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Global metabolomics analysis of serum from
humans at risk of thrombotic stroke†

Adnan Khan, ‡a Mal-Soon Shin, ‡b Sun Ha Jee c and Youngja H. Park *a

We aimed to determine the serum concentrations of altered compounds to understand the changes in

metabolism and pathophysiology that occur prior to thrombotic stroke. In this prospective cohort study,

high-resolution metabolomics (HRM) was employed to analyze serum samples obtained from patients at

risk of stroke (n = 99) and non-risk controls (n = 301). Partial least-squares discriminant analysis (PLS-DA),

along with univariate analysis using a false discovery rate (FDR) of q = 0.05 were employed to identify the

discriminant metabolic profiles and to determine significantly different metabolites between healthy

control and stroke risk groups. PLS-DA satisfactorily separated the stroke risk sera from control sera.

Additionally, these discriminant metabolic profiles were not related to hypertension, smoking, diabetes

mellitus, or insulin sensitivity. A group of 35 metabolites, most of them amino acids, that were capable of

discriminating stroke risk sera from controls were identified using untargeted metabolomics. Further, the

targeted metabolomics approach confirmed that the quantified concentrations of L-tryptophan, 3-meth-

oxytyramine, methionine, homocysteinesulfinic acid, cysteine, isoleucine, carnitine, arginine, linoleic acid,

and sphingosine were specifically elevated in the sera of patients who were later diagnosed with stroke.

Our untargeted and targeted metabolomics approaches support investigating these compounds as novel

biomarkers for early and non-invasive detection of thrombotic stroke.

1. Introduction

Stroke is the second leading cause of death worldwide.1 Stroke
is either caused by cerebral ischemia due to thrombotic occlu-
sion or hemorrhage causing transient or permanent neurologi-
cal disorders and constitutes a heavy burden on society.2 Up to
80% of strokes are ischemic or thrombotic strokes, while the
remaining 20% are primarily due to hemorrhage.1,3 A
reduction in cerebral blood flow due to thrombosis causes an
energy crisis and lack of oxygen.3,4 Such energy depletion in
turn leads to a cascade of molecular events, such as the release
of excitatory glutamate, oxidative stress, and an inflammatory
response.3 During these molecular events, numerous bio-
markers are released into the peripheral blood, which provide
an opportunity to utilize metabolomics research to elucidate
new clinical prognostic biomarkers for ischemic lesions.3

In the past 10 years, a great deal of research has been per-
formed in the stroke research field; however, the prevalence of
stroke has not been markedly reduced.5 A limited number of
therapeutic options are commercially available for stroke, and
effective therapies are desperately needed. The high mortality
of stroke patients is in part due to the silent asymptomatic pro-
gression of the disease.6 By the time stroke becomes sympto-
matic, it is already at an irreversible stage, and it has been esti-
mated that at this point, there are already 10 silent infarcts
occupying the brain.7 Therefore, this study used high resolu-
tion metabolomics (HRM) to evaluate people at risk for stroke
in order to investigate early markers of endothelial and vascu-
lar dysfunction in an attempt to identify a disease that has yet
to become symptomatic.

The metabolite biomarkers present a footprint of biological
processes that may expose implications in pathophysiologic
pathways during pathological conditions.8 A minor change in
the expression level of a gene or a protein due to a physiologi-
cal or pathological condition can cause a significant change in
the levels of metabolites.8 HRM can allow for the extraction of
global metabolic pathway information from tens of thousands
of metabolites present in biological samples.8 Therefore, meta-
bolomics offers a promising approach to identifying bio-
markers or a panel of biomarkers that could serve as indicators
of a specific condition. In our previous study, we applied
HRM, coupled with liquid chromatography-mass spectrometry
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(LC-MS) in a prospective cohort study, using serum samples
obtained from patients at risk of thrombotic stroke and non-
risk individuals.3 Our study identified lysine and valine catabo-
lites, along with ubiquinone and homocysteine sulfinic acid as
potential metabolites that could discriminate the thrombotic
stroke risk group from the control group.3 However, our pre-
vious study did not employ targeted metabolomics profiling
using liquid chromatography with tandem mass spectrometry
(LC-MS/MS).3 In addition, in response to any successful meta-
bolomics study, it is important to further employ large vali-
dation studies with suitable control cohorts in order to remove
any potential bias.9

Therefore, this study applied both the untargeted and tar-
geted HRM techniques in a large prospective cohort study
using sera samples in an attempt to validate our previously
published results and to further investigate the global meta-
bolic perturbation in asymptotic stroke. Finally, this study
aimed to identify a panel of predictive biomarkers of thrombo-
tic stroke to ease the burden of stroke diagnosis and progno-
sis, which may further reduce the prevalence of stroke in the
future and provide a new mechanistic insight for improving
the understanding of the pathophysiologic basis for thrombo-
tic stroke in the developmental phase.

