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Effects of PEDOT:PSS:GO composite hole transport
layer on the luminescence of perovskite light-
emitting diodes
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Perovskite light-emitting diodes (PeLEDs) employing CHsNHzPbBrz as the emission layer (EML) and
graphene oxide (GO) doped PEDOT:PSS as the hole transport layer (HTL) were prepared and
characterized. GO doped in PEDOT:PSS can lead to the increased work function of HTL and lower the
hole injection barrier at the HTL/CHsNH=PbBr3z interface, which facilitates the hole injection. Meanwhile,
the optimized GO amount in PEDOT:PSS can help to reduce the quenching of luminescence occurring
at the interface between HTL and perovskite. The luminance and current efficiency reach the maximum
values of 3302 cd m~2 and 1.92 cd At in PeLED with an optimized GO ratio (0.3), which increase by
43.3% and 73.0% in comparison with the undoped device, respectively. The enhanced luminescence of
PelLEDs was caused by the combined effects of enhanced hole injection efficiency and the suppressed
exciton quenching occurring at the HTL/EML interface. These results indicate that the introduction of
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1. Introduction

Perovskite light-emitting diodes (PeLEDs) have been widely
studied because of several advantages such as low-temperature
solution processing, high photoluminescence quantum effi-
ciency, high color purity and excellent carrier mobility." A hole
transport layer (HTL) is essential for the injection and transport of
holes, which affects the number of holes in the region of the
emission layer (EML), and correspondingly the radiative exciton
recombination.®® Poly(3,4-ethylenedioxythiophene):poly-
(styrenesulfonate) (PEDOT:PSS) is a widely utilized HTL in
PeLEDs, because the surface roughness of ITO and the injection
barrier for holes can be reduced after inserting PEDOT:PSS
between ITO and perovskite EML. However, because PEDOT:PSS is
metallic and the excitons in perovskite materials possess long
diffusion length, the quenching of excitons often happens at the
interface between PEDOT:PSS and perovskite EML through non-
radiative energy transfer and/or exciton dissociation pushed by
the big discrepancy of energy levels between PEDOT:PSS and
perovskite.>**" The energy level difference also impede the holes
injecting from PEDOT:PSS to perovskite EML. Thus, PEDOT:PSS
should be modified for improving the performance of PeLEDs.
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traditional two-dimensional materials is a reasonable method for designing the structure of PeLEDs.

Doping strategy is frequently selected to modify PEDOT:PSS in
PeLEDs.>"*** Several materials such as PFI> and MoO; (ref. 12-14)
have been doped in PEDOT:PSS to solve these problems and finally
obtain the enhanced performance. Besides, two-dimensional (2D)
materials may also be promising dopants due to their unique
optoelectronic properties.

2D materials are composed of few-layer atoms or unit cells,
such as graphene and its derivatives, transition metal dichal-
cogenides.” Among these materials, graphene oxide, which is
a few-layer graphite oxide obtained by treating graphite with
strong oxidizers. As reported in earlier literatures, the GO
modified PEDOT:PSS has been used as anode and HTLs for
enhancing the performance of optoelectronic devices such as
light-emitting diodes (LEDs)."**?

GO doped PEDOT:PSS has been introduced as HTL for the
purpose of improving the luminous characteristics of organic
light-emitting diodes (OLEDs). Da Silva demonstrated phos-
phorescent OLEDs using the composite HTL, which show
enhanced performance due to decreased hole injection barrier
between ITO and PEDOT:PSS." Dehsari reported the enhanced
performance in polymer LEDs (PLEDs) with ultralarge GO sheet/
PEDOT:PSS composite HTL.*® Yang prepared Alqz-based OLEDs
using GO doped PEDOT:PSS HTL, and enhanced performance
was caused by the increased hole injection efficiency, trans-
parency and conductivity compared with the undoped device.*
Diker prepared blue OLEDs using PEDOT:PSS:GO as HTL and
obtain better performance.>® These results manifest that the
luminescence of OLEDs can be improved by doping GO in
PEDOT:PSS from several aspects such as the enhanced injection
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and transport of holes, reduced exciton quenching and
improved surface morphology of ITO. Referred to these results
in OLEDs, GO doped PEDOT:PSS is very likely to be a promising
composite HTL in PeLEDs sharing the similar device structure,
which may effectively enhance the performance of devices.
However, there is no report about their application in PeLEDs.
Besides, there is still large room for determining the fabrication
technology and the corresponding physical mechanism of
PeLEDs with GO doped HTLs.

In this work, GO modified PEDOT:PSS was utilized as HTL for
enhancing the luminous characteristics of PeLEDs and the effects
of GO were discussed. After doping GO in PEDOT:PSS, the PeLED
has the maximum Iuminance of 3302 cd m~? and the maximum
current efficiency of 1.92 ¢cd A~", which increase by 43.3% and
73.0% in comparison with the undoped device, respectively. The
inherent physical mechanism was also discussed.

