics, but also from its simple and straightfor-
ward radiolabeling chemistry. This has allowed the labeling of a
wide range of biomolecules. For example, 99mTc(CO)3 can be
used to directly label nanobodies equipped with a (His)6 tag
without further modifications.32,66 Additionally, the long half-
life of 99Mo and the low cost associated with the 99Mo/99mTc
generator make the production of 99mTc widely available.67

Nanobodies against many different markers have been used
in combination with 99mTc for SPECT imaging of cancers.
Examples include epidermal growth factor receptor 1
(EGFR)31,32,66,68,69 and 2 (HER-2),70 prostate-specific membrane
antigen (PSMA),71 the Macrophage Mannose Receptor
(MMR),37 carcinoembryonic antigen (CEA),72,73 mesothelin74

and the M-protein.75 Nanobodies that target non-cancer mar-
kers have also found application for SPECT imaging. De Vos
et al. immunized a dromedary with the Lectin-like oxidized low
density lipoprotein receptor (LOX-1).76 This protein is a bio-
marker for detection and phenotyping of atherosclerotic pla-
ques. They obtained a nanobody, LOX-sdAb, that binds LOX-1
with picomolar affinity. Recombinant expression in E. coli of

this nanobody equipped with a C-terminal (His)6-tag, followed
by direct radiolabeling using 99mTc(CO) allowed SPECT ima-
ging in apoliprotein E-deficient mice (ApoE�/�). It showed a
clear signal of atherosclerotic plaques in the aortic arch. This
nanobody is an example of a potentially powerful tool for
cardiovascular prognostic and diagnostic use.

Other examples of diseases/conditions imaged using nano-
bodies for SPECT include diabetes,77,78 liver inflammation,79,80

rheumatoid arthritis,81,82 Gelsolin amyloidosis,83 imaging of
immune cells,84 or more generally immune checkpoints in
cancer.85 Nanobodies used for SPECT imaging, labeled with
99mTc, are summarized in Table 1 and show the breadth of
nanobodies deployed for such studies.

While these preclinical examples show the utility of nano-
bodies for SPECT imaging in mouse models, their application
for in vivo imaging in humans is not as straightforward.
Nanobodies, because of their non-human origin, might induce
an immune response when applied in clinical settings. ‘‘Huma-
nization’’ of nanobodies is usually considered to advance their
application to the clinic. Vaneycken et al. described an inter-
esting approach in which they genetically grafted the CDRs of
an anti-CEA nanobody, NbCEA5, onto a humanized nanobody
scaffold (Fig. 5).73

The ‘‘transplant’’ was successful, and the grafted nanobody
displayed imaging properties similar to the original. This
promising work opens the door to wider application of nano-
bodies in a human setting.

4.1.2. PET imaging using nanobodies. PET is considered
the more attractive non-invasive imaging modality over its
single-photon cousin, owing to its higher spatial resolution
(usually 2–3 mm or lower for PET), higher sensitivity (typically
10�8 to 10�10 M tracer concentrations for PET, compared to
B10�6 M for SPECT), and the wide availability of positron-
emitting radioisotopes.90 In the context of immuno-oncology,
nanobodies and PET have been partnered to investigate the
expression and tracking of immunologically relevant molecular
targets, such as effector molecules, immune cell populations,
and checkpoint molecules within the tumor microenvironment
(TME). The application of nanobodies to cancer-relevant
models, both for imaging and therapeutic purposes has been
reviewed recently,9,23,91,92 but some highlights are presented in
the following.

Nanobody-based PET tracers that target cancer biomarkers,
such as human epidermal growth factor receptor 2
(HER2),33,93,94 HER3,57 CD20,95 epidermal growth factor recep-
tor (EGFR)34 and hepatocyte growth factor (HGF),96 have been
used as imaging agents to evaluate the presence or absence of
these biomarkers in preclinical models. The results from these
studies showed high tumor-specific uptake of the nanobody-
based probes into the TME. A major step towards clinical
translation of nanobody-based PET tracers was the phase I
clinical trial of 68Ga-NOTA-labeled anti-HER2 nanobody in
breast carcinoma patients.97 PET/CT images taken at 90 min
post-injection were chosen as the optimal imaging time point,
showing less background than at earlier time points. Irrespec-
tive of non-specific accumulation of tracer in the liver, kidneys
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and intestines, tumor-specific uptake was above background
(Fig. 6). In this clinical trial, Keyaerts et al. achieved safe, non-
invasive visualization of HER2 status of both primary lesions
and/or metastases. A phase II study of this tracer is underway
(NCT03331601).

