Chem Soc Rev

Chemical Society Reviews www.rsc.org/chemsocrev

Themed issue: Modern main group chemistry

ISSN 0306-0012

REVIEW ARTICLE Ingo Krossing *et al.* Reactive p-block cations stabilized by weakly coordinating anions

Chem Soc Rev

View Article Online

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39 (00)

REVIEW ARTICLE

Cite this: Chem. Soc. Rev., 2016, 45, 789

Received 28th August 2015 DOI: 10.1039/c5cs00672d

www.rsc.org/chemsocrev

Reactive p-block cations stabilized by weakly coordinating anions

Tobias A. Engesser, Martin R. Lichtenthaler, Mario Schleep† and Ingo Krossing*

The chemistry of the p-block elements is a huge playground for fundamental and applied work. With their bonding from electron deficient to hypercoordinate and formally hypervalent, the p-block elements represent an area to find terra incognita. Often, the formation of cations that contain p-block elements as central ingredient is desired, for example to make a compound more Lewis acidic for an application or simply to prove an idea. This review has collected the reactive p-block cations (rPBC) with a comprehensive focus on those that have been published since the year 2000, but including the milestones and key citations of earlier work. We include an overview on the weakly coordinating anions (WCAs) used to stabilize the rPBC and give an overview to WCA selection, ionization strategies for rPBC-formation and finally list the rPBC ordered in their respective group from 13 to 18. However, typical, often more organic ion classes that constitute for example ionic liquids (imidazolium, ammonium, *etc.*) were omitted, as were those that do not fulfill the – naturally subjective – "reactive"-criterion of the rPBC. As a rule, we only included rPBC with crystal structure and only rarely refer to important cations published without crystal structure. This collection is intended for those who are simply interested what has been done or what is possible, as well as those who seek advice on preparative issues, up to people having a certain application in mind, where the knowledge on the existence of a rPBC that might play a role as an intermediate or active center may be useful.

Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany. E-mail: krossing@uni-freiburg.de † The names of the co-authors are ordered alphabetically.

Introduction

Main group chemistry continues to reside at the heart of fundamental as well as applied chemistry. As such, recent years have seen an enormous growth of concepts that shed new light

Tobias A. Engesser

Dipl.-Chem. Tobias Engesser obtained his intermediate diploma the Technische Universität at Karlsruhe (now KIT) and continued his studies at the Albert-Ludwigs-Universität Freiburg, where he also wrote his diploma thesis about reactive tellurium cations and started his PhD in 2011 at the Institute of Inorganic Chemistry under the supervision of Prof. Ingo Krossing. His research interests are reactive phosphorus cations and gold(1) starting materials, both in

combination with weakly coordinating anions. On the basis of his interest for phosphorus compounds he stayed for three months in the group of Prof. Christopher "Kit" Cummins at the Massachusetts Institute of Technology in 2015.

Martin R. Lichtenthaler

University of California, Berkeley as a postdoc in 2016. His research interests are organometallic and polymer chemistry, catalysis, molecular modelling and materials science.

PhD (2015) from the Albert-Ludwigs-Universität Freiburg, Germany. As a member of the Krossing group, he has developed a novel class of highly efficient, main group metal-based olefin polymerization catalysts and discovered unprecedented cationic clusters of univalent indium. After a research stay with the New Technology Office of Merck Ltd. Japan, he is likely to join the as a nostdoc in 2016. His research

Martin R. Lichtenthaler (1986)

received his Diploma (2010) and

on hitherto undiscovered, or more correctly, underdeveloped areas of main group chemistry. Thus, the availability of stable singlet carbenes¹ as strong donors offered tremendous new perspectives as did the establishment of the frustrated Lewis pairs (FLP) concept² or the systematic investigation of (often low valent) cationic mixed main group-transition metal salts.^{3–5} In the framework of those approaches, next to other fundamental⁶ and applied questions,^{7–10} also the stabilization or use of reactive p-block cations (rPBC) with weakly coordinating anions (WCAs) was one focus that led to fascinating new rPBC. This review gives a comprehensive overview on recent rPBC developments since about 2000, but also cites all-time classics in the field. It also includes the fascinating class of transition metal substituted rPBC for which the assignment of the positive charge to one specific moiety is often not clear.

Scope of this review

Many of the p-block elements have relatively high ionization potentials and electronegativities. Thus, most of the stable examples base on delocalization and other electronic or steric effects. In addition, rPBC are often very electrophilic and/or oxidizing. Therefore, chemically stable and inert weakly coordinating anions (WCAs) and solvents are needed to access their salts. These ingredients allowed the syntheses of a large number of fundamentally interesting rPBC of the groups 13-18 in the condensed phase. We discuss typical synthesis routes, give a brief overview of the WCAs, and describe the rPBC ordered according to their main group as well as cation class. However, typical, often more organic ion classes that constitute for example ionic liquids (imidazolium, ammonium, etc.) were omitted, as were those that do not fulfill the - naturally subjective - "reactive"-criterion of the rPBC. As a rule, we only included rPBC with crystal structure and only rarely refer to important cations published without crystal structure.

Handling of substance classes with recent reviews

Some of the substance classes, which fit into this review were just recently and sometimes very comprehensively reviewed (*cf.* our contribution describing the advances in the synthesis of homopolyatomic cations of the non-metals since 2000¹¹). To reduce the overlap, we decided to give an overview on general aspects such as WCAs in Table 1 and include a short table with relevant reviews for each main group at the beginning of each main group chapter and only list the compounds in these cases. Therefore, we mainly list, but do not describe the cations of this category in the chapters of their corresponding element. Nevertheless, the scope of this review is rather large, which in any case precludes extensive discussions and mainly serves as an overview on what is known.

Reactive p-block cations

The rPBC in this article need a WCA as counterion and, therefore, we first briefly describe typical WCAs and give some advice on their selection before turning to typical ionization and synthetic procedures for rPBC preparations. Thereafter, the ordering of the cation classes for the individual sections is described, and finally the rPBC are grouped according to the main group of the relevant cationic entry. In addition, first applications emerged for rPBC salts and will be highlighted in the respective cation sections.

WCA overview

Because of their potential in fundamental and applied chemistry,^{12–15} a great variety of different WCA types are currently known (Fig. 2) and was frequently reviewed (Table 1).

But which out of the multitude of published WCAs shown in Fig. 2 should be used for a given problem...? Is there one best WCA that fulfills all needs...?

Ingo Krossing studied chemistry in

Munich (LMU) and finished his

PhD thesis 1997 (with Prof. H.

Nöth). From 1997 to 1999, he

worked as Feodor Lynen postdoc with Prof. J. Passmore at UNB,

Canada. In 1999, he started his

independent career as a Liebig-

and DFG-Heisenberg-Fellow at

the Universität Karlsruhe (TH)

(mentor: Prof. H. Schnöckel).

2004 he changed as assistant

Mario Schleep

Dipl.-Chem. Mario Schleep is a PhD student in the group of Prof. Ingo Krossing at the University of Freiburg, where he received his Diploma in 2012. During his studies, he has undertaken a research stay dedicated to polymetallic chromium and vanadium clusters in the group of Prof. Eric McInnes at the University of Manchester (England) for two semesters. While dealing with electrolytes for lithium ion batteries during his thesis, his

current research focuses on the synthesis of reactive $tin(\pi)$ cations stabilized by weakly coordinating anions.

Ingo Krossingprofessor to the Ecole Polytechnic
Federale de Lausanne (EPFL),
before being appointed Chair of Inorganic Chemistry at the Albert-
Ludwigs-Universität Freiburg in 2006. His research interests cover
ionic systems from reactive cations to ionic liquids, as well as
electrochemical energy storage. With an ongoing ERC Advanced
Grant he develops absolute acidity and reducity scales.

Chem Soc Rev

Year	Торіс	Title	Ref.
1993	WCAs	The search for larger and more weakly coordinating anions	15
1998	WCAs	Carboranes: a new class of weakly coordinating anions for strong electrophiles, oxidants, and superacids	16
2004	WCAs	Noncoordinating anions—fact or fiction? A survey of likely candidates	13 and 12
2006	WCAs	Chemistry with weakly-coordinating fluorinated alkoxyaluminate anions: gas phase cations in condensed phases?	14, 15 and 17
2006	WCAs	Chemistry of the carba- <i>closo</i> -dodecaborate($-$) anion, $[CB_{11}H_{12}]^-$	18
2008		π -Complexation of post-transition metals by neutral aromatic hydrocarbons: the road from observations in the 19th century to new aspects of supramolecular chemistry	19
2013	WCAs	Weakly coordinating anions: halogenated borates and dodecaborates	20
2013	WCAs	Weakly coordinating anions: fluorinated alkoxyaluminates	21
2013	WCAs	Weakly coordinating anions: highly fluorinated borates	22
2015	WCAs	Taming the cationic beast: novel developments in the synthesis and application of weakly coordinating anions (Publication in progress by IK)	23

Clearly holds: the more reactive the rPBC are, the more demanding is the task for the anions, to meet the requirements for a successful stabilization in the condensed phase. Some of this reactivity may be dampened kinetically by the use of suitable bulky ligands, *e.g.* for the silylium ions. However, there is not one ultimate WCA that fulfills all requirements to allow for use with all in here described rPBC. Typically, rPBC follow at least one of the following classifications:

• Being a strong electrophile, thus having a strong tendency to coordinate an anion or solvent. Silylium ions SiR_3^+ are good examples for this. This coordination is often the entrance towards an anion degradation by heterolytic cleavage of a bond in the WCA.

• Being a strong oxidant, thus needing anions and solvents compatible with this need. Halogen and noble gas cations are typical examples.