2. Experimental details

The PeLEDs were fabricated on cleaned ITO substrates, which
were pre-treated by oxygen plasma to modify its work function
and surface before the device fabrication. PEDOT:PSS (Clevios P
AI4083) and graphene oxide (GO) aqueous dispersion (2 mg
mL~!, Nanjing XFNANO) with desired volume ratios (1 : 0.1,
1:0.3, 1:0.5) were blended to obtain PEDOT:PSS:GO mixed
solution. Methylammonium bromine (CH;NH;Br, Xi'an Poly-
mer Light Technology) and Lead Bromide (PbBr,, 99.999%,
Sigma-Aldrich) with 2 : 1 molar ratio were dispersed in N,N-
dimethylformamide (DMF, 99.9%, Sigma-Aldrich) solvent to
obtain the perovskite precursor solution (5 wt%). In a nitrogen
filled glovebox, ~40 nm HTL was obtained by spin coating the
pristine PEDOT:PSS or PEDOT:PSS:GO blended solution on ITO
substrate at 8000 rpm for 30 s, followed by heating at 120 °C for
15 min. Then, ~55 nm perovskite EML was obtained by three-
step spin coating technology, which can be found in our
earlier literature.” Finally, a 30 nm electron transport layer
(TPBi), a 0.5 nm electron injection layer (LiF) covered by
a 100 nm Al cathode were deposited orderly in a thermal
evaporation system. The effective emission area of each device
is 0.1 cm®.

A stylus profiler (Alpha-Step D-600) was used to determine
the thickness of pure PEDOT:PSS film, GO modified PEDOT:PSS
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films and perovskite films. A ultraviolte/visible spectropho-
tometer (HITACHI U-3900) and a luminescence spectrometer
(HITACHI F-4600) were utilized to measure the transmittance
and photoluminescence (PL) spectra, respectively. The ultravi-
olet photoelectron spectra (UPS) of HTLs were tested with an
ESCALAB 250XI photoelectron spectroscopy using He I irradi-
ation with Ay = 21.2 eV (Thermo Fisher). A scanning electron
microscopy (FEI Sirion FEG) and a X-ray diffractometer (Pan-
alytical Empyrean) was used to measure the surface morphology
and XRD patterns of perovskite films. A source meter (Keithley
2400) and a multimeter (Keithley 2000) connected with a silicon
photodetector were used to detect the optoelectronic charac-
teristics of PeLEDs. A fiber-optic spectrometer (Ocean Optics
USB4000-XR1) was used to observe the electroluminescence
(EL) spectra of PeLEDs.

3. Results and discussion

The device structure of the PeLEDs using CH;NH;PbBr; as EML
and GO modified PEDOT:PSS HTL is shown in Fig. 1a. The
energy levels of individual layers in the PeLEDs were presented
in Fig. 1b. The energy barrier for the holes injecting from
pristine PEDOT:PSS to perovskite is large, which may lead to low
hole injection efficiency. Doping GO in PEDOT:PSS is a possible
way for adjusting the work function of the HTL and subse-
quently the injection ability of holes.

Fig. 2 shows the ultraviolet photoelectron spectra (UPS) of
HTLs. The work function (WF) can be extracted by subtracting
secondary electron cutoffs from the excitation energy (21.2
eV).>** The secondary electron cutoff of pristine PEDOT:PSS
film, PEDOT:PSS:GO film with the GO ratio of 0.1, 0.3 and 0.5
was obtained to be 16.37, 16.28, 16.23, and 16.18 eV, respec-
tively. Thus, the WF of the pure PEDOT:PSS film was calculated
to be 4.83 eV, which is well consistent with the previously re-
ported values.”*?* On increasing the GO ratio from 0.1 to 0.5,
the WF of the GO-doped film increases from 4.92 eV to 5.02 eV.
Therefore, the increased work function of the GO-doped
composite film reduces the energy barrier for hole injection
between the composite HTL and CH;NH;PbBr; EML, which can
help to elevate the hole injection efficiency.

Fig. 3 shows XRD patterns of CH;NH;PbBr; films spin coated
on the PEDOT:PSS films doped with different GO amount. Two
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(a) Schematic device structure of PeLEDs using GO doped PEDOT:PSS HTL. (b) Energy levels of individual layers for our PeLEDs.
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Fig. 2 Ultraviolet photoelectron spectra (UPS) of PEDOT:PSS:GO
composite films prepared on ITO substrate.
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Fig. 3 XRD patterns of the CHzNH3zPbBrz films on the PEDOT:PSS
films doped with different GO amount.
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typical peaks were found at 15° and 30°, which can be attributed
to (100) and (200) crystal planes, respectively.' In comparison
with the reference sample prepared on pure PEDOT:PSS,
slightly lower intensities of diffraction peaks were observed for
those on all the GO-doped composite films. The diffraction peak
intensities of four samples are comparable, suggesting that the
GO doping does not affect the structure and crystallinity of
perovskite films significantly.

