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Sensors for measuring subcellular zinc pools

Pauline Chabosseau,* Jason Woodier, Rebecca Cheung and Guy A. Rutter *

Zinc homeostasis is essential for normal cellular function, and defects in this process are associated with

a number of diseases including type 2 diabetes (T2D), neurological disorders and cardiovascular disease.

Thus, variants in the SLC30A8 gene, encoding the vesicular/granular zinc transporter ZnT8, are

associated with altered insulin release and increased T2D risk while the zinc importer ZIP12 is implicated

in pulmonary hypertension. In light of these, and findings in other diseases, recent efforts have focused

on the development of refined sensors for intracellular free zinc ions that can be targeted to subcellular

regions including the cytosol, endoplasmic reticulum (ER), secretory granules, Golgi apparatus, nucleus

and the mitochondria. Here, we discuss recent advances in Zn2+ probe engineering and their applications

to the measurement of labile subcellular zinc pools in different cell types.

1. Introduction

Zinc is one of the most abundant transition metals in the body
and B10% of human proteins require zinc ions for their
structure and/or function.1 In man, loss of zinc homeostasis
has been associated with numerous metabolic diseases,2,3

including diabetes.4 Thus, pancreata from patients with diabetes
have a zinc content which is reduced by 75% compared to non-
diabetic cadavers.5 Whole zinc body status is also modified
in diabetes mellitus, as serum zinc levels are significantly
decreased6–8 and urinary zinc loss is increased.9

In cells, concentrations of free ionized Zn2+ are buffered and
regulated by three main protein families: zinc transporters
(ZnT), zinc importers (Zrt, Irt-like protein – ZIP) and metal-
lothioneins (MTs) (Fig. 1). MTs are intracellular, low molecular
weight, cysteine-rich proteins that are ubiquitous in eukaryotes.
MTs have unique structural characteristics and possess redox and
metal-binding capabilities. Among the four classes described, MT1
and MT2 are the most widely expressed isoforms in mammalian
cells.10,11 MTs bind Zn2+ with high affinity but can also function
as Zn2+ donors to other Zn2+-binding proteins. ZIP transporters
(ZIP1 to ZIP14) are localised to the plasma membrane (in the
case of most family members) and/or on organellar membranes
including those of the nucleus, endoplasmic reticulum (ER)
and Golgi apparatus (ZIP7, ZIP13, ZIP9), as well as lysosomes
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and secretory vesicles (ZIP13, ZIP3, ZIP8). ZIPs transport Zn2+

ions into the cytoplasm from the extracellular space or from
intracellular organelles that act as zinc stores.12,13 Conversely,
ZnT transporters are responsible for zinc efflux from the cytosol
into organelles or towards the extracellular space.14 Ten mem-
bers have been described (ZnT1 to ZnT10), the majority of the
latter family existing as homodimers.11,15 However, it has been
shown that ZnT5 and ZnT6 can also form heterodimers in the
early secretory pathway,16 as well as ZnT10 with ZnT2, ZnT3 and
ZnT4 in endolysosomal compartments.17 Additionally, using
bimolecular fluorescence complementation, a study18 demon-
strated that ZnT1, ZnT2, ZnT3, and ZnT4 form stable hetero-
dimers in intracellular compartments, some of which are
completely different from their homodimer localization.18

Only ZnT1 is exclusively localised on the plasma membrane.
ZnT2–8 are expressed in intracellular compartments with some
of the transporters, such as ZnT5 and ZnT10, also located on
the plasma membrane.11,17,19,20

Levels of expression of ZnT transporters are tissue-dependent
and, in the specific case of the vesicle-localized ZnT8, confined
almost exclusively to pancreatic islet b and a cells.21 It has been
shown recently that ZnT8 also localised at the cell surface in the
rat b cell line INS-1E, with an increased surface display under
glucose stimulation.22

Until very recently, very little was known of the concentra-
tions of free Zn2+ ions in discrete subcellular locations.
However, studies in the past few years have demonstrated
that organelles, including the ER, can sequester Zn2+ ions at
high concentrations. Of note, release of Zn2+ from this, and
potentially other intracellular stores, may allow these ions to
act as intracellular second messenger.23–26 A number of genetic
disorders are caused by mutations in the genes encoding ZIP
and ZnT transporters, further underlining the importance of
maintaining Zn2+ homeostasis for normal cellular function.15