• Being a weakly bound complex, in which the interesting main group particle can easily be displaced by anion or solvent, just as in many metal-non-metal clusters. This includes protonated, weakly basic molecules that tend to pass the proton to more basic and more coordinating anions or solvents.

Thus, the demand for very weak coordination behaviour is only medium for several very oxidizing cations, but the necessity of the WCA being stable against oxidation is a prerequisite of highest importance. For example, the typical counterions of group 16 to 18 rPBC are fluorometallates like $[MF_6]^-$ or $[M_2F_{11}]^-$ (M = As, Sb) compatible with (i) the oxidizing power of the cation and (ii) the typically used super acid solvents. However, despite the fact that fluoroantimonates allow for the synthesis of tremendously oxidizing cations like [Xe₂]⁺, they fail to stabilize the extreme electrophiles $[SiR_3]^+$ and form F-SiR₃ and antimony pentafluoride. On the other hand, with some steric protection at the silylium ion, already the $[B(C_6F_5)_4]^-$ WCA suffices to stabilize for example the $[Si(Mes)_3]^+$ cation. By contrast, and due to the aromatic system, $[B(C_6F_5)_4]^-$ is not compatible with the only mildly oxidizing $[NO]^+$ or $[NO_2]^+$ cation. Some thoughts that allow for the selection of a suitable WCA for a given problem may be summarized by the triangle shown in Fig. 1.

With Fig. 1 in mind, a personal selection of the "best WCAs" includes $[1-H-CB_{11}Me_5Br_6]^{-,24}$ $[1-Et-CB_{11}F_{11}]^{-,25}$ $[CB_{11}(CF_3)_{12}]^{-,26}$ $[Sb_4F_{21}]^{-,27}$ $[Sb(OTeF_5)_6]^{-,28}$ $[Al(OR^{PF})_4]^{-,29-31}$ $[B(C_6F_5)_4]^{-32-34}$ and

Fig. 1 Triangle delineating the independent demands of a rPBC that lead to different mixtures of the WCA properties necessary for its successful stabilization.

 $[B(CF_3)_4]^{-}$.³⁵ A recent noteworthy addition overcoming the frequent disorder of the also towards fluoride abstraction less stable $[B(Ar^{CF_3})_4]^{-}$ anion is the $[B(Ar^{Cl})_4]^{-}$ WCA.³⁶

Other aspects that will influence the choice, are the synthetic availability of the entire WCA class, or the specific starting material necessary to ionize the system of interest. In this respect, most of the WCAs known so far also do have disadvantages: the carborates are hard to synthesize and have often low yields. $[CB_{11}(CF_3)_{12}]^-$ is even explosive, as is the LiC_6F_5 intermediate needed for the $[B(C_6F_5)_4]^-$ synthesis. In addition, starting materials such as solvent free Ag⁺ salts or $[NO]^+$, $[NO_2]^+$ are not accessible as salts of $[B(C_6F_5)_4]^-$. Anions with multiple $-CF_3$ groups often tend to disorder in the solid state, which sometimes makes it hard to solve or refine the crystal structure. The problems associated with the refinement of structures containing the $[Al(OR^{PF})_4]^-$ WCA even led to the development of the software tool DSR.³⁷ It allows for the simplified refinement of such disordered structures and is now implemented with standard programs like OLEX2.³⁸

Therefore, the search for new useful anions is still in progress. With the amminated chloroborate cluster anion $[1-Me_3N-B_{12}Cl_{11}]^-$ another promising candidate that refined earlier ideas by S. Strauss *et al.*,³⁹ was just recently presented by Jenne *et al.* in 2014.⁴⁰ The positive charge of the ammonium function leads to an overall -1 charge and makes it possible to use the in 30 g scale accessible $-B_{12}Cl_{11}$ cluster residue. Important starting materials $M^+[1-Me_3N-B_{12}Cl_{11}]^-$ ($M^+ = Na^+$, [HNMe₃]⁺, [HNOct₃]⁺, [NO]⁺, [CPh₃]⁺, [NⁿBu₄]⁺, [Et₃Si]⁺) have been described facilitating the application.^{40,41} More details on typical WCA starting materials to introduce a counterion into the given system can be found in

Review Article

the synthesis section below as well in the numerous WCA reviews cited in Table 1.

Synthesis routes to reactive main group cation salts

At the beginning, each proposal to prepare a target-rPBC needs to consider the choice of the WCA as delineated in the preceding section, as well as the available starting materials, ionization method and reaction medium.

WCA starting materials. A suitable starting material, should be accessible in good yields and contain a useful cation that typically acts as either a strong oxidant (e.g. $[O_2]^+$, 42 $[NO]^+$, 29 $[NO_2]^+$, ⁴³ N(arene)₃ + ⁴⁴) a halide (*e.g.* Li⁺, ⁴⁵ Na⁺, Ag⁺⁴⁶), hydride- or alkyl-abstractor ($[CPh_3]^{+47}$), a Brønsted acid ($[H(OEt_2)_2]^{+,48}$ $[H(NMe_2Ph)]^+)$ or a metal cation, if a simple metal complex is desired as product (e.g. Cu^{+49,50}) (Table 2). Neutral Lewis acids for bond heterolysis are available in great variety and include the classical simple halides $M^{III}X_3$ and M^VX_5 ($M^{III} = B$, Al, Ga; $M^V = P$, As, Sb, Bi; X = F, Cl, Br, I; not all combinations useful), the rather fine tunable B(aryl)₃ acids (aryl = fluorinated,⁵¹ chlorinated⁵² or fluoroalkylated⁵³ aromatic residue), or aluminum based systems like $Al(C_6F_5)_3^{54}$ and $Al(OR^F)_3^{55}$ Also the ion-like $R_3Si(WCA)$ compounds have frequently been used.56,57 Recent systematic work analyzed the potency of a given Lewis acid versus fluoride, chloride, hydride and methanide as a base. It includes benchmark Lewis acidity values for a smaller set of simple MX_n acids.⁵⁸ Neutral Brønsted acids like HF, HNTf2 and derivatives thereof,59 or combinations of Brønsted and Lewis acids like HBr/nAlBr360,61

are suitable for protonations. Novel, and in large quantity available very strong acids like $R^{HF}OSO_3H^{62}$ should also be mentioned.

Suitable media/solvents. Since the synthesis of reactive ions is aspired, a suitable reaction medium should favorably be polar but not itself be a base or a nucleophile. This often rules out classical polar solvents that are itself good donors such as ethers or nitriles. Often chlorinated solvents CH_2Cl_2 ($\varepsilon_r = 8.9$), 1,2-Cl₂C₂H₄ ($\varepsilon_r = 10.4$) or Cl–Ph ($\varepsilon_r = 5.7$) tend to be good choices that nevertheless are incompatible with strong electrophiles like the silvium ions $[SiR_3]^+$. Fluorinated arenes like F–Ph ($\varepsilon_r = 5.5$) and 1,2- $F_2C_6H_4$ ($\varepsilon_r = 13.4$) are good additions that became cheaper (but not cheap) over the last decade. However, they are incompatible with oxidants like $[NO]^+$ or $[NO_2]^+$ due to nitration/nitrosation reactions. Especially for non-metal cations, often superacids or SO₂ ($\varepsilon_r = 16.3$), SO₂ClF ($\varepsilon_r = n.a.$) *etc.* are the solvents of choice. ILs⁶³ like acidic BMIM[AlCl₄]^{64,65} and others were shown in recent years to be very promising media for rPBC cation synthesis.65-67 Especially for group 15 cations, solvent free reactions using $Me_3Si-OSO_2CF_3$ or MX_3 (M = Al, Ga; X = Cl, Br) were shown to provide quantitative yields of the desired salts. By contrast, several of such reactions do work only incomplete or not at all in solution.⁶⁸ Similarly, protonations with HBr/nAlBr₃ turned out to be best done solvent free.^{60,61}

The recently established concepts of absolute acidity,⁶⁹ absolute reducity⁷⁰ and their two-dimensional combination as the protoelectric potential map⁷⁰ can be used to understand protonation and/or redox chemistry over medium/solvent and

8

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. (cc) BY-NC

Example

Ref.

72

32, 33 and 73

74

76

77

78

79

80

 $\mathbf{81}$

30 and 31

Other

 a This type of reaction is sometimes referred to as Bartlett-Condon–Schneider (BCS) type hydride transfer reaction. 75

Other reaction not classified as one of the above

even phase boundaries. This also includes ILs and therefore a thermodynamically sound pH definition has been introduced for IL media.^{61,71}

Ionization protocols. Overall, we have categorized the rPBC included with the tables in the following sections by an acronym describing the synthetic approach used for their preparation. The synthesis routes are collected, explained and abbreviated in Table 2. Almost all the early approaches to reactive main group cations used halide abstractors as the Lewis acids AsF₅ or SbF₅, which form the conjugated $[AsF_6]^-$ or $[SbF_6]^-$ WCAs through the reaction. The trityl cation is a hydride abstractor, which is especially in case of silanes as starting materials very useful to produce silvlium cations. Most of the metal-non-metal complexes were synthesized by complexation of a non-metal molecule (e.g. P₄, S₈, Cl₂, Xe) with a metal salt of a WCA. The coinage metals Cu^I, Ag^I and Au^I with their d¹⁰ electron configuration induce positive charge on the main group elements, stabilize the almost undistorted non-metal clusters, and provide insights in their bonding situation. If the cation is a strong oxidant, it is also possible to oxidize neutral substrates directly to give reactive cations, which are in turn stabilized by the corresponding WCA. An interesting recent addition are the transfer oxidation of e.g. the simple diorganodichalcogenides R_2E_2 (E = S, Se) with the combination of XeF₂ (primary oxidant and source of fluoride) and a Lewis acid.82

On the representations of the cation chemical structures

Note that the structural diagrams used throughout this review obey a distance criterion for interactions, but not necessarily a 2e2c-understanding of every interaction line. However, at least in the organic residue we attempted to follow an electron precise 2e2c picture. Necessarily, this gets difficult for structures with N-heterocyclic carbenes that formally allow for a neutral dative (imidazolyl) as well as ionic (imidazolium) description (Fig. 3).