2. Method and materials
2.1 Sample collection

The study protocol was approved by the Korea University
Institutional Review Board (KU-IRB-15-19-A-1) and
Institutional Review Board of Human Research of Yonsei
University. Serum samples used in this study were obtained
from the Korean Cancer Prevention Study-II (KCPS-II) Biobank,
Seoul and Gyeonggi, South Korea.3 The study cohort was com-
prised of 156 701 participants (94 840 men and 61 861
women), and data collection began in 2004. The participants
underwent routine health assessments, provided blood
samples, and gave informed consent for long-term prospective
follow-up.10 Sampling was conducted according to the proto-
cols approved by South Korea’s Bioethics and Safety Act No.
9100. Blood was obtained from 400 people who consented to
testing for research purposes at 11 comprehensive examination
centers located in Seoul and Gyeonggi Province in South
Korea, between 2004 and 2015. Blood samples were taken after
overnight fasting. Median blood collection was achieved by the
end of 2008, with 90% of blood collections between mid-2005
and the end of 2008. The collected serum samples were frozen
at −80 °C until analysis and freeze–thaw cycles were avoided to
minimize release of intracellular metabolites. The incidence of
stroke cases were determined by the hospital admission dis-
charge records from 2005 to 2015 (median follow-up duration,
8.0 years). These outcome data were obtained from health
insurance claims provided by the National Health Insurance
Service. Glucose, total cholesterol, triglycerides, high-density
lipoprotein cholesterol (HDL-c), low-density lipoprotein chole-
sterol (LDL-c), and other biomarkers were measured in the

hospital laboratory by a COBAS INTEGRA 800 and a 7600
Analyzer (Hitachi, Tokyo, Japan). The participants were then
classified into two groups based on their diagnosis as stroke
or non-stroke patients. Among them, 301 subjects who were
not diagnosed with thrombotic stroke later were categorized as
the control group, while 99 subjects, who were later diagnosed
with thrombotic stroke, were categorized as the stroke risk
group. Details such as sex, age, fasting blood sugar (FBS), total
cholesterol, triglycerides, high density lipoproteins, low
density lipoproteins, blood pressure, smoking, diabetes melli-
tus, and insulin sensitivity status of the control group and
stroke risk patients are provided in Table 1.

2.2 Chemicals and reagents used for metabolomics analysis

High-performance liquid chromatography (HPLC)-grade water
was purchased from J.T. Baker (Phillipsburg, NJ, USA) and
acetonitrile was from Tedia (Fair Lawn, NJ, USA). Formic acid
was purchased from Fluka (St Louis, MO, USA). All chemicals
and reagents were stored at appropriate temperatures and con-
ditions. Standard solutions and serum samples were stored at
−80 °C.11

2.3 Sample preparation for metabolite extraction

Sample preparation was performed as discussed previously.12

Briefly 50 µL aliquots of sera obtained from stroke risk
patients and healthy controls were first treated with 195 µL of
acetonitrile and 5 μL of a mixture of three stable isotope stan-
dards ([3-methyl-13C]-caffeine, [dimethyl-D6]-N,N-diethyl-M-
toluamide, and [13C5, 15N]-L-methionine) (1 : 4, v/v).12 The
samples were than vortexed and centrifuged at 13 000 rpm at
4 °C for 10 min for protein precipitation and metabolite extrac-
tion. The supernatants containing the polar metabolites were
collected for LC-MS/MS analysis. Samples were stored at
−80 °C until use.

2.4 Analysis of metabolites by LC-MS/MS

An Ultra Performance Liquid Chromatography system (Agilent
1260 Infinity Quaternary) coupled with an Agilent LC-MS/MS

Table 1 Demographic characteristics of subjects

Control Stroke

n 301 99
Male (n) 177 (58.8%) 72 (72.7%)
Female (n) 124 (41.2%) 27 (27.3%)
Age (year) 42.1 ± 7.7 52.8 ± 11.8
Fasting blood sugar (mg dL−1) 90.2 ± 15.7 98.5 ± 25.2*
Total cholesterol (mg dL−1) 189.8 ± 32.2 193.7 ± 31.0
Triglycerides (mg dL−1) 126.9 ± 74.6 161.9 ± 98.5*
High density lipoproteins (mg dL−1) 52.4 ± 11.3 50.5 ± 10.7
Low density lipoproteins (mg dL−1) 115.6 ± 31.4 115.2 ± 31.9
Systolic blood pressure (mmHg) 118.8 ± 14.6 126.8 ± 17.4*
Diastolic blood pressure (mmHg) 78.2 ± 1.1 80.1 ± 10.7*
Smokers 82 (27.2%) 36 (36.4%)
Diabetes mellitus 20 (6.6%) 19 (19.2%)
Insulin-sensitive 138 (45.8%) 64 (64.6%)

All clinical values are expressed as mean ± SD. * represents p ≤ 0.05.
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Q-TOF 6550 mass spectrometer was used for the metabolomics
profiling. The samples were analyzed using C18 Synchronis aQ
(1.9 μm, 100 × 2.1 mm; Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). The column and autosampler tempera-
ture were maintained at 45 °C and 10 °C, respectively. Solvent
A consisted of 0.1% formic acid in water, and solvent B con-
sisted of 0.1% formic acid in acetonitrile. The injection
volume and flow rate were 5 µL and 0.4 mL min−1, respectively.
The HPLC gradient was programmed as follows: 95% water for
1 min, a linear decrease to 55% water over 8 min, a descending
gradient to 10% water over 3 min, a 1.5 min hold and return to
95% water over 0.1 min. The electrospray ionization detector
was operated with a curtain gas of 35 psi at 250 °C, supplied at
14 mL min−1, and sheath gas temperature of 250 °C, supplied
at a flow rate of 11 mL min−1. Detection of the mass/charge
ratio (m/z) of ions was set from 50 to 1000, with a resolution of
20 000 over 15 min. All samples were run in triplicate, and
data for each ionization technique were acquired in positive
ion mode.13