Very interestingly, genome-wide association studies (GWAS) have
demonstrated a link between type 2 diabetes (T2D) development
and variants in the SLC30A8 (ZnT8) gene. Thus, a non-
synonymous variant (rs13266634) in the SLC30A8 gene is
enriched in diabetic patients.27 Other examples include the
recent identification of ZIP12 as a regulator of Zn2+ influx into
the pulmonary endothelium, and the risk of hypertension,28

whilst ZnT9 (SLC30A9) is implicated in neurological degenera-
tion in cerebro-renal syndrome.29 The specific case of zinc
homeostasis in pancreatic b cells, and the link between the
vesicular Zn2+ transporter ZnT8 and T2D risk, will be discussed
in more detail later in this review.

2. Genetically-encoded zinc sensors

A deeper understanding of the role of Zn2+ ions in cell biology
and cell signalling has required the development of sensitive
and non-invasive sensors which provide both spatial and
temporal resolution. The recent design and deployment of
genetically-encoded sensors has been provided a particularly

Fig. 1 Protein families involved in cellular zinc homeostasis. ZIP and ZnT
localise at the plasma or organelles membranes, catalysing respectively
zinc import/export to/from the cytosol to control and maintain Zn2+

subcellular concentrations.
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precious set of tools for allowing these measurements in cellulo.
Different families of probes have been developed by various
laboratories, including Förster Resonance Energy Transfer
(FRET)-based Zn2+ sensors, and more recently, Zn2+ sensors
based on a single fluorescent protein.30–33

FRET-based sensors are based on an energy transfer pheno-
menon occurring between a donor and acceptor fluorescent
protein after excitation of the donor. Cyan (CFP) and yellow
(YFP) fluorescent proteins, derived from green fluorescent
protein (GFP), or the equivalent blue/yellow fluorescent pro-
teins pairs, are usually used. The donor and acceptor are linked
by a peptide sequence containing a zinc-binding domain,
and change of conformation upon zinc chelation induces a
modification in the FRET energy transfer and impacts the
emitted fluorescence intensity ratio YFP/CFP.32 Two families,
based on zinc fingers have been developed by Palmer and
colleagues: Zif- and Zap-sensors.34,35 Zif sensors are derived
from the mammalian transcription factor Zif268 and contain
either a wild type zinc finger (ZifCY1) or a mutated domain
(ZifCY2).34,35 However, these probes have a relatively low affi-
nity for free Zn2+ ions (mM range) and are not well suited for
measurements in the cytosol where the concentration has been
estimated to be in the hundreds of picomolar range.36 Zap
sensors, based on the Saccharomyces cerevisiae transcriptional
regulator Zap1, provide higher affinity, and ZapCY2 (Kd = 811 pM)
has been used successfully for Zn2+ measurements in the cytosol
and in subcellular compartments35 (Table 1). Both Zap- and
Zif-sensors display an increased FRET ratio upon zinc binding,
i.e. the maximum fluorescence intensity ratio is obtained upon
zinc saturation conditions as 100% of the sensor population is
in a closed conformation; the minimum FRET ratio is achieved
after zinc depletion. The eCALWY sensors, developed by Merkx
and colleagues and ourselves, are based on cerulean/citrine

protein pairs and include two cysteine-containing metal bind-
ing domains (ATOX and WD4) connected by a long flexible
glycine–serine linker. Each domain provides two cysteines to
form a single tetrahedral zinc binding pocket. In the absence
of Zn2+ ions, an intramolecular complex is formed between
cerulean and citrine, due to the introduction of mutations
(S208F and V224L) on the surface of both fluorescent domains,
and which results in high FRET. Conversely, when Zn2+ binds
between ATOX and WD4, the interaction between cerulean and
citrine is disrupted, lowering the citrine/cerulean fluorescence
intensity ratio. Mutations and/or shortening of the linker length
led to the development of a series of six sensors with affinities
ranging from the picomolar to the micromolar range.37