For simplicity, we chose the representation shown in the box in Fig. 3 and adopted similar drawings for related cases throughout. Thus, we only use arrows for relatively weak interactions with the bonding situation in ammine-borane $H_3B \leftarrow :NH_3$ being the prototype as suggested by A. Haaland,⁸³ and later contributions.⁸⁴ For thoughts on these ongoing discussions, see these recent publications.⁸⁵ Only if the positive charge can clearly (and not just

Fig. 3 Possible descriptions of NHC-containing structures exemplified for the simple $[Cl_2B-l^tBu]^+$ cation.

formally) be attributed to one atom, we assigned the charge to this atom. More common is the case in the box in Fig. 3, in which the charge may be delocalized to quite a series of atoms and therefore we placed the charge at the upper right corner.

Ordering of the cation classes

The rPBC were as far as possible ordered according to accepted cation classes that may either refer to the number of valence electrons (*i.e.* the onium/enium/inium-series) or to the structure. In each subchapter, we intend to go from homoatomic, to binary and then to more complex cation compositions. The not always consistently used classification according to onium- (8 VE), enium- (6 VE) and inium-cations (4 VE) presents some problems. Note, that the coordination number of a group 14 onium ion may not always be four, as the σ -donation of π -density of a donating double bond may increase the coordination number to 5 as, for example, in the 2-norbornyl cation, a carbonium ion.⁸⁶ Similar considerations hold for other donor coordinated onium- and enium-ions. Thus, we typically include the coordination number in the cation classification, for example as ligand substituted, (CN = 2). By contrast to these cation assignments, the group 15to 18 cations were in addition classified by the oxidation state of the central atoms. This is often used for such rPBC. In addition, we included ion-like compounds that were initially defined for silvlium compounds with coordinated counterions that structurally have to be addressed as a tight ion-pair but from the reactivity still bear a considerable amount of reactivity related to the free cation, e.g. see the ion like silvlium compounds R₃Si(WCA) in Fig. 4. Related cases were published for coordinated aluminum cations, e.g. R₂Al(WCA), and were used in a similar manner.87 For ion-like compounds we keep the notation with the anion in parentheses and no charges written, as in R₃Si(WCA) and R₂Al(WCA). Heteropolyatomic clusters were discussed in the group of their most electropositive element (*e.g.* $[P_3Se_4]^+$ in group 15, but $[S_4N_4]^{2+}$ in group 16).

In the following chapters we describe the rPBCs of the Group 13 to 18 elements and give selected representative examples for each cation type. However, for reasons of legibility, the full tables that comprehensively cover the rPBC entries of the groups, are collected in landscape format at the end of this document.

Group 13 cations

Traditionally, group 13 chemistry is dominated by compounds in the +III oxidation state.⁸⁸ Of those, the simple halides are commonly applied as Lewis acid catalysts and initiators (*e.g.* BF₃) and usually associated with anion formation (*e.g.* $[BF_4]^-$). However, discrete trivalent group 13 cations have been found to be more reactive, owing to their greater electrophilicity if paired with coordinative unsaturation.^{10,89} Except for boron, it has become increasingly

ig. 4 Definition of ion-like compounds as exemplified for silylium ions.

Year	Group	Title	Ref.
1985	13	Arene complexes of univalent gallium, indium and thallium	100 and 101
1998	13	Cationic group 13 complexes	102
2004	13	From group 13-group 13 donor-acceptor bonds to triple-decker cations	94
2005	13	Borinium, borenium, and boronium ions: synthesis, reactivity, and applications	89
2007	13	Development of the chemistry of indium in formal oxidation states lower than +III	103
2008	13	Borylene transfer from transition metal borylene complexes	13 and 12
2008	13	Synthesis, characterization, and applications of group 13 cationic compounds	95
2009	13	Highly electrophilic main group compounds: ether and arene thallium and zinc complexes	90
2009	13	Transition metal borylene complexes: boron analogues of classical organometallic systems	104
2010	13	Electron-precise coordination modes of boron-centered ligands	105
2011	13	Coordination chemistry of group 13 monohalides	96
2011	13	New light on the chemistry of the group 13 metals	88
2011	13	The chemistry of the group 13 metals in the +I oxidation state	106
2011	13	Mixed or intermediate valence group 13 metal compounds	107
2011	13	Coordination and solution chemistry of the metals: biological, medical and environmental relevance	108
2012	13	Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective	109
2012	13	Cyclopentadiene based low-valent group 13 metal compounds: ligands in coordination chemistry and link between metal rich molecules and intermetallic materials	110
2012	13	Low-oxidation state indium-catalyzed C–C bond formation	98
2013	13	1.17-low-coordinate main group compounds – group 13	97
2013	13	Transition metal borylene complexes	5
2013	13	Boron, aluminum, gallium, indium and thallium	111
2015	13	Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides	10

possible to stabilize group 13 cations in their +I oxidation state, e.g. by employing bulky substituents and/or WCAs^{31,90-92} (for thallium, this is the favored oxidation state due to the inert pair effect⁹³). Featuring a lone pair of electrons and empty p-orbitals, the +I cations are ambiphilic and can function both as Lewis base or acid, thus offering unique reactivities and selectivities in organometallic chemistry,94-97 as well as organic98 and polymer7,99 syntheses. Overall, different aspects of the chemistry of cationic group 13 compounds were reviewed and these contributions are compiled in Table 3. In this context, this sections intends to give a comprehensive overview of reactive group 13 cations of the larger WCAs since about 2000. Due to the large scope of this chapter, we mainly omit rPBC with the simple halometallate based counterions and only include those in special cases of high relevance.

Boron cations

For a long time, boron cations have remained a chemical curiosity due to their redox lability. However and partly owing to the developments in the field of WCAs, more and more boron-based cations are being reported. Overall, the cations can be classified according to the coordination number at boron: *i.e.*, di-, tri-, and tetra-coordinated boron cations are referred to as borinium, borenium and boronium cations. To this day, the boron cations have been most notably reviewed by Nöth (1985; a milestone in cationic boron chemistry),¹¹² Piers (2005; structural and bonding aspects)⁸⁹ and Vedejs (2012; reactivties and applications).¹⁰⁹

Alkyl-/aryl substituted (CN = 2). To our knowledge, there is only one contribution to this class of compounds: i.e., the recently reported $[Mes_2B]^+$ borinium cation with the very good $[HCB_{11}Cl_{11}]^{-}/[B(C_6F_5)_4]^{-}$ WCAs.^{32,113} Herein, the boron atom adopts a linear di-coordinated structure and the Mes substituents are aligned orthogonal to each other, allowing for a perfect shielding as well as π -donation into the empty p-orbitals of the highly electrophilic borinium cation (cf. the modelled delocalized molecular orbitals). The $[Mes_2B]^+$ cation is likely to become a textbook compound as it is the first borinium cation that does not rely on strongly π -donating heteroatom substituents (cf. the earlier reported $[({}^{t}Bu_{3}PN)_{2}B]^{+}$ cation¹¹⁴ in the section ligand substituted (CN = 2) in Table 8).

Ligand substituted (CN = 3). Tricoordinate borenium cations are not as electron deficient as the borinium cations and therefore more stable. Nonetheless, the cations can only be isolated in the solid state if chelating (e.g. phthalocyanine¹¹⁵ and catecholborane^{116,117}) or strongly σ -donating ligands (*e.g.* N-heterocyclic carbene I^tBu⁷⁴ or hexaphenylcarbodiphosphorane^{118,119}) are applied. For the synthesis and reactivity of the $[BCl_2(I^tBu)]^+$ cation, the nature of the WCA is crucial. Hence and though the cation can be prepared in the presence of [AlCl₄]⁻, [OTf]⁻ or $[B(Ar^{Cl})_4]^-$, only the latter allows for a structure with no notable cation-anion contact. This leads to an increased reactivity of the $[BCl_2(I^tBu)]^+[B(Ar^{Cl})_4]^-$ salt.⁷⁴

Ligand substituted (CN = 4). Some of the tetra-coordinated boronium cations directly derive from the corresponding borenium cations: *i.e.*, the tricoordinate [PMAF-9BBN]⁺ cation (only stable in solution, as monitored by ¹¹B NMR spectroscopy) reacts with 1-MIM in a ligand exchange and addition reaction to form the tetracoordinated [(1-MIM)₂(9BBN)]⁺ cation (Fig. 5).²¹²

Fig. 5 Synthesis of the [(1-MIM)₂(9BBN)]⁺ boronium cation via a borenium cation precursor.

Fig. 6 (a) Orbital interaction between borylenes and transition-metal fragments; (b) and (c) exemplarily selected transition-metal substituted borinium cations.