Fig. 4 presents the SEM images of CH;NH;PbBr; films spin
coated on the PEDOT:PSS films doped with different GO amount.
As shown, the surface morphology of the perovskite film is
affected by the GO amount in composite HTL. When using the
pure PEDOT:PSS, the rough surface of perovskite film is covered
by several large flakes. On increasing the GO ratio from 0 to 0.3,
the large flakes disappear gradually and small grains form
simultaneously. Meanwhile, for the CH;NH;PbBr; film coated on
the PEDOT:PSS:GO (1 : 0.3) HTL, uniform and compact perovskite
films can be obtained. However, when the GO ratio was further
increased to 0.5, the perovskite film with poor coverage was found,
which may be attributed to the excessive amount of GO. These
results indicated that the appropriate amount of GO content can
help to obtained the better surface morphology of perovskite
films.

Fig. 5a presents the steady-state PL spectra of CH;NH;PbBr;
films tested with a 315 nm excitation wavelength. A typical peak
at ~528 nm was found in all the PL spectra. On increasing the
GO ratio from 0 to 0.3, the PL peak intensity increases, while the
further increased GO leads to the decreased PL intensity. It is
indicated that the optimized GO amount is essential for sup-
pressing the quenching of excitons occurred at the interface
between HTL and CH;NH;PbBr; EML, while the overweight GO

Fig.4 SEM images of the CHzNHzPbBr3 films on the GO-doped composite films with different GO concentrationof (a)1: 0, (b)1: 0.1, (c)1: 0.3,

(d)1:0.5.
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Fig. 5 (a) PL and (b) transmittance spectra of the CHzNHzPbBrs films

is not beneficial. On one hand, the increased amount of GO
could reduce the contact among PEDOT:PSS and excitons in the
EML to some extent, which facilitates the blocking of exciton
quenching. Meanwhile, the increased work function of
composite HTL reduces the hole injection barrier and prevents
the exciton dissociation caused by the large discrepancy of
energy levels between PEDOT:PSS and CH;NH;PbBr;, leading to
the decreased quenching of excitons at the HTL/EML inter-
face.>" Similar results have been reported in polymer LEDs with
PEDOT:GO composite HTLs, in which GO reduces the
quenching of excitons at HTL/Super Yellow (SY) interface.?®
Besides, exciton quenching at the GO/SY interface is found to be
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covered on the PEDOT:PSS films doped with different GO amount.

much less than that at the PEDOT:PSS/SY interface.”” On the
other hand, the excessive GO may induce defect states at the
HTL/perovskite EML interface, which leads to the decreased PL
intensity. It is found that the trend of the PL peak intensity is in
accordance with that of the SEM images. In detail, as the GO
ratio increases from 0 to 0.3, the dense and smooth perovskite
film indicates the formation of high-quality film, and corre-
spondingly the increased PL strength was obtained. However,
when the GO ratio was further increased to 0.5, the decreased
PL strength corresponds to the poor-coverage perovskite film.
Fig. 5b shows the wavelength-dependent transmittance of
CH;3;NH;PbBr; films on the PEDOT:PSS films doped with
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(c) current efficiency vs. current density, (d) external quantum efficiency

vs. current density curves of PeLEDs with PEDOT:PSS HTLs doped with different GO content.
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Table 1 The device parameters of our PeLEDs

Turn-on
voltage (V)

Max. luminance
(cd m™?)

Max. CE Max. EQE
(cdA™) (%)

0.17
0.21
0.29
0.16

PEDOT:PSS:GO

:0 2305
: 0.1 2771
: 0.3 3302
: 0.5 2013

1.11
1.34
1.92
1.04

4.30
4.07
3.94
3.87

[

500

400 +

300

200

Current density (mA/cmz)

100
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Fig. 7 The voltage dependence of current density for the hole-only
devices utilizing PEDOT:PSS HTLs doped with different GO amount.

different GO amount. On increasing the GO ratio from 0 to 0.5,
the transmittance near 528 nm decreases slowly. It is noted that
the transmittance of the composite film with the largest GO
concentration (1 :0.5) is still beyond 80% near 528 nm. The
comparable values of transmittance were found for four
samples, suggesting that the GO doping does not block the light
emitting through the HTL region significantly.