In addition to imaging the tumor’s antigen profile, monitor-
ing the immunological landscape in the TME could provide
insight into the prognosis of a therapeutic response. Composi-
tion of the myeloid compartment, other immune cell types,
cellular distribution and activation status could all be monitored
A nanobody against macrophage mannose receptor (MMR,
CD206), a marker for M2-polarized macrophages the presence
of which correlates with an immunosuppressive TME and poor
prognosis, showed the presence of tumor-associated macrophages

(TAMs) in preclinical models.98,99 A phase I clinical trial with 68Ga-
NOTA-labeled anti-MMR nanobody is ongoing (NCT04168528).
Nanobody-based PET tracers that target CD11b and major histo-
compatibility complex (MHC) class II positive cells, can track
immune infiltrates in both xenogeneic and syngeneic tumor
models.100 In line with these findings, an anti-human MHC
class II nanobody detects inflammation in a humanized graft-
versus-host disease mouse model.101

The distribution of cytotoxic CD8+T cells could play a pivotal
role in predicting the outcome of immune checkpoint blockade
(ICB) therapy. Rashidian et al. demonstrated promising results
in tracking CD8+T cell responses to ICB in preclinical models,
using a 89Zr-labeled anti-CD8 nanobody.56,102 Indeed, PET
imaging showed a positive correlation between homogeneous

Fig. 5 SPECT imaging 1 h after injection of intravenously injected 99mTc-labeled nanobodies. Both 99mTc-NbCEA5 and 99mTc-humanized CEA5 graft
show high uptake in CEA-positive LS174T tumors in contrast to the 99mTc-humanized scaffold alone. Adapted from ref. 73.

Table 1 Overview of nanobody-based tracers for non-invasive SPECT imaging using 99mTC

Condition Target Nanobody Disease model Ref.

Cancer EGFR D10 Human epidermoid carcinoma (A431) 66
7C12 31, 68 and 69
8B6 Human epidermoid carcinoma (A431),

human prostate carcinoma (DU145)
32

PSMA PSMA30 Prostate cancer (LNCaP) 71
HER-2 2Rs15d Breast Cancer (SKBR3), ovarian cancer (SKBR3) 70
MMR a-MMR Mammary adenocarcinoma (TS/A), Lewis

lung carcinoma (3LL-R)
37

CEA CEA1 Human colon adenocarcinoma (LS174) 72
NbCEA5 &
humanized
variant

73

M-Protein R3B23 Multiple Myeloma (5T33MM) 75
Mesothelin A1 Triple negative breast cancer (HCC70) 74

Immune
Checkpoint

PDL-1 C3, E2 PDL1 immune checkpoint 85

Atherosclerosis LOX-1 LOX-sdAb Atherosclerosis (ApoE-deficient mice) 76
VCAM1 cAbVCAM1-5 65, 86–88
MMR a-MMR 89

Rheumatoid
arthritis

MMR a-MMR Rheumatoid arthritis 81
CRIg NbV4m119 Collagen-induced arthritis (CIA) 82

Immune cells Unknown Nb-DC2.1 Myeloid cells 84
Nb-DC1.8 Immature bone marrow-derived dendritic cells

Diabetes DPP6 4hD29 77 and 78
Liver disease Vsig4 NbV4m119 Concanavalin A induced hepatitis 79

Clec4F C4m22 Concanavalin A induced hepatitis and methionine
choline deficiency-induced non-alcoholic steatohepatitis

80

Gelsolin amyloidosis 8 kDa of MT1-MMP FAF Nb1-3 AGel mice 83

RSC Chemical Biology Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
m

ar
zo

 2
02

1.
 D

ow
nl

oa
de

d 
on

 0
5/

11
/2

02
5 

03
:2

2:
20

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1cb00023c


692 |  RSC Chem. Biol., 2021, 2, 685–701 © 2021 The Author(s). Published by the Royal Society of Chemistry

distribution of CD8+T cells and responders to ICB therapy
(Fig. 7). Similar to tracking of immune cells, non-invasive
imaging of the targets of ICB may lead to better understanding
of the intratumoral immunological landscape. Nanobody-
based PET tracers against PD-L1 and CTLA-4, developed by
Ingram et al., showed distribution of checkpoint molecules in
melanoma.103,104 In yet another example, the extracellular

matrix (ECM) of tumors is a critical determinant for under-
standing the response to therapy. An anti-EIIIB nanobody that
recognizes an alternatively spliced variant of fibronectin in the
ECM was developed and used for PET imaging of primary,
metastatic and fibrotic lesions in preclinical cancer models.105

An overview of some of the nanobody-based PET tracers is
provided in Table 2.