Deployed in a variety of cell types, eCALWY-4 (Kd = 630 pM)
has proved to be a reliable sensor for measuring cytosolic Zn2+

in most cases.23,37 More recently, Merkx and colleagues have
developed an alternative zinc sensor containing, innovatively, a
Cys2His2 binding pocket that was created on the surface of the
donor (cerulean) and acceptor (citrine) fluorescent domain.
Named eZinCh-2, the sensor provides an affinity for Zn2+ that
is similar to eCALWY-4 (Kd = 1 nM at pH 7.1), but displays a
slightly larger change in the fluorescence intensity ratio, and
has been used successfully in different cell types.33,38

FRET sensors are, by definition, ratiometric sensors, as
Zn2+ concentration changes are monitored by the ratio of the
emitted fluorescence intensity of the acceptor versus the donor.
This ratio reflects sensor occupancy and is dependent on Zn2+

concentration but not sensor expression, provided cellular
autofluorescence is low.30,32 However the sensors’ dynamic
range, i.e. changes in fluorescence intensity ratio upon Zn2+

binding, is often limited. In the case of eCALWY sensors, the
dynamic range has been improved greatly by the introduction
of mutations on the surface of both of the GFP-based
fluorophores.37 Palmer and colleagues have also developed a
zinc sensor31 based on a single fluorescent protein as an alter-
native option presenting a great dynamic range. This sensor,
named Green Zinc Probe 1 (GZnP1 – Kd = 58 pM, pH 7.4), was
generated by attaching two zinc fingers from the yeast transcrip-
tion factor Zap1 (ZF1 and ZF2) to the two ends of a circularly
permuted green fluorescent protein (cpGFP). Upon Zn2+ binding,
the formation of two zinc finger folds results in a conformational
change of cpGFP leading to an increase of fluorescence intensity.

Very recently, Merkx and colleagues39 have developed an
alternative type of genetically encoded sensor for intracellular
zinc ions based on Bioluminescence Resonance Energy Transfer
(BRET), an energy transfer phenomenon occurring between a
donor luciferase and an acceptor fluorescent domain. The advan-
tages of BRET-sensors include an absence of photobleaching and
of phototoxicity induced by excitation light, and no background
autofluorescence during measurement. In the recent report,39 the
luciferase NanoLuc domain was fused to the cerulean domain of
eCALWY-1 and eZinCh-2, to create BLCALWY-1 and BLZinCh-1
and -2 sensors, with a preserved affinity and specificity towards
zinc ions with respect to the parent probes. Additionally,
a chromophore-silencing mutation was introduced in the cer-
ulean domain of BLZinCh-1 to create a BRET-only sensor

Table 1 Main families of genetically-encoded zinc sensors, and their
targeting to organelles

Kd

(pH 7.1)
Red
variant

Targeted to
organelles Ref.

eCALWY
CALWY 0.2 pM 30
eCALWY-l 2 pM 37
eCALWY-2 9 pM 37
eCALWY-3 45 pM 37
eCALWY-4 630 pM ER, mitochondria 23 and 37
eCALWY-5 1850 pM 37
eCALWY-6 2900 pM ER, mitochondria 23 and 37
redCALWY-1 12.3 pM Yes 30
redCALWY-4 234 pM Yes 30

Zap
ZapCYl 2.5 pM Golgi, ER,

mitochondria
35

ZapCY2 811 pM 35
ZapOC2 — Yes Nudeus 40
ZapCmR2 — Yes Nudeus 40
ZapCmRl — Yes Nucleus 40

eZinCh
eZinCh-1 8.2 nM Vesicles 37
eZinCh-2 1 nM ER, mitochondria,

vesicles
33
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(BLZinCh-3) that displayed a 50% increased BRET response
associated with an unpredicted 10-fold increase in Zn2+ affinity.
BRET/FRET and BRET only variants of ZinCh-2 allowed
monitoring of Zn2+ in plate-based assay as well as in BRET-
based single cell imaging experiments.39

One of the great advantages of genetically-encoded sensors
is that they are easily targetable to subcellular structures by the
inclusion of a signal peptide or other targeting sequence at
either end of the coding sequence. So far, eCALWY-4, eZinCh-2
and the zap-sensors have been successfully targeted to different
organelles, including mitochondria, ER, secretory granules and
Golgi apparatus.23,33–35,38,40,41

3. Low molecular weight and hybrid
probes

Low molecular weight (LMW) probes are tailored by chemical
synthesis and are composed of a chelating agent and a fluoro-
phore (for reviews see ref. 32 and 36). If some LMW probes are
permeant to cell membranes, the presence of charged moieties
prevents the entry of others into the cell. A now currently used
strategy to allow cell membrane transit was first developed by
Roger Tsien, and consists of the addition an acetoxymethyl
(AM) ester group.42 The AM group is then hydrolysed once
within the cell, trapping the charged probe inside.