For the isolation of the discrete $[BH_2(PR_2H)_2]^+$ cation, the nature of the WCA is again essential: compared to $[OTf]^-$, $[B(Ar^{CF_3})_4]^-$ features no hydrogen bond with the cation, thus allowing for increased reactivities.¹²⁰

Transition-metal substituted. The number of transitionmetal substituted boron cations is much higher than the one of related alkyl-/aryl- or heteroatom substituted compounds. Numerous contributions have been made by Braunschweig and Aldridge and both authors recently reviewed the chemistry of transition-metal borylene complexes.^{3,5,104} The d-orbitals of the transition-metals allow for stabilizing σ- and π-interactions with the orbitals of boron (Fig. 6) and of all the ligands the FeCp(CO)₂/FeCp'(CO)₂/FeCp*(CO)₂ substituents protrude: *e.g.*, various linear borinium cations, such as [CpFe(CO)₂B(NCy₂)]⁺, and borenium cations derived thereof, such as [(CpFe(CO)₂)B(NCy₂)-(4-Pic)]⁺, have been isolated.¹²

Another notable substance class are the cationic T-shaped platinum boryl complexes that are usually accessible *via* salt metathesis reactions: *e.g.*, $[(Cy_3P)_2(MeCN)Pt(B \equiv O)]^+$ can be synthesized by reacting $(Cy_3P)_2Pt(B \equiv O)(Br)$ with the halide abstracting reagent $Ag^+[B(Ar^{CF_3})_4]^{-.121}$ Employing a ferrocenyl ligand on the other hand, Braunschweig *et al.* were able to isolate a rare example of a structurally characterized boron dication: $[FcB(Pic)_3]^{2+}$ (Fig. 7).¹²²

Multinuclear. Due to the pronounced electron deficiency of boron there are not many contributions to the field of cationic multinuclear boron-based rPBC. The neutral diborane $[HB(\mu-hpp)]_2$ complex however, is an excellent precursor for hydride abstractions and *via* unexpected boron–boron coupling reactions the unprecedented tetraborane dication $[B_4H_2(\mu-hpp)_4]^{2+}$ was isolated (Fig. 8).¹²³

Fig. 8 The tetraborane dication $[B_4H_2(\mu-hpp)_4]^{2+}$. The bonding properties in the rhomboid B_4 core of the product can be described as two B–B units connected by 3c-2e bonds, sharing a short diagonal.

Multinuclear transition-metal substituted. Compared to their mononuclear congeners, both the ligands and coordination modes in the multinuclear borinium, borenium and boronium cations are very similar: (i) linear in the $[(CpFe(CO){B(NCy_2)})_2(\mu-dmpe)]^{2+}$ complex,¹²⁴ (ii) trigonal-planar in the $[(Cy_3P)_2{Pt(B(Br))}_2(\mu-Ph)]^{2+}$ dication¹²⁵ and (iii) tetrahedral in $[{(bipy)(Me)B}_2(\mu-Fc)]^{2+.126,127}$ The aggregation usually occurs *via* bi-functional ligands like dmpe or *via* the transition-metal ligand itself (Fig. 9).

Aluminum cations

Among the group 13 cations, the lower- and higher-coordinated derivatives of aluminum have been of significant interest as they feature increased Lewis acidities and ligand labilities, thus allowing for higher catalytic activities compared to their neutral analogs.⁹⁵ While Atwood (1998)¹⁰² and Dagorne (2008)⁹⁵ have given a good overview on cationic aluminum species from a fundamental perspective, Sarazin and Carpentier (2015)¹⁰ recently

Fig. 9 Dicationic (a) $[(CpFe(CO){B(NCy_2)})_2(\mu-dmpe)]^{2+124}$ and (b) $[{(bipy)-(Me)B}_2(\mu-Fc)]^{2+126,127}$ complexes.

Fig. 7 Synthesis of the boron dication [FcB(Pic)₃]²⁺ via bromide abstraction and subsequent complexation.

Fig. 10 The ion-like (Me₂Al)₂B₁₂Cl₁₂ salt.⁸⁷ For clarity, all BCl moieties of the perchlorinated closo-dodecaborate that feature no contact to the "[Me₂Al]⁺" cation have been omitted.

reviewed various discrete cationic aluminum complexes that are able to catalyze ring-opening polymerizations.

Alkyl or arvl substituted. The synthesis of di-coordinated alkyl complexes of aluminum $[R_2Al]^+$ (R = Me, Et, 2,6-Mes₂C₆H₃) is only viable, if extremely weakly coordinating anions (e.g. borate⁸⁷ and carboranes¹²⁸) and/or bulky substituents¹²⁹ are applied. In the case of "[Me₂Al]⁺" and "[Et₂Al]⁺", the Lewis acidity of the aluminum cations is so significant that the latter feature distinct contacts to the corresponding WCAs and should therefore be described as ion-like compounds (Fig. 10). However, preliminary investigations showed that ion-like (Et₂Al)₂B₁₂Cl₁₂ is a very active initiator for the cationic polymerization of isobutylene.¹³⁰

The $[(2,6-Mes_2C_6H_3)_2Al]^+$ cation on the other hand, is a discrete and therefore almost linear di-coordinate aluminum cation that features no contact to the WCA $[B(C_6F_5)_4]^{-129}$ The occurrence of the highly Lewis acidic aluminum cation is attributable to the intrinsic stabilization effect of the 2,6-Mes₂C₆H₃ ligand: *i.e.*, bending of the flanking Mes-moieties towards the aluminum center.

Cyclopentadienyl complexed. This class of compounds is to some extent related to the just mentioned alkyl substituted $[(2,6-Mes_2C_6H_3)_2Al]^+$ complex. Hence, the Cp ligands are η^5 - but not σ -bonding, and allow for the synthesis of discrete aluminum cations with different WCAs as counterions: $[(\eta^5-Cp)_2Al]^+$ - $[Al(OR^{PF})_4]^{-,79}$ $[(\eta^5 - Cp')_2 Al]^+ [B(C_6F_5)_4]^{-131}$ and $[(\eta^5 - Cp^*)_2 Al]^+$ $[MeB(C_6F_5)_3]^{-.132,133}$ Moreover, the salts offer insights into the relationship between the nucleophilicity of Cp, Cp' and Cp*, the corresponding WCAs and the resultant Lewis acidities and reactivities of the aluminum cations: *i.e.*, with increasing nucleophilicity of the Cp ligands ($Cp < Cp' < Cp^*$) the WCAs can be less coordinating $([MeB(C_6F_5)_3]^- > [B(C_6F_5)_4]^- >$ $[Al(OR^{PF})_4]^-$). The more interacting anions induce decreased Lewis acidities and lower reactivities of the aluminum cations for the initiation of olefin polymerizations: $[(\eta^5-Cp)_2Al]^+$ $[(\eta^{5}-Cp')_{2}Al]^{+} > [(\eta^{5}-Cp^{*})_{2}Al]^{+}.^{79}$

Ligand substituted (CN = 2). The above mentioned σ -coordinated $[R_2A]^+$ complexes are either stabilized by intermolecular interactions with the corresponding WCAs or intramolecularly by two bulky terphenyl ligands. Within this context, Sekiguchi et al. were able to contribute another cationic di-coordinated, yet differently intramolecularly stabilized aluminum species: the [^tBu₂MeSi-Al-Si^tBu₂-SiMe^tBu₂]⁺ cation.¹³⁴ As supported by the solid-state structure and theoretical calculations, the stabilizing element is a σ - π hyperconjugation of the aluminum cation and the neighboring Si–Si σ bond (Fig. 11).

Ligand substituted (CN = 3). Tricoordinate aluminum cations are a bit less electrophilic than their di-coordinated congeners

+ [Et₃Si(C₆H₆)] $[B(C_6F_5)_4]^{-1}$ Al(SiMe^tBu₂) Bu₂MeSi $[B(C_6F_5)_4]^-$ ^tBu₂MeSi tRu

Fig. 11 Synthesis of the [^tBu₂MeSi-Al-Si^tBu₂-MeSi^tBu₂]⁺ cation via demethylation and subsequent migration of a ^tBu₂MeSi group

but nevertheless still very reactive. The few examples that have been reported, require chelating and sterically demanding β-diketiminate ligands, thus allowing for the successful synthesis of cationic [(β-diketiminate)Al–H]⁺¹³⁵ and [(β-diketiminate)Al– Me]⁺¹³⁶ complexes, respectively (Fig. 12).

Ligand substituted (CN = 4). In their recent review on group 13 cations, Dagorne and Atwood state that "four-coordinate cations are most common ... as they incorporate an electronically saturated metal center".95 In all compounds the aluminum cations are coordinated in a tetrahedral fashion with at least one coordination site being occupied by a heteroatom (N, O, P). Moreover, the vast majority of aluminum cations are incorporated into heterocycles, which derive from chelating ligands, such as Pytsi,¹³⁷ hpp,¹³⁸ BOX,^{139 i}Pr₂-ATI^{140,141} and SchNMe₂.¹⁴² The usual synthesis routes are alkyl or hydride abstractions. On the other hand, there are a few examples where aluminum is coordinated by four discrete ligands: $[Me_2Al(OEt_2)_2]^+$, ⁷⁷ $[Me_2Al(THF)_2]^+$, ¹⁴³ $[Me_2Al(NPhMe_2)_2]^{+144}$ and $[H_2Al(NMe_3)_2]^{+145}$ (cf. Fig. 13 for the complex synthesis of the $[H_2Al(NMe_3)_2]^+$ cation and the *in situ* generation of the corresponding WCA).