4.2. Infra-red imaging in vivo

Infra-red imaging is less sensitive than SPECT and PET. The
amount of probe that must accumulate in the targeted area in
order for it to be visible is much larger than that for SPECT and
PET. Yet, recent development of fluorescent dyes in the infra-red
and near infra-red region has led to the emergence of optical
imaging as a viable technology for in vivo imaging.106–108 IR/NIR
imaging is flexible, sensitive, fast and relatively inexpensive
compared to the radiolabeling approach for SPECT and PET,
not to mention the advantage of avoiding radioactivity
altogether.9 Nanobodies conjugated to such dyes are now being
used for in vivo imaging.23,48,109–112 For example, Bannas et al.
used a nanobody (s+16a) against the toxin-related ADP-
ribosyltransferase ART2, an enzyme present on the surface of
mouse T cells, to image lymph nodes in ART2-TG and ART2�/�
mice using AlexaFluor 680.50 For comparison, they also com-
pared images of the cervical and axillary lymph nodes obtained
with a nanobody-Fc fusion (s+16mFc) and the monoclonal
antibody Nika102 (Fig. 8). Although all three constructs show
in vivo fluorescence of the lymph nodes, s+16a shows no

Fig. 7 Longitudinal monitoring of CD8+ T cells in response to anti-PD-1 (aPD-1) treatment. (A) Schematic for the treatment and PET imaging.
(B and C) PET/CT images of tumor-bearing mice in the no treatment and treatment group. Adapted from ref. 102.

Fig. 6 PET/CT images from the phase I clinical trial of 68Ga-anti-HER2-
Nanobody in breast cancer patients. (A) Patient 18, with invaded lymph
nodes in the mediastinum and left hilar region. (B) Patient 20, with bone
metastasis in the pelvis. PET/CT images (top) and PET images (bottom).
Adapted from ref. 97.
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background signal, while strong background fluorescence was
observed for Nika 102 and s+16mFc, particularly visible in the
ART2�/� mice (Fig. 8).

Light scattering and light absorption by tissues limits the
depth of penetration for NIR/IR imaging, ranging from microns
to a few centimeters only.113,114 Bleaching and blinking of
fluorescent dyes also diminish the imaging signal strength over
time. For these reasons, NIR/IR in vivo imaging is not suitable
for whole-body imaging. Other systems that overcome these
limitations are being developed and are being used for in vivo
imaging. One such example is single-walled carbon nanotubes
(SWCNTs). These nanomaterials present ideal optoelectronic
characteristics for imaging in the IR region by emitting
in the 850 to 1700 nm region.115 This spectral window is highly

beneficial for biological and especially deep-tissue imaging,
due to its reduced absorbance, phototoxicity, reduced back-
ground fluorescence and scattering as compared to traditional
fluorescent dyes. SWCNTs do not bleach or blink, allowing
longer exposure and imaging times. Mann et al. successfully
used this type of imaging agent by conjugating it to a GFP-
specific nanobody. To link SWCNTs to the nanobody a two-step
process was deployed, using a maleimide-bearing oligo-
nucleotide that wrapped itself around the SWCNT, followed
by conjugation to the nanobody bearing a free cysteine residue.
This construct was then used to monitor and track GFP-modified
Kinesin-5 motor proteins in a Drosophila embryo (Fig. 9).116

One promising area where NIR/IR imaging may find appli-
cation is in the context of intraoperative imaging to discriminate

Fig. 8 Fast clearance of nanobodies allows rapid in vivo imaging after injection. ART2-TG mice and ART2�/�mice were injected with: buffer (control),
50 mg s+16a680, 5mg s+16mFc680 or 10 mg Nika102680. Control and antibody-injected mice (2 and 24 h after injection) were subjected to
simultaneous imaging to obtain visually comparable images. Arrowheads indicate cervical and axillary lymph nodes. Adapted from ref. 50.

Table 2 Some nanobody-based tracers for non-invasive PET imaging

Application Target Nanobody Disease model Ref

Tumor biomarkers EGFR 7D12 Skin cancer 34
HER2 2Rs15d 5F7 Breast cancer 33, 93 and 94
HER3 MSB0010853 Non-small cell lung cancer, head and neck cancer 57
CD20 9079 Non-Hodgkin lymphoma 95
HGF 1E6-Alb8, 6E10-Alb8 Glioma 96

Immune cells CD8 VHH-X118 Tumor immunology and inflammatory diseases 56 and 102
CD11b DC13 100
MHC II VHH7, VHH4 100 and 101
MMR MMR 3.49 98 and 99

Checkpoint molecules PD-L1 B3 PD-L1 immune checkpoint 103
CTLA-4 H11 CTLA-4 immune checkpoint 104