Most LMW probes for zinc ions are non-ratiometric, and are
based on the principle of photo-induced electron transfer (PET)
occurring between the fluorophore and the chelating moiety,
quenching fluorescence. Upon zinc binding, PET is disrupted
and the probes display greatly enhanced fluorescence emission
(for reviews see ref. 32 and 36).

One of the first probes developed, Zinquin,43 was successfully
used to measure labile zinc but had the disadvantage of being
excitable in the UV range, hampering measurements in live cells
due to phototoxicity and susbtantial background autofluorescence.
Subsequently, a large number of probes have been designed
that are excitable in the visible range. An exhaustive list of LMW
probes has previously been provided by others32 and only the
most-frequently used will be described here.

The Zinpyr (ZP) probe family (ZP1 to ZP10)32,44,45 is based on
fluorescein, with excitation wavelengths above 490 nm. Most of
the members of this family are naturally cell permeant, and
several designs have been developed to improve pH sensitivity,
affinity for Zn2+, background fluorescence and fluorescence
dynamic range upon zinc binding. ZP probes have a Kd in
the hundreds of picomolar range, except for ZP9 and ZP10
which have lower affinities. The ZnAF probe family46–48 are also
fluorescein-based and have the great advantage of displaying
extremely low background fluorescence in the ion-free state,
associated with an augmented response to Zn2+ binding. If the
original ZnAF probes were not membrane permeant, this issue
was solved by the addition of diacetyl derivatives to mask the
negative charge on the probes.48 ZnAF probes have a great affinity
for Zn2+, with Kd from the nanomolar to the micromolar range.
Fluorescein-based Newport Green DCF and PDX49 display a lower

affinity to zinc (Kd = 1 mM and 40 mM respectively). FluoZin-3,49 now
one of the most used probes to measure labile Zn2+, was based on
an existing calcium probe BAPTA, originally developed by Roger
Tsien.50 FluoZin-3 (Kd = 15 nM) has an excitation peak at 495 nm,
shows a 200-fold fluorescence increase upon zinc binding and is
cell permeant when associated with an AM group (FluoZin-3-AM).

Whilst the chemical probes generally have a greater dynamic
range, in terms of fluorescence responses, than genetically-
encoded sensors, their subcellular localisation can be hard to
predict and control.32 LMW probes may, for example, spontaneously
accumulate in organelles such as mitochondria, Golgi, endosomes,
secretory vesicles, etc. It has been shown with Ca2+-responsive
probes that both molecular charges and lipophilicity parameters
play a role in determining accumulation into subcellular
organelles,51 and it is not uncommon for a probe to exhibit
different localisation depending on cell types.52

Several successful attempts have been made to target LMW
probes specifically to a given organelle. For instance, mitochon-
drial targeting can be achieved by the addition of a positively
charged group. As an example, the mitochondrially-targeted zinc
sensor RhodZin-353 was developed from FluoZin-3 by replacing the
fluorescein moeity with a rhodamine fluorophore, whose positive
charge directs accumulation into the mitochondria (negative
inside). Another example of molecular design for targeting is our
zinc probe ZIMIR (Zinc Indicator for Monitoring Induced exocyto-
tic Release).54 ZIMIR comprises a fluorophore based on fluores-
cein, a Zn2+ binding motif derived from dipicolylamine and a
moiety composed of a pair of dodecyl alkyl chains for cell
membrane tethering. In order to provide a simplified synthetic
process towards a probe with similar properties, we have recently
developed a ‘‘click-SNAr-click’’ approach.55 Another strategy is to
target LMW probes to organelles by the addition of a peptide
targeting unit. This way, ZP1 and Zinquin have been both success-
fully anchored to the extracellular side of the plasma membrane.56