Fig. 6a shows the voltage dependence of current density for the
PeLEDs with PEDOT:PSS HTLs doped with different GO content,
respectively. The turn-on voltage, which is determined with the
operating voltage at ~1 mA cm 2, was lowered from 4.30 V to
3.87 V. monotonically with the increased GO ratio from 0 to 0.5. In
addition, the current density increases with the increase of the GO
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amount, suggesting more efficient hole injection. Fig. 6b-d show
the luminance, current efficiency (CE), and external quantum
efficiency (EQE) of our PeLEDs as functions of current density.
The obtained parameters of our PeLEDs are listed in Table 1. For
the undoped control PeLED using pure PEDOT:PSS HTL, the
maximum values of luminance, CE and EQE are 2305 cd m™2,
1.11 cd A " and 0.17%, respectively. On increasing the GO ration
to the optimized GO ratio of 0.3, the luminance and CE reach 3302
cd m? and 1.92 cd A™", which increase by 43.3% and 73.0% in
comparison with the values of the undoped device, respectively.
However, the further increase of GO ratio to 0.5 leads to the
decreased efficiency for our device.

In order to determine the role of GO on the hole injection,
hole-only devices have also been prepared and tested. Fig. 7
presents the current density of the hole-only devices as a func-
tion of voltage, which possess the structure of ITO/HTL/CH;-
NH;PbBr;/NPB/Al.  As shown, after the GO doping in
PEDOT:PSS, the current density of the doped sample increases
monotonically in comparison with that without GO doping,
indicating the enhanced injection ability for holes. It can be
caused by the increased WF of HTL and the lower hole injection
barrier between composite HTLs and CH;NH;PbBr; after the
GO doping.* Besides, exciton quenching at the HTL/perovskite
interface is another important factor. In LEDs, the external
quantum efficiency (EQE) of devices is defined by the ratio
between the number of output photons from the device and the
number of charges injected to the device. On increasing the GO
ratio from 0 to 0.3, the improved efficiency (CE and EQE) of
PeLEDs in Fig. 6 can be caused by the combined effects of the
enhanced hole injection and reduced exciton quenching evi-
denced by the PL spectra. The further increase of GO leads to
the further enhancement of hole injection shown in Fig. 7.
However, the efficiency of PeLED decreases with the excessive
GO, which can be mainly explained by the increased exciton
quenching shown in PL spectra. Therefore, the increased effi-
ciency of PeLEDs using an optimized PEDOT:PSS:GO as HTL
can be caused by the better injection of holes and the sup-
pressed quenching of excitons at the interface between CHs-
NH;PbBr; and HTL doped with GO.

(b)
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(@) Normalized EL spectra of the PeLEDs with PEDOT:PSS HTLs doped with different GO amount tested at the current density of 50 mA
cm~2. (b) EL spectra for the PeLED with the optimal PEDOT:PSS:GO (1 :

0.3) HTL tested by using different current densities.
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Fig. 8a shows the normalized EL spectra of our PeLEDs,
suggesting that all the EL spectra with a peak at ~528 nm are
nearly the same. It is suggested that the GO doping does not
change the emission profiles of our devices. Meanwhile, the EL
spectra for the PeLED with the optimal PEDOT:PSS:GO (1 : 0.3)
HTL were measured by using different current densities and
presented in Fig. 8b. On increasing the current density, the EL
peak intensity of the device increases gradually. Meanwhile, the
same peak position at ~528 nm was found in the PeLED at
different current densities have, indicating the color stability of
PeLEDs.

4. Conclusions

In conclusion, we reported the enhanced efficiency of PeLEDs by
employing GO modified PEDOT:PSS HTLs. On increasing the GO
ratio from 0 to 0.5, the increased work function from 4.83 €V to
5.02 eV was found in the composite films, suggesting the
increased work function of the composite HTL, which reduces the
energy level difference between HTL and perovskite for enhanced
hole injection. Meanwhile, the optimized GO amount in
PEDOT:PSS can help to reduce the quenching of luminescence
occurred at the interface between HTL and CH;NH;PbBr;. On
increasing the GO ratio from 0 to 0.3, the maximum value of
luminance increases from 2305 cd m ™2 to 3302 cd m ™2, while the
maximum CE increases from 1.11 cd A~ to 1.92 c¢d A~ . Further
increase of the GO ratio to 0.5 leads to the decrease of luminance
and CE. In comparison with the undoped device, the maximum
luminance and CE increase by 43.3% and 73.0% in PeLED with an
optimized GO ratio (0.3) respectively. The enhanced performance
of our PeLEDs can be induced by the better hole injection effi-
ciency and suppressed quenching of excitons at the interface
between HTL and CH;NH;PbBr; EML. These results provide an
important approach for designing high-efficiency PeLEDs with 2D
materials.
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