Ligand substituted (CN \geq 5). As mentioned in the previous sub-chapter, chelating ligands are of significant importance in

Fig. 12 (a) The $[(\beta - diketiminate)Al - H]^+$ cation derives from the reaction of a N-imidovlamidine ligand with AlH₃·NMe₂Et and $[Ph_3C]^+[B(C_6F_5)_4]^{-135}$ (b) The $[(\beta-diketiminate)Al-Me]^+$ cation is formed by reacting the neutral precursor (β -diketiminate)Al(Me)₂ with the demethylating reactants $[CPh_3]^+[B(C_6F_5)_4]^-$ and $B(C_6F_5)_3$, respectively.¹³⁶

Fig. 13 Salt metathesis and hydroalumination reactions lead to the formation of the weakly coordinating carbaalanate cluster that allows for the synthesis of two equivalents of the [H₂Al(NMe₃)₂]⁺ cation.¹⁴⁵

View Article Online

Review Article

Fig. 14 Octahedral or quadratic-pyramidal coordinated [SalenAl(Do)_n]⁺ cations (Do = Et_2O , THF) with n = 1,2.

terms of stabilizing cationic highly coordinated (CN \geq 5) aluminum cations. Of all the different chelates, the Salen derivatives¹⁴⁶ protrude, allowing for the synthesis of distorted square pyramidal/octahedral aluminum cations that interact with one¹⁴⁷ or two¹⁴⁸⁻¹⁵¹ equivalents of Lewis base, such as Et₂O and THF (Fig. 14).

Multinuclear. A common structural motif of dicationic and dinuclear aluminum cations are the often centrosymmetric [Al₂O₂]-rhomboids^{141,152-154} as seen in the recently reported $[{(OSSO)Al}_2]^{2+}$ cation (Fig. 15).¹⁵⁵

On the other hand, there are various dinuclear, yet singly charged aluminum cations in which the latter usually feature different coordination modes. Notable contributions to this field of research have been made by Jordan et al., such as the cationic aluminum aminotroponiminate¹⁴¹ and amidinate¹⁵⁶ complexes in Table 8.

AlCp* substituted. The coordination chemistry of low-valent group 13 organyls such as AlCp* to transition-metals is a growing field in inorganic chemistry, though more contributions were reported using the heavier homologue GaCp* (see below). Nonetheless, Fischer et al. were able to isolate the cationic $[Rh(COD)(AlCp^*)_3]^+$ complex by reacting $[Rh(COD)_2]^+$ with three equivalents of AlCp*.157

Gallium cations

As mentioned above, gallium in its +I oxidation state is thermodynamically unstable and usually disproportionates into the metal and the +III ions. Notable contributions to the field of reactive gallium cations therefore allow for the stabilization of the +I oxidation state of gallium.³¹

Alkyl or aryl substituted. The isolation of the linear di-coordinated [(2,6-Mes₂C₆H₃)₂Ga]⁺ cation¹⁵⁸ was performed by Wehmschulte et al. as a test run for the above mentioned

Fig. 15 In the [{(OSSO)Al}₂]²⁺ cation one aluminum atom is coordinated in a trigonal-bipyramidal and the other in a distorted-square-pyramidal fashion. The cationic species is a potential catalyst for the ring opening polymerization of propylene oxide.155

structurally related $[(2,6-Mes_2C_6H_3)_2Al]^+$ cation.¹²⁹ Hence, the bowl-shaped terphenyl substituents are potential ligands in terms of shielding highly electrophilic cations. Moreover, both syntheses were only possible due to the presence of very good WCAs, such as the $[Li{Al(OR^{HF})_4}_2]^-$ and $[B(C_6F_5)_4]^-$ anion.

View Article Online

Chem Soc Rev

Cyclopentadienyl complexed. Partial protolysis of GaCp* with $[H(OEt_2)_2]^+[B(Ar^{CF_3})_4]^-$ yields the bipyramidal double-cone structured $[Ga_2(\eta^5-Cp^*)]^+$ cation.¹⁵⁹ The latter can be seen as a GaCp*-substituted "naked" Ga⁺ cation, thus reacting as a gallium(I) source with ligands such as DDP (Fig. 16).

The coordination mode of the Cp* ligands in the $[(\eta^1-Cp^*) (\eta^{3}-Cp^{*})Ga]^{+}$ cation on the other hand differs.¹⁶⁰ Hence, the originally expected η^5 , η^5 -ferrocene-like structure that was also observed for the aluminum analogue is likely perturbed by the more interacting $[BF_4]^-$ counterion.

Arene complexed. Cationic arene complexes of univalent gallium are known for more than 30 years and Schmidbaur et al. have made notable contributions to this field of research.^{100,101} Yet, the reported compounds feature strong cation-anion interactions and are labile towards com- and disproportionations. More recently, Krossing et al. developed a simple oxidative route to $[Ga(\eta^6-arene)_n]^+$ complexes of the weakly coordinating $[Al(OR^{PF})_4]^$ anion with n = 2, 3 (Fig. 17).^{31,91,92} The arene complexes have proven to be a powerful starting material for further gallium(1) chemistry (e.g. various ligand exchange reactions) but also highly efficient catalyst for the polymerization of isobutylene.7,8,99

Ligand substituted (CN = 2). The arene ligands in the [Ga(η^6 arene)_n]⁺ cations with n = 2, 3 can be substituted by electron-richer analogues. In addition, σ -donating ligands such as carbenes IR $(R = Pr, Mes)^{161}$ or phosphines P^tBu₃¹⁶² can also be applied, yielding bent $[Ga(IR)_2]^+$ and $[Ga(P^tBu_3)_2]^+$ complexes (cf. the stereoactive electron lone pair at the gallium(1) cation). Another notable di-coordinated gallium(m) cation is the linear $[^{t}Bu_{3}Si-Ga-Si^{t}Bu_{3}]^{\dagger}$ complex (Fig. 18), which could be isolated in the presence of the $[Al(OR^{PF})_4]^-$ WCA, but not the simple $[GaCl_4]^-$ anion.¹⁶³

Fig. 16 The $[Ga_2(\eta^5-Cp^*)]^+[B(Ar^{CF_3})_4]^-$ salt cleanly reacts as a gallium(i) source with ligands such as DDP.

Fig. 17 Oxidative access to $[Ga(\eta^6-arene)_n]^+$ complexes with n = 2, 3(R = 1)F, Me).

Fig. 18 Molecular structure of the [${}^{t}Bu_{3}Si-Ga-Si^{t}Bu_{3}$]⁺ cation. A. Budanow, T. Sinke, J. Tilmann, M. Bolte and M. Wagner, Two-coordinate gallium ion [${}^{t}Bu_{3}Si-Ga-Si^{t}Bu_{3}$]⁺ and the halonium ions [${}^{t}Bu_{3}Si-X-Si^{t}Bu_{3}$]⁺ (X = Br, I): sources of the supersilyl cation [${}^{t}Bu_{3}Si$]⁺, *Organometallics*, 2012, **31**, 7298–7301. Data from this reference were used to draw this figure and the hydrogen atoms were omitted for clarity.¹⁶³

Ligand substituted (CN = 3). This class of tricoordinate gallium(1) cations again derives from the above mentioned $[Ga(\eta^6-\operatorname{arene})_n]^+$ cations with n = 2, 3. The coordination mode for the gallium(1) cations is trigonal-pyramidal due to the stereoactive lone pair electrons. Besides sterically less demanding phosphines, N-heterocylic arenes like pyrazine and DTBMP (a σ -, and not a π -donating ligand, proving its perception of being non-nucleophilic wrong) were also applied as potential ligands.¹⁶⁴ Due to the bifunctionality of pyrazine, both the monomeric $[Ga(pyrazine)_3]^+$ complex and the one-dimensional coordination polymer $[{Ga(\mu-pyrazine)_2(\eta^1-pyrazine)}^+]_{\infty}$ were isolated (Fig. 19).

Ligand substituted (CN = 4). Using the BOX ligand, Dagorne *et al.* isolated tetra-coordinate neutral gallium complexes.¹⁶⁵ The latter were easily ionized by applying $[CPh_3]^+[B(C_6F_5)_4]^-$ or $B(C_6F_5)_3$ in NMe₂Ph. Interestingly, the trityl cation functions as hydride and $B(C_6F_5)_3$ as methyl abstracting reactant (Fig. 20).

Ligand substituted (CN \geq 5). Cationic penta- and hexacoordinated gallium complexes are synthesized *via* protonation^{166,167} or complexation.¹⁶⁸ Within this context, the [Ga([18]crown-6)-(C₆H₅F)₂]⁺ complex is of special interest as the gallium(1) cation

Fig. 19 (a) Monomeric $[Ga(pyrazine)_3]^+$ complex and (b) one-dimensional coordination polymer $[\{Ga(\mu-pyrazine)_2(\eta^1-pyrazine)\}^+]_{\infty}$. The propagation of the polymer into the second dimension was not possible as each cationic strand is surrounded by strands of the corresponding $[Al(OR^{PF})_4]^-$ anions.¹⁶⁴

View Article Online

Review Article

Fig. 21 The $[Ga([18]crown-6)(\eta^6-/\eta^1-C_6H_5F)_2]^+$ cation. The η^6 - and η^1 -coordination modes could be an indication for a stereoactive lone pair on the side of the weaker and only η^1 -coordinated C_6H_5F molecule.¹⁶⁸

features no contact to the corresponding $[Al(OR^{PF})_4]^-$ anion and the C₆H₅F ligands coordinate in different fashions (Fig. 21).¹⁶⁸

As the N-heterocyclic arenes are potential ligands for univalent gallium (see above), Krossing *et al.* additionally reacted the chelating bipy with the $[Ga(\eta^6-C_6H_5F)_2]^+$ complex. Instead of witnessing a simple ligand exchange reaction, they isolated the paramagnetic and distorted octahedral $[Ga^{III}{(bipy)_3}]^{\bullet}]^{2+}$ complex due to the non-innocence of the bipy ligand.¹⁷ This is reminiscent to transition metal chemistry where for example the $[Ru^{III}{(bipy)_3}]^{\bullet}]^{2+}$ complex features similar bonding.