Hybrid sensors have also been described that are based on
FRET principles, in this case occurring between a genetically-
encoded component coupled to a small molecule. For zinc hybrid
sensors, the ion detection domain was based on a carbonic
anhydrase (CA) variant fused with red fluorescent protein RFP57

and the cell-permeable fluorescent co-factor dapoxyl sulphona-
mide added to the cells will bind to an open coordination position
on the zinc ion when bound to the sensor, allowing then FRET
between the dapoxyl sulfonamide and the fluorescent protein
domain. Intracellular concentrations measured in mammalian
pheochromacytoma PC12 cells were in the low picomolar range
and thus lower than those above measured in other mammalian
cell types with probes and sensors described.57 While hybrid
sensors can also be targeted to organelles, they still require the
addition of the synthetic cofactor to allow zinc imaging.57

4. Zinc ions in the endoplasmic
reticulum

Despite the well-defined presence of Zn2+ transporters/importers
on the ER membrane11–13 free Zn2+ concentrations in the
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ER have been the subject of controversy. The first in cellulo
measurement using a genetically-encoded FRET sensor was
performed using ER-targeted ZapCY1 which had a very high
affinity for zinc ions.35 Using this sensor, the authors estimated
a Zn2+ concentration of 0.9 pM in HeLa cells, a concentration a
hundred times lower than that measured in the cytosol. How-
ever, a later study by ourselves23 using eCALWY-4 targeted to
the ER showed that the concentration could be much higher as
the probe used in this case was saturated with zinc ions.
Concentrations higher than 5 nM were found in all cell types
tested including HeLa cells. The latter result is in line with the
hypothesis that the ER may act as a mobilizeable zinc store
and that, in certain cell types, Zn2+ may be released from this
organelle to act as a second messenger. Using Newport green as
a probe, Yamasaki et al.24,25 showed that mast cells stimulated
through the high-affinity IgE receptor rapidly release intracellular
Zn2+ from the endoplasmic reticulum (ER), a phenomenon called
a ‘‘Zinc wave’’.

Recent measurements using eZinCH-2 targeted to the ER in
HeLa cells returned a value of 0.8 nM, with a very high cell-to-
cell variability, as the concentration range was from 0.3 nM
to 1.5 nM.33 These results thus also indicate a high ER Zn2+

concentration compared to the cytosol. Very interestingly,
previous work by Taylor and colleagues58 showed increased
expression of ZIP7 in tamoxifen-resistant TamR cells compared
to wild type MCF-7 cells. ZIP7 is a Zn2+ importer located almost
exclusively on the ER membrane, and its phosphorylation was
shown to result in the release of Zn2+ from the ER into the
cytosol. By deploying ER-eZinCH-2 in these cells, it was found
accordingly that TamR cells have a slightly increased Zn2+ ER
content (0.54 � 0.27 nM for MCF-7 versus 0.75 � 0.49 nM for
TamR cells).33,38

Recently, our own laboratory has examined the localization of
ZIP7 and ZnT7 in cardiomyocytes, studies which also revealed the
presence of both proteins on the sarco(endo)plasmic reticulum
(S(E)R).59 Very interestingly, markedly increased mRNA and pro-
tein levels of ZIP7 were observed in cardiomyocytes from diabetic
rats or high-glucose-treated H9c2 cells while ZnT7 expression was
lowered in these models relatively to controls. It was also shown
that hyperglycemia induced a marked redistribution of cellular
free Zn2+, increasing cytosolic free Zn2+ and lowering free Zn2+

in the S(E)R. These changes involved alterations in ZIP7 phos-
phorylation. Thus, subcellular free Zn2+ redistribution in the
hyperglycemic heart, resulting from altered ZIP7 and ZnT7
activity, may contribute to cardiac dysfunction in diabetes.59

5. Zinc ions in the nucleus

Zap sensors were the first and so far only nucleus-targeted
genetically-encoded FRET sensors.40 Palmer and colleagues
developed alternately Zap sensors by switching the YFP and
CFP fluorescent domain with different green-red or orange-red
donor/acceptor pairs. These sensors were targeted to the nucleus
with a nuclear localisation sequence (NLS). The green-red
NLSZapSR2 sensor was co-expressed in HeLa cells with the

yellow-blue ZapCY2 sensor targeted either to the cytosol or to
the ER, the mitochondria or the Golgi, allowing simultaneous
monitoring of zinc uptake by the nucleus and different sub-
cellular compartments. Thus, upon an increase in cytosolic
Zn2+ concentration, nuclear zinc rises quickly, whereas the ER,
Golgi and mitochondria showed a slower a delayed zinc
increase. Additionally, nuclear Zn2+ was buffered at a higher
level than cytosolic Zn2+. These data suggest the interesting
possibility the nucleus may serve as a zinc reservoir, at least in
some cell types and circumstances.