2.5 Metabolic profiling

To identify the metabolic features that discriminate the stroke
risk patients from controls, multivariate and univariate ana-
lyses were performed. The apLCMS was first used to analyze
all the features of the samples for subsequent statistical ana-
lyses.14 The apLCMS provided 7197 m/z (mass/charge ratio)
values within a range of ions set from 50 to 1000 from mass
spectral data.14 False discovery rates (FDRs) were calculated to
reduce the incidence of false-positives, and Manhattan plots
were constructed using MetaboAnalyst 4.0 (http://www.meta-
boanalyst.ca) to identify metabolites, whose levels were signifi-
cantly different between stroke risk sera and control sera,
according to Student’s t-test. Supervised multivariate partial
least squares-discriminant analysis (PLS-DA) was performed
using SIMCA 14.1 (Umetrics AB, Umeå, Sweden). To ensure the
quality of the PLS-DA models and to avoid the risk of over-
fitting, 7-fold cross-validation (CV) was applied with six princi-
pal components, as 7-fold cross-validation is the default
SIMCA cross-validation procedure.15 Two parameters: R2

(goodness of fit) and Q2 (goodness of prediction) were evalu-
ated for each PLS-DA model.15 The performance of PLS-DA
models was also validated by a permutation test (20 times)
using six components.15 PLS-DA analyses were performed as
per the schemes of analysis shown in Fig. 1; sera from control
patients were compared with sera from stroke risk patients,
collectively. Further, to observe the effect of smoking, hyper-
tension (HTN), diabetes mellitus (DM), and insulin sensitivity
(IS) on metabolic disturbances, the smokers, hypertensive,
DM, and IS control sera were compared with the smokers,
hypertensive, DM, and IS stroke risk sera using PLS-DA,
respectively.

2.6 Metabolic pathway analyses

The metabolites with an FDR-adjusted p value <0.05 were con-
sidered as significantly different metabolite features between
the stroke risk group and control group in Manhattan plots.

These metabolites were considered important in the identifi-
cation of potential biomarkers and were subsequently fed into
xMSannotator16 and the Metlin Mass Spectrometry Database
(METLIN) (https://metlin.scripps.edu). The following positive
ion adducts were used during annotation: [M + H]+, [M + NH4]

+,
[M + Na]+, [M + H − H2O]

+, and [M + K]+, with a confidence
limit of 10 ppm to increase sensitivity in the identification of
compounds and to filter out irrelevant compounds.12

xMSannotator and METLIN (https://metlin.scripps.edu) pro-
vided the KEGG numbers for each m/z.16 For identification of
potentially altered metabolic pathways in control versus stroke
risk patients, the recorded KEGG numbers served as input for
the human metabolomics pathway in the Kyoto Encyclopedia of
Genes and Genome database (http://www.kegg.jp). Compounds
with significant changes (p-value <0.05) were subsequently con-
sidered important for identification as potential biomarkers
related to metabolic effects caused by infract development.

2.7 Targeted metabolite profiling

For the identification and quantification of metabolites, the
reference standards were purchased from Sigma Chemical Co.
(St Louis, MO, USA). The standards were weighed accurately,
dissolved in methanol/water, as per the instructions for the
materials, and stored at 4 °C. The non-smokers, non-hyperten-
sive, non-DM, and non-IS serum samples of control and stroke
risk patients were chosen for the quantification of the poten-
tial metabolic biomarkers. Serum samples were treated with
acetonitrile (1 : 4, v/v) and centrifuged to precipitate proteins.
Tandem mass spectrometry (MS/MS) data were acquired in the
positive ion mode using an Agilent 6490A Triple Quad Mass
Spectrometer (Agilent Technologies, Inc.) with an accompany-
ing ESI interface.12 The standards and serum samples were

Fig. 1 Flow chart of the subjects used in this prospective cohort study
and metabolomics. HTN represents hypertension, Sm represents
smokers, DM represents diabetes mellitus, is represents insulin
sensitivity.
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first scanned in the mass range (m/z) 50–1000. Collision
energy of 0, 5, 10, 15, and 20 V was then used to produce the
highly abundant fragment ions of the putative metabolites
during product-ion analysis in the positive mode (Table S1†).
Chromatography was performed on a C18 (100 × 2.1 mm)
column (Higgins Analytical, Inc., Mountain View, CA, USA), at
a flow rate of 0.4 mL min−1. Concentrations of identified
metabolites in serum samples from control or stroke risk
patients were quantified by making the calibration curve of
each standard compound with at least eight appropriate con-
centration levels.12 The limit of detection (LOD) and limit of
quantification (LOQ) under the present chromatographic con-
ditions were determined at a signal-to-noise (S/N) ratio of 3
and 10, respectively.12 The analyses were performed in tripli-
cate, and data are presented as the mean ± SEM. The concen-
trations of targeted metabolites were calculated by reference to
the peak areas of the external standards within the range of
LOD and LOQ.