Transition-metal substituted. Similar to the transition-metal substituted boron cations, $CpFe(CO)_2$ (FP) and $Cp^*Fe(CO)_2$ (FP*) are the most important ligands in terms of stabilizing di-, tri- and tetra-coordinated gallium cations: *cf.* the [(FP*)_2Ga]^{+,169} [(FP*)_2Ga(4-Pic)]^{+,170} [(FP*)Ga(phen)(Y)]⁺ (Y = Cl, S^{*p*}Tol)¹⁷¹ cations (Fig. 22).

Multinuclear. There are not many contributions to this field of research and some cationic multinuclear gallium complexes are a product of hydrolysis.^{172,173} Two remarkable examples however are the dinuclear $[(\eta^6-C_6H_5F)Ga(\mu-\eta^6-m-TP)_2-Ga(\eta^6-C_6H_5F)]^{2+}$ complex^{8,99} in which the gallium(1) cations are solely π -coordinated by arene ligands as well as the σ -coordinated amidinate-bridging $[\{l^rBuC(N^iPr)_2\}GaMe\{{}^BuC(N^iPr)_2\}GaMe_2]^+$ cation.¹⁵⁶

Multinuclear transition-metal substituted. A notable class of contributions are the β -diketiminate/THF coordinated gallium cations that can be bridged by a gold atom¹⁷⁴ or a {ZnClTHF}₂-rhomboid.¹⁷⁵ Reaction of Cp*Fe(η^5 -P₅) with the [Ga(o-C₆H₄F₂)₂]⁺ complex on the other hand resulted in aggregation and the formation of a cationic one-dimensional coordination polymer (Fig. 23).¹⁷⁶

GaCp* substituted. As of today, GaCp* is a widely used ligand concerning cationic transition-metal complexes, thus leading to an enormous variety of cationic gallium species. This area of research has been intensively reviewed by Fischer *et al.*¹¹⁰ and we would like to refer to the multiple entries in Table 8 of this review. Yet, some of the compounds also include "naked" and bridging gallium atoms:

Fig. 20 Hydride vs. methyl abstraction of neutral BOX ligated gallium complexes.¹⁶⁵

Fig. 22 (a) The linear di-coordinated cation [(FP*)₂(µ-Ga)]⁺ derives from a salt metathesis of (FP*)₂GaCl and Na⁺[B(Ar^{CF3})₄]⁻. The Fe–Ga–Fe moiety features a significant π bonding component (population analysis).¹⁶⁹ (b) The [(FP*)₂(µ-Ga)-(4-Pic)]⁺ cation is an addition product of [(FP*)₂Ga]⁺ and 4-Pic and the second structurally characterized complex containing a cationic tricoordinate gallium centre.¹⁷⁰ (c) Applying the chelating phen ligand, Ueno *et al.* isolated the tetracoordinated [(FP*)Ga(phen)(Y)]⁺ (Y = Cl, S^oTol) cations, *i.e.* the first transition-metal complex with a thiolate group on the gallium atom.¹⁷¹

Fig. 23 Reaction of $[Ga(o-C_6H_4F_2)_2]^+$ and $Cp*Fe(\eta^5-P_5)$ results in aggregation and formation of a cationic one-dimensional coordination polymer.

e.g. [(Ga)Ru(PCy₃)₂(GaCp*)₂]⁺,¹⁷⁷ [(Ga)M(GaCp*)₄]⁺ (M = Ni,¹⁷⁸ Pt^{179,180}), [(Cp*Ga)₄Rh{Ga(Me)}]⁺,¹⁸¹ [(Cp*Ga)₄Rh{Ga(Me)(py)}]⁺,¹⁸¹ [{Ru(GaCp*)₃-[(CH₂)₂C{CH₂(μ -Ga})}]₂]⁺,¹⁷⁷ [{(GaCp*)₄Pt}{Pt(H)-(GaCp*)₃}(μ -Ga)]²⁺.¹⁸⁰ Contrary to GaCp* (a strong σ -donor and weak π -acceptor, *cf.* similarity to the boron related compounds in Fig. 6), the "naked" gallium cations function as pure acceptor ligands, with significant components of σ - and π -symmetry contributing to the M–Ga linkages.^{179,180}

Indium cations

Compared to the lighter homologue gallium, well-defined indium(1) halides exist, though they are practically insoluble in organic solvents. The synthesis of In⁺[OTf]⁻ by Macdonald *et al.* as a soluble alternative is therefore an important development concerning the indium(1) chemistry.¹⁸²

Cyclopentadienyl complexed. Using the just mentioned $In^+[OTf]^-$ salt as starting material and reacting it with manganocene, the inverse sandwich complex $[In_2(\eta^5-Cp)]^+$ was successfully synthesized.¹⁸³ Interestingly, the counterion is the complex $[Cp_3In^{III}-Cp-In^{III}Cp_3]^-$ ion, deriving form a partial oxidation of the starting material. The formation of the mixed valence species seems to be preferred over an alternative indium(II) species. Reacting $InCp^*$ (a hexamer in the solid state) with a mixture of $B(C_6F_5)_3$ and $H_2O\cdot B(C_6F_5)_3$, the first indium-based triple-decker cation

Fig. 24 Reducing the size of the counterion from $[(C_6F_5)_3BO(H)B(C_6F_5)_3]^-$ to $[B(C_6F_5)_4]^-$ "squeezes" the toluene molecules from the triple-decker cation, yielding the inverse sandwich complex $[In_2(\eta^5-Cp^*)]^+$.

$$\begin{split} & [(\eta^6\text{-Tol})In(\mu\text{-}\eta^5\text{-}C_5Me_5)In(\eta^6\text{-Tol})]^+ \text{ was formed.}^{184} \text{ Reducing the size of the counterion from } [(C_6F_5)_3BO(H)B(C_6F_5)_3]^- \text{ to } \\ & [B(C_6F_5)_4]^- \text{ on the other hand, results in the formation of the inverse sandwich complex } [In_2(\eta^5\text{-}Cp^*)]^+ \text{ in which the indium(1) cations are not capped by toluene molecules but rather interact with the } [B(C_6F_5)_4]^- \text{ anions } (Fig. 24).^{185} \end{split}$$

Arene complexed. By reacting elemental indium with $Ag^{+}[Al(OR^{PF})_{4}]^{-}$, Krossing *et al.* expanded the above mentioned oxidative route to gallium(1) salts towards the synthesis of $[In(arene)_{n}]^{+}$ complexes with $n = 2, 3.^{162}$ Identical compounds can also be synthesized by using the salt metathesis reactions of Scheer *et al.*, with insoluble InCl as starting material.¹⁸⁶

Ligand substituted (CN = 2). These $[\ln(\operatorname{arene})_n]^+$ complexes with n = 2, 3 are an ideal starting material for further indium(1) chemistry: *e.g.* the arene ligands can be substituted for N-heterocyclic carbenes such as IPr.¹⁶¹ Salt metathesis reactions on the other hand are still very important: *i.e.*, using the isosteric and isoelectronic terphenyl Mes₂py ligand, Aldridge *et al.* were able to isolate mixed-leptic $[\ln(\operatorname{Mes_2py})(\eta^6-C_6H_5F)]^+$ (both σ - and π -coordinated) and homo-leptic $[\ln(\operatorname{Mes_2py})_2]^+$ complexes (only σ -coordinated, though the flanking mesityl rings of the Mes₂py ligands also partly π -coordinate).¹⁸⁷ The latter features an indium(1) cation wholly encapsulated by two Mes₂py ligands and remarkably long In–N distances, which the authors explain with an energy mismatch between the (low lying) pyridine ligand donor and (high energy) metal acceptor orbitals.

Ligand substituted (CN = 3). Besides complexation and ligand exchange reactions of $In^+[OTf]^-$ and $[In(arene)_n]^+$ (n = 2, 3) with ligands such as bis(imino)pyridines^{188,189} and PPh₃,¹⁶² tricoordinate indium cations can also be isolated by thermolysis of $[\{^{i}Pr_2-ATI(CPh_3)\}InMe_2]^+$, a cationic tetra-coordinated indium precursor (Fig. 25, conversion of (a) to (b)).¹⁹⁰

Ligand substituted (CN = 4). The cationic diimine $[\{^{i}Pr_{2}-ATI(CPh_{3})\}InMe_{2}]^{+}$ complex was synthesized by reacting the neutral $(^{i}Pr_{2}-ATI)InMe_{2}$ precursor with the ionizing $[Ph_{3}C]^{+}$ - $[B(C_{6}F_{5})_{4}]^{-}$ salt (Fig. 25).¹⁹⁰ Surprisingly, the latter does not function as methyl abstracting reactant but rather adds to the C5 carbon of $(^{i}Pr_{2}-ATI)InMe_{2}$. Reacting $(^{i}Pr_{2}-ATI)InMe_{2}$ with the protonating $[HNMe_{2}Ph]^{+}[B(C_{6}F_{5})_{4}]^{-}$ on the other hand, results in CH₄ formation and the labile adduct $[(^{i}Pr_{2}-ATI)In(Me)(NMe_{2}Ph)]^{+}$ (Fig. 25).¹⁹⁰

Ligand substituted (CN \geq 5). Compared with the lighter homologues aluminum and gallium, indium shows a tendency to expand its coordination sphere.^{95,102} Protonolysis of the neutral In(CH₂SiMe₃)₃ complex in THF therefore yields a penta-coordinated indium cation: [In(CH₂SiMe₃)₂(THF)₃]^{+.191} Moreover, In⁺[OTf]^{-192,193}

Fig. 25 Formation of tetra- and tricoordinate cationic diimine substituted indium complexes: (a) $[({}^{i}Pr_{2}-ATI(CPh_{3})]nMe_{2}]^{+}$, (b) $[({}^{i}Pr_{2}-ATI)]nMe_{2}]^{+}$, (c) $[({}^{i}Pr_{2}-ATI)]n(Me)(NMe_{2}Ph)]^{+}$. For each complex, the counterion is $[B(C_{6}F_{5})_{4}]^{-}$.