LMW probes have also been used to monitor free zinc in the
nucleus in other studies. Using the UV-excitable TSQ probe,
Cherian and colleagues60 showed that, in myoblasts, zinc, along-
side MT, was concentrated mainly in the cytoplasm but was
translocated into the nucleus in newly-formed myotubes during
early differentiation. Of note, the changes in subcellular localiza-
tion of MT and Zn2+ were accompanied by increased apoptosis in
these cells, consistent with a role in the latter process.

6. Zn2+ concentrations in intracellular
vesicles

Pancreatic b cells are extremely rich in zinc with around 70% of Zn2+

ions being located within the insulin secretory vesicles (also termed
insulin secretory granules or ISGs). There, the total concentration of
Zn2+ reaches 10–20 mM.61,62 Indeed, in these cells, Zn2+ ions are
involved in the processing and storage of insulin, and in insulin
hexamer formation. The hexamerization process reduces insulin
solubility and triggers its crystallization, increasing then the storage
capacity of the vesicles.63,64 When insulin is secreted into the
extracellular medium during exocytosis, hexamers are rapidly con-
verted into active monomers, concomitantly liberating significant
concentration of Zn2+ into the circulation. These may potentially
exert actions independent to those of insulin.63,65

Zinc ions are concentrated within the insulin secreting
vesicles via the zinc transporter ZnT8.66,67 As discussed above,
ZnT8 expression is almost entirely limited to the pancreas,
specifically to a and b cells in both human and mouse.68,69

ZnT8 is the only ZnT isoform showing such a dramatic tissue-
specific expression pattern and its expression level is the highest
of all transporters expressed in both a and b cells, making it the
most strongly expressed transporter in the islet.21

The importance of vesicular zinc transport in the function of
the b cell has been highlighted by recent GWAS studies. Indeed,
a first GWAS for T2D demonstrated an association between
disease risk and ZnT8 variants, since a non-synonymous single
nucleotide polymorphism (SNP) (rs13266634) in the SLC30A8
coding sequence is enriched in diabetic patients.27 This SNP
leads to the replacement of an arginine by a tryptophan at
position 325 (R325W) at the C-terminus of the transporter,
positioned on the cytosolic surface of the granule. The risk
variant (R325) is associated with a 17% increase in disease
risk per allele70 and R325 variant carriers show significantly
impaired insulin secretion during intravenous glucose tolerance
tests, and lower b cell function by HOMA-B assessment.71,72
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Of note, subsequent studies also identified five other SNPs, all
located in exon13 of SLC30A8 and with one of them causing an
amino acid replacement at position 325 (for review ref. 66 and 73).

It is still not clear exactly how, or if, the rs13266634 poly-
morphism impacts transporter activity. In a study performed in
our laboratory,74 we measured Zn2+ accumulation in the vesicle
interior using Zinquin after overexpression of either isoform in
a b cell line. We showed that, in the presence of supraphysio-
logical Zn2+ concentrations, zinc accumulation into granules
was significantly higher in cell overexpressing the W- versus the
R-form. Thus, the risk variant R325 appeared from these
studies to possess lower transport activity than the protective
variant, W325.74 Similar data were also obtained by Kim et al.
using isolated secretory granules and radiotracers (65Zn).75

However, these results were difficult to reconcile with a study
performed in 201476 in which Flannick and colleagues identified 12
rare protein-truncating variants statistically associated with a 65%
decrease in T2D risk. Among the variants, the two most common
sequences failed to express a stable protein. Thus haploinsufficiency,
leading to a lower expression of the active transporter and conse-
quently to a reduced zinc transport activity, appeared to be protective
against T2D. Aligning with the latter finding, in a recent study from
Merriman and colleagues,77 R325 was found to be more active than
the W325 form following induced expression in HEK293 cells.
Additionally, purified ZnT8 variant activity was assessed in proteo-
lyposomes and, over a broad range of permissive lipid compositions,
the R325 variant exhibited accelerated zinc transport kinetics com-
pared to the W325 form.77