2.8 Statistical analysis using GraphPad

Putative identities were analyzed using the GraphPad Prism
software (v. 5.03; La Jolla, CA, USA) for measurement of their
relative intensities in each group. Data are presented as the
means ± SEM and differences, with p-values <0.05 considered
statistically significant.

3. Results
3.1 Subject characteristics

The subjects in this study were from a cohort of stroke risk
patients and a control group living in South Korea.

Metabolomics analysis was performed on a total of 99 stroke
risk patients and 301 control subjects. No statistical differ-
ences were observed in the age, total cholesterol (mg dL−1),
and high density lipoproteins (mg dL−1), based on Student’s
t-test among the two groups (Table 1). However, levels of
fasting blood sugar (mg dL−1), triglycerides (mg dL−1), and sys-
tolic blood pressure (mmHg) as well as diastolic blood
pressure (mmHg) were significantly higher in the stroke risk
patients compared to the control subjects, as shown in
Table 1.

3.2 Differential metabolome of stroke risk sera in
comparison with control sera

To examine the discriminatory metabolic phenotype between
control and stroke risk patients, we compared the raw apLCMS
table containing m/z values and intensities between control
and stroke risk sera using PLS-DA. The apLCMS feature table
containing 7197 features was inserted into SIMCA 14.1
(Umetrics AB, Umeå, Sweden). For increasing the accuracy of
metabolite identification in data, set unit variance (UV) scaling
was performed. As shown in Fig. 2A, the score plot of PLS-DA
tends to separate the control subjects and stroke risk patients.
An R2 = 0.991 and Q2 = 0.785, were observed in the permu-
tation of the PLS-DA model, indicating that the quality of the
computed model was not over-lifting and was reliable.15 This
result indicates that the serum metabolome of stroke risk
patients was different from control subjects. Additionally, the
Student’s t-test performed in MetaboAnalyst 4.0, with a false
discovery rate (FDR) adjusted q value of 0.05, showed that 2444
features (pink dots) were significantly different between
control and stroke risk patients (Fig. 2A). The significant
metabolites with q < 0.05 and first principal component of the

Fig. 2 Differential metabolic profiles of sera of stroke risk patients and control subjects. Separation and classification of the metabolic profile
between stroke risk patient sera and control sera. (a) Discrimination of metabolome profile between stroke risk patient sera and control sera by two-
dimensional partial least-squares discriminant analysis (PLS-DA), with R2Y(cum) = 0.99 and Q2(cum) = 0.793; six components. In the PLS-DA score
plot, each data point represents one serum sample. Twenty permutations using six components resulted in R2 = 0.991 and Q2 = 0.785. (b) Important
features selected by Manhattan plot using Student’s t-test with a false discovery rate (FDR) adjusted p value threshold of 0.05 between stroke risk
patient sera and control sera. The y-axis represents the −log 10 of the raw p value between compared groups, while the x-axis shows the com-
pounds after normalization of their m/z values ranging from 50 to 1000. The dashed line represents the FDR significant threshold (q = 0.05), which
separates the significant features as pink dots (2444 compounds out of 7197; p value <0.05) from other insignificant m/z values; black dots. Stroke
represents stroke risk patients.

Paper Analyst

1698 | Analyst, 2020, 145, 1695–1705 This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 1
7 

di
ce

m
br

e 
20

19
. D

ow
nl

oa
de

d 
on

 2
8/

07
/2

02
5 

13
:5

7:
48

. 
View Article Online

https://doi.org/10.1039/c9an02032b


variable importance in projection (VIP) > 1, were considered to
be influential for the separation of samples in PLS-DA analysis
(Fig. 2).

3.3 Effect of hypertension, smoking, diabetes mellitus, and
insulin sensitivity on metabolic phenotype of stroke risk
patients

Risk factors of stroke such as HTN, smoking, DM, and IS were
further taken into account while evaluating the specific differ-
ential metabolic phenomena caused by stroke occurrence. In
order to exclude the possibilities of metabolic disturbance con-
tamination by these risk factors, the above results were vali-
dated among control and stroke risk sera of HTN, smoking,
DM, and IS subjects. As shown in Table 1, control subjects
consisted of 79 hypertensive subjects, 82 smokers, 20 DM sub-
jects, and 138 IS subjects. Similarly, among stroke risk
patients, there were 51 hypertensive, 36 smokers, 20 DM, and
64 IS subjects. We presumed that the metabolic shift in the
score plot of PLS-DA (Fig. 2) might be related to these risk
factor. In order to exclude the possibility of distortion of data
by the risk factors related to metabolic effect, we separately

analyzed the hypertensive control with hypertensive stroke risk
sera (Fig. 3A), smokers control with smokers stroke risk sera
(Fig. 3B), DM control with DM stroke risk sera (Fig. 3C), and IS
control with IS stroke risk sera. However, regardless of these
risk factors among control and stroke groups, the score plot of
PLS-DA efficiently separated the hypertensive control group
from the hypertensive stroke risk group (Fig. 3A). Similarly, as
shown in Fig. 3B, the smokers control group, DM control
group (Fig. 3C), and IS control groups (Fig. 3D) were efficiently
separated from smokers, DM, and IS stroke risk groups. These
results suggest that the metabolic alterations among the
control and stroke risk patients (Fig. 2) were specifically
induced by the occurrence of thrombotic stroke and not HTN,
smoking, DM, or IS.