and $[In(arene)_n]^{+168}$ (n = 2, 3) can be reacted with the crown ether [18]crown-6, yielding cationic indium complexes with similar structures to the gallium congener (*cf.* Fig. 21) and strong anion-cation interactions in the case of the $[OTf]^-$ anion. Reacting $In^+[OTf]^-$ with [15]crown-5 on the other hand, the sandwich complex $[In([15]crown-5)_2]^+$ was isolated.¹⁹⁴

Transition-metal substituted. The class of cationic transitionmetal substituted indium compounds very much relates to the related gallium structures: *i.e.*, the [InPt(PPh₃)₃]⁺ complex with a "naked" Pt-substituted indium cation^{179,180} as well as the di- and tricoordinate [(FP*)₂In]⁺ and [(FP*)₂In(THF)]⁺ complexes.¹⁹⁵ Reacting the chelating phen ligand with the [In(C₆H₅F)₂]⁺ complex in the presence of silver salt, Krossing *et al.* isolated the silver bound indium dication¹⁷ [(phen)₂In–Ag(η^3 -C₆H₅F)]²⁺ that is related to the [InPt(PPh₃)₃]⁺ complex.^{179,180} In this complex the tetragonalpyramidal [In(phen)₂]⁺ cation reacts as a Lewis basic donor (*cf.* the stereoactive 5s lone pair at indium), while the [Ag(η^3 -C₆H₅F)]⁺ complex is the corresponding Lewis acidic acceptor.

Multinuclear. For the synthesis of multinuclear indium cations, the $[In(arene)_n]^{+168}$ complexes with n = 2, 3 are a powerful starting material. Hence a dicationic $[{(PPh_3)_3In}_2(\mu-PPh_3)]^{2+}$ complex in which one PPh₃ ligand bridges both indium(i) cations was isolated.¹⁶² Applying the non-innocent and chelating bipy and phen ligands on the other hand, Krossing *et al.* surprisingly isolated the first cationic tri- and tetra-nuclear indium clusters: $[In_3(bipy)_{5-6}]^{3+}$ and $[In_4(Do)_6]^{4+}$ (Do = phen, bipy) (Fig. 26).¹⁷ This result very much differs from the above mentioned synthesis of the paramagnetic $[Ga^{III}{(bipy)_3}^{-2+}$ complex and can be attributed to the higher redox-stability of indium compared to gallium. In addition and to our knowledge, these are the first higher charged clusters that have been reported to this day: *i.e.*, for cluster formations usually reductive syntheses are applied, yielding neutral and anionic clusters.

Thallium cations

In contrast to the lighter homologues, thallium's thermodynamic most stable oxidation state is +I. Hence, various syntheses of unsubstituted thallium(i) cations of different WCAs have been reported: *i.e.*, the protonation of TlOEt using $[H(OEt_2)_2]^+$ $[B(Ar^{CF_3})_4]^-/[B(C_6F_5)_4]^-$,^{196,197} the Lewis acid base reaction of Tl⁺[OTeF_5]⁻ and B(OTeF_5)_3¹⁹⁸ and the salt metathesis of TlF and Li⁺[Al(OR^{HF/PF})_4]⁻.^{199,200} The thallium(i) salts are relatively stable (*cf.* the silver congeners decompose upon exposure to light) and mainly used as reactants to introduce WCAs (*e.g.* salt metathesis reactions). Tl⁺[Al(OR^{HF})_4]⁻ could only be isolated, if the precursors were applied in an exact 1:1 stoichiometry. An

Fig. 26 Cationic (a) $[ln_3(bipy)_{5-6}]^{3+}$ and (b) $[ln_4(Do)_6]^{4+}$ (Do = bipy, phen) complexes synthesized *via* ligand exchange reactions and aggregations.

excess of TlF however, led to the formation of the cationic multinuclear $[Tl_3F_2Al(OR^{HF})_3]^+$ complex.^{200}

Arene complexed. Various cationic thallium(1) arene complexes have been reported. While the di- and tricoordinate $[Tl(\eta^6-arene)_n]^+$ complexes (arene = C₆H₅Me, $n = 2, 3;^{201}$ Mes, $n = 2;^{202}$ C₆Me₆, $n = 2^{203}$) are structurally related to the lighter homologues, C₆Me₆ additionally allows for the first mono-coordinated $[Tl(\eta^6-C_6Me_6)]^+$ complex (DFT calculations gave a remarkable Tl-C₆Me₆ π -bonding energy of 163 kJ mol⁻¹).²⁰⁴

Ligand substituted (CN = 2). Reacting $TI^+[OTeF_5]^-$ with $B(OTeF_5)_3$ in 1,2-dichloroethane, the solvent functions as chelating ligand, thus forming the five-membered $TlCl_2C_2$ -ring in $[Tl(1,2-Cl_2C_2H_4)]^+$ (after silver and ruthenium, thallium was at that time the third reported metal atom coordinated by a simple chlorocarbon).¹⁹⁸ By contrast, from CH_2Cl_2 the "naked" $TI^+[B(OTeF_5)_4]^-$ salt was isolated.

Ligand substituted (CN = 3). Similar to the lighter homologues gallium and indium, the $[Tl(\eta^6-C_6H_5R)_2]^+$ (R = F, Me) bent-sandwich complexes can interact with N-heterocyclic ligands such as Mes₂Py, thus forming tricoordinate $[Tl(Mes_2py)-(\eta^6-C_6H_5R)_2]^+$ complexes.¹⁸⁷ On the other hand tri-dentate chelating ligands like timtmb^{tBu 205} and bis(imino)pyridines²⁰⁶ can be applied to isolate tricoordinate thallium(i) cations (Fig. 27).

Ligand substituted (CN = 4). The protonation of TlOEt with $[H(OEt_2)_2]^+[H_2N\{B(C_6F_5)_3\}_2]^-$ in Et₂O yielded the tetrahedral coordinated cationic $[Tl(OEt_2)_4]^+$ complex, which shows no contact to the corresponding WCA.²⁰³

Ligand substituted (CN \geq 5). 2,5-Bis(2-pyridyl)-1-phenylphosphole (NPPh) exhibits a rich coordination chemistry towards thallium(i) cations and dependent on the nature of the solvents and WCAs, different structures were obtained: *i.e.*,

Fig. 27 Both the (a) $[Tl(timtmb^{tBu})]^+$ and (b) $[{ArN}=CPh]_2(NC_5H_3)Tl]^+$ complexes derive from $Tl^+[OTf]^-$ and are synthesized *via* complexation reactions of the corresponding ligands. In addition, the inverted sandwich structure (c) $[{{ArN}=CPh}_2(NC_5H_3)Tl}_2(\mu-\eta^6-C_6H_5R)]^{2+}$ (Ar = 2,6-Et₂C₆H₃, 2,5-^tBu₂C₆H₃; R = H, Me) was isolated.

reacting Tl⁺[Al(OR^{PF})₄]⁻ with NPPh in CH₂Cl₂/C₆H₅Me, the tetra-coordinated and C₆H₅Me-capped [Tl(NPPh)₂(η^{6} -C₆H₅Me)]⁺ complex formed, whereas in CH₂Cl₂/*n*-pentane the dinuclear and dicationic [Tl₂(NPPh)₄]²⁺ was isolated (Fig. 28). If Tl⁺[PF₆]⁻ was applied as starting material a coordination polymer with strong cation–anion interactions was formed.

An even higher coordinated thallium cation is the [Tl([18]crown-6)]⁺ complex, which features a similar structure as the [18]crown-6 complexes of the lighter homologues gallium and indium.²⁰³

Transition-metal substituted. Reacting the above mentioned $[Tl(\eta^6-C_6H_5Me)_n]^+$ complexes (n = 2, 3) with FeCp₂, Sarazin *et al.* were able to isolate the $[Tl_2(FeCp_2)_3]^+ [[H_2N\{B(C_6F_5)_3\}_2]^-]_2$ salt that contains the mono- and di-coordinated $[Tl(FeCp_2)_n]^+$ complexes with n = 1, 2 in a 1:1 ratio.²⁰³ Increasing the amount of FeCp₂ from 1 to 2.2 equivalents, only the $[Tl(FeCp_2)]^+$ complex was isolated.²⁰⁴ In contrast to the lighter homologues, the reaction of Cp*Fe(η^5 -As₅) with Tl⁺[PF₆]⁻ and Li⁺[FAl{OC₆F₁₀(C₆F₅)}₃]⁻ did not result in aggregation and formation of a cationic one-dimensional coordination polymer, but rather yielded the pseudo-trigonal-planar $[Tl\{(\eta^5-As_5)FeCp^*\}_3]^+$ complex.¹⁷⁶ Performing a similar chemistry in the presence of the very good WCA [Al(OR^{PF})₄]⁻ however, one-dimensional polymers were isolated (*cf.* Fig. 23), proving

Fig. 29 The first fully characterized metal-metal bonded Tl-Pt-Cl complex. If Ag⁺[OTf]⁻ and Ag⁺[BF₄]⁻ is applied, the expected chloride abstraction takes place.²⁰⁸

the importance of the WCA.²⁰⁷ Reacting the neutral Pt(CH₂Ph)-Cl(PCH₂-ox) complex with Tl⁺[PF₆]⁻, Braunstein *et al.* did not isolate any chloride abstraction product but a "trapped" thallium(I) cation: the cationic [{P(Ph₂)CH₂ox}(Cl)(Tl)Pt-CH₂Ph}]⁺ complex.²⁰⁸ Herein, the ligand functions as a chelate and interacts with thallium *via* a Pt–Tl bond and a η^6 -benzyl coordination (Fig. 29).