Further paradoxes exist when considering the above results and
in vivo data, especially those obtained in mouse models. To inves-
tigate the role of ZnT8 in the maintenance of glucose homeostasis,
several groups, including ours, have developed ZnT8 null mice,
either with global deletion or cell type-specific deletion restricted to b
or a cells. Although variations are observed between models, global
and b cell-selective null mice display either unchanged glucose
metabolism or glucose intolerance. We are aware of no study to
date that has reported an improvement in this metabolic parameter
(see for review ref. 78). Additionally, we generated in the laboratory a
mouse line overexpressing human W325 ZnT8 variant in b cells.
These animals showed improved glucose tolerance, possibly attri-
butable to increased Zn2+ secretion, as insulin secretion was not
improved compared to control littermates.79

In summary, observations in man of lower ZnT8 activity being
associated with disease protection in carriers of rare variants, and
data obtained in mice, need to be reconciled. Interestingly, we
observed in the laboratory that ZnT8 deletion has an impact on
intracellular zinc homeostasis, as primary b cells from ZnT8-KO
mice display a lower free zinc concentration.79,80

To resolve these apparent discrepancies, measurement
of free Zn2+ concentration in subcompartments (notably the
cytosol and secretory granule interior) of the living b cell has
become essential. A first attempt to develop vesicle-targeted
zinc sensors used eCALWY sensors fused to a vesicle-targeting
vesicle-associated membrane protein 2 (VAMP2) sequence.
Although efficient localisation to the vesicular interior was
achieved, VAMP2-eCALWY sensors were not responsive in this

environment to treatments inducing zinc depletion (N,N,N0,N0-
tetrakis(2-pyridylmethyl)ethylenediamine: TPEN) or zinc satura-
tion (ZnCl2 plus pyrithione: Zn/Pyr).37 More recently, the eZinch2
sensor was similarly targeted to vesicles (VAMP2-eZinCh2):
the new targeted sensor was, in contrast, responsive to TPEN
or Zn/Pyr and returned a free vesicular Zn2+ concentration at
steady state of B120 nM.33

Alternatively, ZIMIR,54 membrane-targeted non-cell permeant
zinc probe, has been successfully used to measure secreted zinc
during glucose-stimulated insulin secretion of b cells and has
proven to be a useful tool to assess zinc content in the
vesicles.54,79 Confirming the efficiency of ZnT8 inactivation in
mouse cells, ZIMIR indicated the complete blockade of Zn2+

secretion in the absence of the transporter.54,79

Other cell types display high vesicular zinc content, including
T-cells. In the murine cytotoxic T-cell line CTLL-2, Zinquin loading
resulted in a uniform staining while FluoZin-3 exclusively labelled
vesicular structures, called ‘‘zincosomes’’ which sequestered levels
of zinc.81,82 In CTTL-2 cells, ‘‘zincosomes’’ co-localized with a
fluorescent lysosome tracker. After stimulation with IL-2, vesicular
Fluozin-3 decreased while Zinquin fluorescence increased, indica-
tive of an intracellular translocation of Zn2+.82 It was further
demonstrated that Zn2+ functions as an ionic signalling molecule
after T cell activation83 as cytoplasmic zinc concentrations
increased within 1 min of T cell receptor activation, in particular
in the subsynaptic compartment.

In another example of the use of LMW probes to follow the
subcellular localisation of Zn2+, Haase and Bayermann84 used
Zinquin43 to monitor the sequestration of Zn2+ into intracellu-
lar vesicles in rat C6 glioma cells.

In the brain, ZnT3 is required for the accumulation of zinc
ions inside the synaptic vesicles of glutamatergic neurons.85,86

During ischemia, simulated by deprivation of oxygen and
glucose (OGD), followed by reperfusion87 use of a cell imper-
meant form of Newport Green allowed the demonstration of
marked increases in extracellular Zn2+.

The deployment of zinquin demonstrated that dietary defi-
ciency of omega-3-polyunsaturated fatty acids increased ZnT3
expression and concomitantly increased free Zn2+ in the
brain:88 a corollary of these findings is that increased consump-
tion of oily fish may act in this way to lower the risk of
Alzheimer’s disease and dementia.