3.4 Identification of the metabolic variations caused by
stroke occurrence in patient sera

To identify differential metabolite signatures, we combined
the VIP values generated from the PLS-DA model with the
results from the two-tailed Student’s t-test (Fig. 2). The KEGG
database (http://www.kegg.jp), in combination with the results

Fig. 3 Effect of hypertension, smoking, diabetes mellitus, and insulin sensitivity on metabolic profiles of stroke risk patients and control subject
sera. (a) Discrimination of detected features between hypertensive stroke patient sera and hypertensive control sera by PLS-DA with R2Y(cum) = 0.98
and Q2(cum) = 0.89; five components. Twenty permutations using five components resulted in R2 = 0.82 and Q2 = −0.109. (b) Discrimination of
detected features between smoker stroke risk patient sera and smoker control sera by PLS-DA with R2Y(cum) = 0.99 and Q2(cum) = 0.79; four com-
ponents. Twenty permutations using four components resulted in R2 = 0.988 and Q2 = 0.639. (c) Discrimination of detected features between dia-
betic stroke risk patient sera and diabetic control sera by PLS-DA with R2Y(cum) = 0.99 and Q2(cum) = 0.67; three components. Twenty permu-
tations using four components resulted in R2 = 0.991 and Q2 = 0.684. (d) Discrimination of detected features between insulin-sensitive stroke risk
patient sera and insulin-sensitive control sera by PLS-DA with R2Y(cum) = 0.99 and Q2(cum) = 0.85; five components. Twenty permutations using
five components resulted in R2 = 0.99 and Q2 = 0.704. In the PLS-DA score plot, each data point represents one serum sample. Variation described
by each component of PLS-DA is given in the x- and y-axis labels. HTN represents hypertension, Sm represents smokers, DM represents diabetes
mellitus, is represents insulin sensitivity.
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from the analysis of METLIN (https://metlin.scripps.edu), was
used to annotate the significant features obtained from the
Student’s t-test. As discussed earlier, the t-test yielded 2444 sig-
nificant features between control and stroke risk sera. The
recorder KEGG numbers of these metabolites were employed
to identify the top affected pathways in the KEGG database.
Considering the possible impact of affected pathways identi-
fied in KEGG, we measured the raw peak intensity of all the
metabolites related to pathways. Raw intensity was measured
by building bar graphs of each metabolite (data not shown).
Biosynthesis of amino acid, purine metabolism, and lipid
metabolism were considered to be influential for the separ-
ation of the distinct PLS-DA profile of stroke compared to
control sera. As shown in Fig. 4 and ESI Fig. 1,† nineteen
metabolites were selected based on an FC > 2 along with VIP =
1.5 and q-value <0.05: L-tryptophan (m/z: 205.09 [M + H]+),
3-methoxytyramine (m/z: 150.09 [M + H − H2O]

+), methionine
(m/z: 150.05 [M + H]+), S-adenosyl-L-methionine (m/z: 381.13
[M + H − H2O]

+), cysteine (m/z: 241.03 [M + H]+), homocystei-
nesulfinic acid (m/z: 168.03 [M + H]+), leucine (m/z: 154.08 [M
+ Na]+), isoleucine (m/z: 114.09 [M + H − H2O]

+), proline (m/z:
98.06 [M + H − H2O]

+), carnitine (m/z: 162.11 [M + H]+), and
arginine (m/z: 197.10 [M + Na]+) in the biosynthesis of amino
acid pathway; dopamine (m/z: 154.08 [M + H]+) in the neuro-
transmitter pathway; 2-oxoglutarate (m/z: 169.01 [M + Na]+)
and NAD+ (m/z: 686.09 [M + Na]+) in the TCA cycle; guanosine
(m/z: 284.09 [M + H]+) in purine metabolism; and linoleic acid
(m/z: 281.24 [M + H]+), sphingosine (m/z: 300.28 [M + H]+),
3-ketosphingosine (m/z: 280.26 [M + H − H2O]

+), and cerebros-
terol (m/z: 403.35 [M + H]+) in the lipid metabolism pathway.
These metabolites were significantly elevated among the
stroke risk sera and were related to top affected pathways.

Sixteen metabolites: phenylalanine (m/z: 166.08 [M + H]+),
valine (m/z: 140.06 [M + Na]+), L-homocysteine (m/z: 136.04 [M
+ H]+), cysteine sulfinic acid (m/z: 136.006 [M + H − H2O]

+),
lysine (m/z: 185.06 [M + K]+), and N-acetylaspartate (m/z: 214.01
[M + K]+) in biosynthesis of the amino acid pathway; serotonin
(m/z: 194.12 [M + NH4]

+), N-acetylserotonin (m/z: 201.10 [M + H
− H2O]

+), and epinephrine (m/z: 166.08 [M + H − H2O]
+) in the

neurotransmitter pathway; and ATP (m/z: 529.98 [M + Na]+),
AMP (m/z: 370.05 [M + Na]+), GTP (m/z: 523.99 [M + H]+), ITP
(m/z: 490.97 [M + H − H2O]

+), dATP (m/z: 513.98 [M + Na]+),
and dAMP (m/z: 513.98 [M + H − H2O]

+) in purine metabolism
were significantly downregulated in the stroke risk sera.