ECM Fibronectin EIIIB NJB2 Breast cancer, PDAC, and melanoma 105
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malignant from healthy tissue and facilitate proper excision of a
tumor.23 This has dramatically improved surgery for removal
of liver metastases, ovarian, cervical and breast cancer and
melanoma.111 Incomplete tissue penetration, which limits nano-
body applications for whole body imaging, is less of a problem in
this set-up. Indeed, nanobodies have been successfully used for
such applications.23,48,110–112

Van Brussel et al. used a CAIX-specific nanobody, B9, modified
via maleimide chemistry with a IRDye800CW dye. CAIX, carbonic
anhydrase IX, is a tumor-specific membrane-bound protein
expressed in hypoxic tumors.117,118 Using a xenograft breast cancer
mouse model of a ductal carcinoma in situ and mimicking a
surgery set-up, strong accumulation of B9 was seen in the tumor,
well differentiated from surrounding healthy tissue (Fig. 10A).110

Fig. 9 Alternative to small molecule dyes for NIR/IR in vivo imaging. (A) Conjugation method for attaching a GFP-binding nanobody to DNA-wrapped
SWCNTs. (B) Atomic force microscopy images of GBP-conjugated SWCNTs. Scale bar = 500 nm. (C) General scheme describing the injection of 5 into
live Drosophila embryos expressing GFP proteins on Kin-5 motors. (D) GFP and SWCNT channel images showing colocalization of Kin-5 and conjugate 5
at a mitotic spindle (scale bars = 10 mm). Adapted from ref. 116.

Fig. 10 Intraoperative imaging for cancer surgery. (A) Intra-operative imaging of DCIS and DCIS + CAIX tumors, 3 h post injection of fluorescently
labeled VHH B9 (left). Schematic overview of mammary glands (2–5) and tumors as seen intra-operatively. DCIS + CAIX tumor indicated as ‘‘CAIX’’ in
dark gray (right). (B) Real-time fluorescence imaging of orthotopic tongue tumor 24 hours after injection of the EGFR-specific nanobody 7D12
conjugated with IRDye800CW. Adapted from ref. 110.

Table 3 Overview of nanobody-based tracers for non-invasive IR/NIR imaging and intraoperative imaging

Target Nanobody Fluorescent Dye Disease model Ref

EGFR 7D12 IRDye800CW Human epidermoid carcinoma (A431) 36
HER-2 11A4 IRDye800CW Breast cancer (SKBR3), 38

Breast cancer (MCF10DCIS) 30
IRDye680RD 109

2Rs15d IRDye800CW Breast cancer (SKOV3) 49 and 112
IRDye680RD 49
Cy5 Breast cancer (BT474M1) 119

CAIX B9 IRDye800CW Breast cancer (MCF10DCIS) 109
Breast cancer (DCIS) 110

ART2 s+16a AlexaFluor 680 ART2-TG 50
CEA Anti-CEA IRDye800CW Human pancreatic cancer (BxPC-3 and MiaPACA-2) 120
Kin-5-GFP GBP SWCNT GFP fusion proteins of Kin-5 motors 116
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Another example reported by van Driel et al. used a nano-
body that targets EGFR, 7D12, conjugated to IRDye800CW for
the imaging of a tongue tumor (Fig. 10B). Not only were they
able to clearly identify the primary tumor, the imaging agent
also detected cervical lymph node metastases.48

Although NIR/IR in vivo imaging might not be as sensitive
as the radiolabeling methods, it represents an appealing
alternative, especially in the case of intraoperative imaging
for cancer surgery. A summary of the different nanobodies
used for NIR/IR in vivo imaging and for intraoperative imaging
is shown in Table 3.

5. Conclusions

Here we reviewed recent advances in the field of molecular
imaging using nanobody-based probes. The unique properties
of nanobodies make them ideal targeting agents, and not just
for in vivo imaging. Their rapid clearance from the circulation,
their tissue penetration properties, and their low background
retention enable highly specific imaging at early time points
after administration, even on the same day, with a reduced risk
of nonspecific toxicity. Unfortunately, this advantage over the
regular antibodies leads generally to an important kidney
uptake. However, methods, such as PEGylation, are emerging
to overcome this challenge. Although most of the applications
reported to date using nanobodies have employed SPECT or
PET as the imaging modality, other techniques such as infra-
red imaging, especially in the case of intraoperative surgery,
ultrasound,121–123 photoacoustic imaging,124,125 and Magnetic
Resonance Imaging (MRI)126–128 deserve attention.

The results obtained to date with nanobodies for molecular
imaging show that these tracers will find many applications in
the laboratory as well as in the clinic. The preclinical success of
nanobodies justifies further exploration and development to
expand molecular imaging, ultimately with a view to clinical
success.
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