Another recent and exciting development is that by Lippard and
colleagues at MIT of diacetylated Zn2+ probes, such as DA-Zinpyr-1,
which serve as reaction-based probes. Thus, elevated levels of
intracellular zinc catalyse deacetylation, giving large increases in
fluorescence signal. These have been used to excellent effect
recently to demonstrate the loss of a synaptic zinc-rich layer of
the dorsal cochlear nucleus in ZnT3 knockout mice.89

7. Zn2+ ions in the mitochondrial
matrix

The ZnTs/ZiP family members responsible for the transport
of Zn2+ across most intracellular membranes (ER, secretory
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granules, etc.) are now reasonably well defined.90 However, and
although one study91 showed that ZnT2 is localised to the
mitochondrial inner membrane in murine mammary gland
cells, no ubiquitously expressed ZnT has clearly been identified
as yet as responsible for Zn2+ uptake into the mitochondrial
matrix. Likewise, Zn2+ efflux mechanisms from mitochondria
remain obscure. Importantly, free Zn2+ concentrations in the
mitochondrial matrix must be tightly regulated to ensure
adequate concentrations for Zn2+-dependent processes whilst
preventing accumulation to toxic levels. Thus, high [Zn2+]
inhibits the electron transport chain at the bc1 complex, resulting
in inhibition of O2 consumption and a lowering of the mito-
chondrial inner membrane potential (Dcm).92,93 Correspondingly,
under ischemic conditions, zinc toxicity in neurons is due, at least
in part, to mitochondrial Zn2+ uptake.93–96 As for the ER, absolute
free Zn2+concentrations within the mitochondrial matrix remain a
subject of controversy. Initial studies using genetically-encoded or
hybrid sensors in HeLa and neuronal PC12 cells gave concentra-
tions of o1 pM.41,57 On the other hand, using the eCALWY-437

sensor targeted to the mitochondrial matrix (mito-eCALWY-4),23

we have reported a value of B200 pM in multiple cell types.
Additionally, a recent study using the mitochondria-targeted
sensor mito-eZinCh-2 returned a value in the low picomolar range
in HeLa cells.33 Whilst the reasons underlying the variability
between these results is not fully understood, it may reflect the
varying sensitivity of the different probes to pH changes and
alterations in dissociation constant (Kd) in vivo versus the value
determined in vitro. Nonetheless, a labile zinc pool has also been
detected in mitochondria using the low molecular weight probe
RhodZin-393 in studies supporting a value for intramitochondrial
Zn2+ in the picomolar range.

Additionally, the diacetyled form of the LMW probe Zinpyr-1
has been delivered to the mitochondria by a TPP targeting
(DA-ZP1-TPP).97 Exposure to Zn2+ triggers metal-mediated
hydrolysis of the acetyl groups to afford a large zinc-induced
fluorescence response. Using this probe, the authors observed a
decreased zinc mitochondrial uptake in cancerous prostate
cells compare to healthy cells.

Studies have suggested a role for the mitochondrial calcium
uniporter (MCU) in mitochondrial Zn2+ uptake.92,98 A ubiquitously-
expressed protein in mammals, MCU is localised to the mito-
chondrial inner membrane and is primarily responsible for
Ca2+ entry into the organelle.99,100 Thus, the MCU complex,
which also includes MICU1/2 and EMRE subunits, facilitates
Ca2+-stimulated ATP production101,102 as well as the negative
effects of prolonged or dysregulated Ca2+ entry such as
membrane depolarisation and reactive oxygen species (ROS)
production.103,104

Several studies have implicated MCU in mitochondrial Zn2+ entry,
using the inhibitor ruthenium red to inhibit the transporter.94,105

Notably, Malayandi and co-workers showed using isolated
mitochondria that ruthenium red partially blocks Zn2+ entry
in the organelle and suggested the existence of distinct
mechanisms of Zn2+ uptake, one being MCU-dependent.106

Studies exploring the role of MCU in mitochondrial Zn2+

transport in living cells are, however, lacking.

8. Conclusions

Recent findings have highlighted the crucial role of Zn2+ ions in
the biology of many cell types and have served as an important
spur for the development of new probes for these ions. The
latter have proved vital tools in understanding the roles played
by intracellular zinc importers and transporters in health and
disease. In the future it is likely that some of these probes may
also provide the basis of assays which allow the identification
of regulators of these molecules allowing translation to the
clinic of some of these exciting findings.
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