3.5 Validation and quantification of selected metabolites in
the stroke sera by MS/MS

Collective detection of the abovementioned untargeted 35
serum metabolites in sera will have the most power for diagno-
sis of stroke risk. However, diagnosis based on quantification
of many biomarkers is not convenient or economical in clini-
cal practice. To identify simplified serum metabolite signa-
tures that would be more practical for use in diagnosing stroke
patients, the subset of 35 putative metabolites was tested by
MS/MS to validate our previous result (Fig. 4 and ESI Fig. 1†).
The presence of 16 key metabolites: N-acetylserotonin, seroto-
nin, L-tryptophan, 3-methoxytyramine, methionine, homocys-
teinesulfinic acid, cysteine, cysteine sulfinic acid, isoleucine,
valine, lysine, carnitine, arginine, N-acetylaspartate, linoleic
acid, and sphingosine were confirmed in stroke risk sera by
comparing their spectra with the standards available in the
HMDB databases (http://www.hmdb.ca), as well as with the
MS/MS spectra of the standard chemicals. These compounds
were scanned followed by product-ion analysis using the col-

Fig. 4 Schematic overview of the disturbed metabolic pathways and associated metabolites among stroke risk patients. The red-colored metabolite
names represent the metabolites with significantly high intensity among stroke risk sera compared with control sera. The blue-colored metabolite
names represent the metabolites with significantly low intensity among stroke risk sera compared with control sera. The metabolites in black font
are those that were not found in the sera of either stroke or control patients but were interconnected to our identified metabolites. The brown-
colored fonts are the pathway names for the identified interconnected (boxed) metabolites.
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lision energy values 0, 5, 10, 15, and 20 eV. LC-MS/MS scan
mode, product-ion mode, and multiple reaction monitoring
(MRM) parameters of the [M + H]+ ion for the quantified com-
pounds in stroke risk sera are shown in ESI Table 1.† The con-
centrations of these compounds were determined in control
and stroke sera, and the results are shown in Fig. 5. Their con-
centrations in serum were calculated by referring to the exter-
nal standard’s calibration curve. In accordance with our LC/
MS results (Fig. 4 and ESI Fig. 1†), the quantified concen-
trations of L-tryptophan, 3-methoxytyramine, methionine,
homocysteinesulfinic acid, cysteine, isoleucine, carnitine, argi-
nine, linoleic acid, and sphingosine were elevated in stroke
risk sera, while the quantified concentrations of
N-acetylserotonin, serotonin, cysteine sulfinic acid, valine,
lysine, and N-acetylaspartate were down-regulated in stroke
risk sera (Fig. 5).

3.6 Effect of hypertension, smoking, diabetes, and insulin
sensitivity on quantified biomarkers of stroke

To exclude the possibilities of hypertension-, smoking-, dia-
betes-, and insulin sensitivity-related effects on the validated
and quantified concentrations of the potential metabolites
given in Fig. 5, we measured the concentrations of 16 key
metabolites: N-acetylserotonin, serotonin, L-tryptophan,

3-methoxytyramine, methionine, homocysteinesulfinic acid,
cysteine, cysteine sulfinic acid, isoleucine, valine, lysine, car-
nitine, arginine, N-acetylaspartate, linoleic acid, and sphingo-
sine in the control group with HTN, Sm, DM and IS against
patients at risk for stroke with HTN, Sm, DM and IS. As
pointed out by red arrows (Fig. 6), in contrast to Fig. 5 the
quantified concentrations of N-acetylserotonin were non-sig-
nificant in the hypertensive control and hypertensive stroke
risk sera (Fig. 6). Similarly, valine and cysteine sulfinic acid
were non-significant in diabetic control and diabetic stroke
risk sera (Fig. 6). While, isoleucine showed no significantly
different concentration by the presence of smoking, diabetes
and insulin sensitivity among the control and stroke risk
groups (Fig. 6). However, in accordance with Fig. 5, all puta-
tive metabolites showed a similar trend of up- or down-regu-
lation in stroke risk sera (Fig. 6). Interestingly, thirteen metab-
olites among the selected 16 metabolite’s panel showed sig-
nificantly different concentrations between the control group
with HTN, Sm, DM and IS and patients at risk for stroke with
HTN, Sm, DM and IS which were in accordance with Fig. 5.
This result further provides evidence that the metabolites
alterations reported in this study were specifically induced by
the occurrence of stroke and were not related to the risk
factors.

Fig. 5 Pathway overview and quantified concentration of metabolic signatures in serum samples by LC-ESI/MS/MS. (a) Quantified (micro molar)
concentrations of L-tryptophan, 3-methoxytyramine, methionine, homocysteinesulfinic acid, cysteine, isoleucine, carnitine, arginine, linoleic acid,
sphingosine, N-acetylserotonin, serotonin, cysteine sulfinic acid, valine, lysine, and N-acetylaspartate serum samples from stroke risk patients and
control subjects. Quantified concentration was determined in reference to the calibration curve of each standard compound. Concentrations of
each compound were calculated by reference to the peak areas of the external standards within the range of LOD and LOQ. Stroke represents
stroke risk patients. ***p < 0.001; **p < 0.01 by Student’s t-test.
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4. Discussion

Previously, we showed decreased levels of the catabolites lysine
and valine in the sera of patients with thrombotic risk.3

Additionally, elevated homocysteinsulfinic acid and oxogluta-
rate along with deceased levels of ubiquinone further sup-

ported the low levels of lysine and valine catabolites.3 Here, we
further extended our research in order to observe the global
overview of metabolic disturbance in a separate set of people
who were later diagnosed with thrombotic stroke. In this study,
we employed both untargeted and targeted metabolomics in
order to validate our previous results as well as to determine

Fig. 6 Effect of hypertension, smoking, diabetes and insulin sensitivity on quantified concentrations of metabolic signatures in serum samples by
LC-ESI/MS/MS. Quantified (micromolar) concentrations of N-acetylserotonin, serotonin, L-tryptophan, 3-methoxytyramine, methionine, homocys-
teinesulfinic acid, cysteine, cysteine sulfinic acid, isoleucine, valine, lysine, carnitine, arginine, N-acetylaspartate, linoleic acid, and sphingosine in the
control group with HTN (n = 28), Sm (n = 08), DM (n = 08) and is (n = 15) against patients at risk for stroke with HTN (n = 12), Sm (n = 09), DM (n =
08) and is (n = 21). HTN represents hypertension, Sm represents smokers, DM represents diabetes mellitus, is represents insulin sensitivity.
Quantified concentration was determined in reference to the calibration curve of each standard compound. Concentrations of each compound
were calculated by reference to the peak areas of the external standards within the range of LOD and LOQ. Stroke represents stroke risk patients.
***p < 0.001; **p < 0.01 by Student’s t-test.
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the global disturbances in the metabolome of thrombotic
stroke risk sera. This study identified a set of 35 putative
metabolites (19 upregulated and 16 downregulated in stroke
risk sera) using untargeted metabolomics. Further validation
and quantification of these 35 metabolites using targeted meta-
bolomics confirmed the presence of 16 key metabolites (10
upregulated and 6 downregulated) in stroke risk sera.

Over the last decade, metabolome profiling has been
applied in stroke in several studies using animal models and
stroke patients.15 Especially, PLS-DA gained popularity in the
field of metabolomics analysis for distinguishing stroke
patients from controls.17 However, in this study, we employed
metabolome profiling techniques on people who were not
diagnosed with stroke yet. Here, in accordance with our pre-
vious study, we observed that the score plot obtained from
PLS-DA was able to distinguish the patients who were not yet
diagnosed with stroke from healthy subjects, indicating that
there was a different serum metabolome in the patients who
were developing stroke disease.3 Further, using PLS-DA, we
observed that these metabolic alterations between stroke risk
subjects and control were specifically related to stroke occur-
rence and were not related to other factors such as HTN,
smoking, DM, and IS. Additionally, a majority of the previous
studies employed untargeted metabolomics.5 With few excep-
tions, the results of many studies are non-reproducible
because of the lack of targeted metabolomics.3,5 However, we
used both the untargeted and targeted metabolomics profil-
ing. Using untargeted metabolomics, we detected a set of puta-
tive metabolic end-products, and while with the targeted meta-
bolomics we were able to further confirm a set of putative bio-
markers that further supported the specificity, accuracy, pre-
cision, and stability of our untargeted metabolomics results.

Many diabetic patients are at risk for stroke and peripheral
vascular disease, and smoking is associated with worsening of
metabolic control in diabetic patients.3,18 In addition, HTN,
which may lead to increased stress on the endothelium, can
cause endothelial damage and an altered blood cell–endo-
thelium interaction, which can lead to local thrombi formation
and ischemic lesions.19 Nonetheless, HTN, smoking, and DM
can also cause a multitude of metabolic changes in the serum
metabolome. Hence, in this study, we considered smoking,
HTN, and DM along with IS as risk factors to evaluate the
metabolic perturbation that may have been specifically caused
by stroke. However, whether the stoke occurrence was due to
the effect of smoking or a surrogate of the HTN and DM, our
results, based on PLS-DA, found negligible effects of these
factors in the metabolic alterations among stroke risk patients.

There is a growing body of evidence affirming the associ-
ation between stroke outcomes and glutamate-induced excito-
toxity, possibly because of the oxidative stress through acti-
vation of nitric oxide synthase, inflammation through
expression of inflammatory cytokines, and endothelial damage
through matrix metalloproteinase (MMP) release.20 In our pre-
vious study, we detected lysine as an important precursor of
glutamate along with elevated level of L-homocysteine sulfinic
acid (L-HSA) and a decrease in ubiquinone levels, which may
have synergized to initiate excitotoxity in stroke risk patients.3

Consistent with our previous study, in this study, our targeted
metabolome profiling showed similar decreased levels of
lysine and valine in patients with stroke risk. In addition, this
study further confirmed the previously reported elevated level
of L-HSA in stroke risk sera.3,20 Elevated L-HSA, along with car-
nitine, tryptophan, 3-methoxytyramine, and sphingosine
(Fig. 7), are associated with stroke severity and worse neuro-

Fig. 7 Schematic diagram of identified interrelated subsets of early biomarkers in stroke risk subjects their impact on stroke events.
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logical outcomes in patients with stoke risk.21 On the basis of
these identified metabolites and their synergistic impact on
stroke events, our study proposes new mechanistic insight into
the development of events leading to thrombotic stroke.

Most of the identified and validated metabolites discovered
in this study fall into three pathophysiological categories of
developing stroke: glutamate excitotoxicity, oxidative stress due
to formation of free radicals, and cell-mediated inflammatory
response and endothelial damage.22 A high serum level of
L-HSA arose as a potential predictor of thrombotic stroke in
our current as well as previous study.3 In addition, we detected
a high level of L-HSA in patients at risk for acute myocardial
infarction (unpublished data). Such an elevated level of L-HSA
is known to exert excitotoxicity on N-methyl-D-aspartate
(NMDA) receptors via exhibiting L-glutamic acid- and L-aspartic
acid-like effects.23 Elevated glutamate can trigger excitotoxity,
which leads to oxidative stress via activation of nitric oxide
synthase, inflammation via the expression of inflammatory
cytokines, and endothelial damage via MMP release.24 In this
study, we could not detect glutamate in thrombotic stroke risk
sera, which might be due to a shorter duration of increase in
glutamate after the onset of ischemic stroke.25 Hence, this
may have not been detected because the serum was obtained
before stroke occurrence. Nonetheless, elevated carnitine
along with L-HSA supports our hypothesis for glutamate excito-
toxicity, since high carnitine is required for transporting long-
chain fatty acids to produce energy in the mitochondrial
matrix, a main source of ATP production in ischemic cells.26

The exact mechanism for its increase is unknown, but we
hypothesize that the elevated serum level of carnitine might
have resulted from the poor uptake by the ischemic brain.27

Interestingly, our untargeted metabolomics results also
showed downregulated ATPs in stroke risk sera along with
other metabolites involved in purine metabolism. Such
lowered ATP production and L-HSA, as a glutamate receptor
agonist, may modulate activities of mGluRs, predisposing indi-
viduals to the neurotoxic consequences of stroke.28 In
addition, the generation of superoxide anion radical and
hydrogen peroxide (H2O2) with elevation of L-HAS,29 along with
3-methoxytyramine-related capsaicin-induced generation of
intracellular reactive oxygen species (ROS) can cause oxidative
injuries in cerebral ischemia.30 This result was further sup-
ported by lowered N-acetylserotonin (NAS) and serotonin levels
in stroke risk sera, since NAS possesses known properties of
neuroprotection by inhibiting mitochondrial death pathways31

and was reported to play a role in protection against oxidative
stress injuries caused by H2O2.

32–34 Similarly, serotonin exerts
powerful antioxidant actions;35 however, its degradation is
shown to generate ROS through the mitochondrial enzyme
monoamine oxidase A (MAO-A).36 However, contrary to the key
mechanisms described in animal studies, we did not investi-
gate the ROS and H2O2 production in ischemic sera, underlin-
ing the importance of validating these results in stroke patient
sera in future studies.

Our study also highlights the disruptions in tryptophan
concentration in stroke risk patient sera possibly due to the

conversion of tryptophan to 5-hydroxytryptophan (5-HT),37,38

which may contribute to vasoconstriction38,39 and inflamma-
tory response corresponding to endothelial damage.40 In
accordance, consistent with the previous stroke studies in
humans and animals,1,41 sphingolipid was significantly
increased in stroke risk sera, suggesting that changes in the
sphingolipid profile arose during the developmental stages of
stroke. Moreover, we detected a disturbance in the intercon-
nected metabolites L-cysteine sulfinic acid, L-cysteine, and
their precursor, L-methionine. L-Cysteine is produced through
cleavage of cystathionine by cystathionine beta synthase.
Through validating and quantifying potential metabolites by
MS/MS, we detected upregulated L-cysteine and L-methionine
in stroke risk sera and downregulated L-cysteine sulfinic acid;
however, the exact mechanism is still unknown.

Despite these findings, our study has some limitations.
First, our study lacks the availability of a replication cohort
and therefore, validations should be carried out on a larger
population. Second, due to insufficient availability of serum
samples, a small number of sera samples were quantified to
investigate the effect of hypertension, smoking, diabetes, and
insulin sensitivity on quantified biomarkers of stroke.
Therefore validation and quantification of the selected metab-
olite panel needs to be carried out on a larger population of
control and stroke risk subjects to investigate the risk factor’s
related metabolic alterations.

5. Conclusions

Our study provides valuable insight into the global view of the
metabolic perturbations associated with three pathophysiolo-
gical categories of developing stroke: glutamate excitotoxicity,
oxidative stress due to formation of free radicals, and cell-
mediated inflammatory response and endothelial damage. In
support of our previous study, elevated homocysteine sulfinic
acid, along with the biomarkers identified herein of methion-
ine, cysteine, 3-methoxytyramine, carnitine, tryptophan, sphin-
gosine, linoleic acid, arginine, and isoleucine, were observed
as a panel of potential biomarkers for ischemic stroke. They
can be used for early stage disease risk identification, early
diagnosis, pathological mechanism research, and drug target
screening. Further studies are required to validate and general-
ize the applicability of these potential metabolites as novel bio-
markers in the management of ischemic stroke patients.
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