Multinuclear. Some of the cationic multinuclear thallium complexes have already been mentioned in the text above. A further example is the $[{Tl(\beta-triketimine)}_2]^{2+}$ complex that features $Tl-\eta^6$ -aryl and weak thallophilic interactions, allowing to overcome the Coulomb repulsion of both cations (*cf.* Fig. 28).¹⁴ The reaction of the P_n -ligand $\{CpMo(CO)_2\}_2(P_2)$ with $Tl^+[Al(OR^{PF})_4]^-$, yields the dicationic $[Tl_2(\{CpMo(CO)_2\}_2)_6]^{2+}$ complex that features a distorted Tl_2P_4 ring (Fig. 30).²⁰⁷

Reacting RuCl₂(DMeOPrPE)₂ with $Tl^+[PF_6]^-$ an "arrested" chloride abstraction occurs.²⁰⁹ In the resultant one-dimensional coordination polymer, the thallium(I) cations are coordinated in an unusual octahedral fashion with a stereoactive 6s² lone pair at thallium.

Group 14 cations

Already in 1887, Henderson described the synthesis of trityl malonate starting from triphenylmethyl bromide and ethylic sodiomalonate²⁴⁶ and 15 years later, Bayer and Villiger realized that the yellow color of a solution of triphenylmethane in concentrated sulfuric acid is the result of the formation of a carbocation.²⁴⁷ Despite these early discoveries, it took another 63 years until the structure of this cation could be determined.²⁴⁸ While the first structure determination succeeded with $[ClO_4]^-$, the structure of the trityl cation is nowadays known with several different anions (*e.g.* ref. 249) and it has become a common

Fig. 28 Solvent effects on the formation of cationic thallium(i) complexes of NPPh. (a) If toluene is applied, the solvent-stabilized penta-coordinated $[Tl(NPPh)_2(\eta^6-C_6H_5Me)]^+$ complex forms. (b) If non-coordinating *n*-pentane is applied two $[Tl_2(NPPh)_2]^+$ cations aggregate *via* their phenyl substituents, forming the dinuclear and dicationic $[Tl_2(NPPh)_4]^{2+}$ complex.

Fig. 30 Formation of the $[Tl_2((CpMo(CO)_2)_2)_6]^{2+}$ complex.

reagent for the generation of various other cations. Only one earlier structure determination of a carbocation was published: the structure of triphenylcyclopropenium perchlorate in 1963.²⁵⁰ Since then, many rPBCs of group 14 were synthesized and characterized. Carbocations have drawn a lot of interest, due to their role as intermediates in organic chemistry. Silylium ions are more electrophilic and more reactive than their carbon analogues, so that the structural characterization of a truly free silylium ion was only achieved in 2002²⁴ and is still in the focus of interest. But also the heavier elements of group 14 were subject to extensive research and today a multitude of interesting rPBCs are known, part of which have been reviewed in the articles included with Table 4.

Carbon

Homopolyatomic and cluster cations. In group 14, carbon is the only element for which homopolyatomic cations are known in condensed phase. While $[C_{76}]^{+,44}$ and $[C_{60}]^{+,259}$ are already known for more than ten years, there is only one more recently published compound of that class. In $[C_{60}]^{2+}([AsF_6]^{-})_2$,²⁶⁰ the cations build a 1D polymeric structure, in which the $[C_{60}]^{2+}$ cations are connected alternatingly by single C–C bonds and four-membered carbon rings. Along with the before mentioned $[C_{60}]^{+}$, the protonated buckminsterfullerene $[HC_{60}]^{+}$ was published²⁵⁹ and by oxidation of the $[C_{59}N]_2$ dimer, $[C_{59}N]^{+}$ was synthesized and structurally characterized.²⁶¹

Carbonium ions. As mentioned before, the classification according to onium-, enium and inium-cations is not always consistent and in literature, the term carbonium ion is often used to describe what is mostly a carbenium ion. A prototype for a carbonium ion is the 2-norbornyl cation, whose structure has been controversially discussed. In 2013, 49 years after its first preparation under stable ion conditions,²⁶² its structure could be determined by scXRD.⁸⁶ This finally provided a crystallographic proof that the 2-norbornyl cation adopts the non-classical structure (Fig. 31). It remains the only structurally characterized non-classical

Fig. 31 Non-classical vs. classical structure of the 2-norbornyl cation.

carbonium ion. Substituted relatives exhibit distinctly distorted structures that are better classified as carbonium ions.²⁶³

Carbenium ions. The first simple structurally characterized alkyl cation, was the *tert*-butyl cation with $[Sb_2F_{11}]^-$ as the counterion,²⁶⁴ and later also with [HCB₁₁Me₅Cl₆]^{-.265} In the same publication, two more carbocations with slight variations in the alkyl chains were presented (Fig. 32).²⁶⁵ Recent additions include the super-acidic room temperature ionic liquid $[(CH_3)_3C]^+[Al_2Br_7]^{-266}$ and an additional structure of the *tert*butyl cation with the $[HCB_{11}Cl_{11}]^-$ anion.²⁶⁷ In 2000, ion-like $(CH_3)_2 CF(AsF_6)$ was the first structural characterized example of a fluorinated carbocation and was published together with a higher substituted variant.²⁶⁸ In both compounds, each cation is stabilized by two stronger contacts to the anion. The higher substituted $[(m-CF_3C_6H_4)(C_6H_5)CF]^+$ derivative, contains the less coordinating $[As_2F_{11}]^-$ anion in the structure with only weak interaction between the ions.²⁶⁸ With $[HCB_{11}I_{11}]^-$, two more fluoro-substituted carbocations and one with fluorine substituted aryl residues could be isolated (see Fig. 32).⁵⁶ Apart from $[CF_3]^+$, all $[CX_3]^+$ cations are now synthesized and structurally characterized (see Fig. 32). First, [CI₃]⁺[Al(OR^{PF})₄]⁻ was published in 2003^{269} and shortly after $[CCl_3]^+$ and $[CBr_3]^+$ with $[Sb(OTeF_5)_6]^-$ as the counterion.²⁷⁰ In addition, the latter was used to stabilize related $[C(OTeF_5)_3]^+$ ²⁷⁰ Later, also $[CCl_3]^+$ and $[CBr_3]^+$ were synthesized with the $[Al(OR^{PF})_4]^-$ and the $[(R^{PF}O)_3Al-F-Al(OR^{PF})_3]^-$ counterions.²⁷¹ In all of those compounds containing $[CX_3]^+$ cations, still some weak interactions between cation (mainly halogen atoms) and anion exist. These interactions are weaker between $[Br-C(SBr)_2]^+$ and the mentioned alkoxyaluminate, due to delocalization of the charge.¹¹⁷ Although comparable, far stronger interaction between cation and anion was found in [(MeO)(MeS)CSH]⁺[SbF₆]^{-.272} However, there is no close contact between the carbon atom and the fluorine atoms of the anion. Instead, the anion forms hydrogen bonds to the thiol group of the cation.

In 2004, the structure of the benzonorbornenyl cation was published, with an intramolecular stabilization of the cationic center by the aromatic ring.²⁷³ Intermolecular stabilized carbenium cations are known of the $[CI_3]^+$ with the weak bases PX₃

Table 4	Review	articles	including	cationic	group	14	compounds	

Year	Title	Ref.
1995	Modern approaches to silylium cations in condensed phase	251
2005	Cations of group 14 organometallics	252
2005	Carbon, silicon, germanium, tin and lead	253
2010	Silylium ions in catalysis	254
2010	H^{\dagger} , CH_{3}^{+} , and $R_{3}Si^{+}$ carborane reagents: when triflates fail	255
2011	N-heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands	256
2013	Catenated compounds – group 14 (Ge, Sn, Pb)	257
2015	Cations and dications of heavier group 14 elements in low oxidation states	258

Fig. 33 Structurally characterized ligand-stabilized carbenium ions and vinyl cation salts.

(X = Cl, Br, I) and AsI₃ (Fig. 33).²⁷⁴ Only two related vinyl cations are known (see Fig. 33).^{275,276} Both are β -substituted by two silyl groups, which help to stabilize the positive charge.

Delocalized (cyclic) carbocations. Only shortly after the first structural characterization of an alkyl cation, the first structure determination of an arenium ion $- [C_6Me_7]^+[AlCl_4]^-$ – was published.²⁷⁷ To date, more structurally characterized arenium ions with several WCAs are known (Fig. 34).

An exception is the radical cation $[C_6F_6]^{\bullet+}$ in the solid state structures with $[Sb_2F_{11}]^-$ and $[Os_2F_{11}]^-$: it yields two different forms.²⁷⁸ One cation can be described as a quinoidal cation and the other as a bisallyl cation (see Fig. 35) and both are separated by a barrier of around 13 kJ mol⁻¹ according to calculations.

Shortly after the publication of the radical cation of the hexafluorobenzene, some more related structures were presented. Among them, the other perhalogenated benzene radical cations^{279,280} and some partially and mixed substituted analogs, including the $[C_6F_5-C_6F_5]^{\bullet-280,281}$ (Fig. 36). The only other example displaying both a quinoidal and a bisallyl cationic form is $[2,4,6^{-t}Bu_3C_6H_2NH_2]^{\bullet+.282}$ At 123 K, this cation adopts the bisallylic structure but upon heating, a transition to the quinoidal form occurs.

View Article Online

Chem Soc Rev

Fig. 34 Protonated and methylated structurally characterized arenium ion salts.

Fig. 35 Lewis structures of the canonical forms of the quinoid and the bisallyl cationic form of $[C_6F_6]^{\bullet+}$.

A different type of delocalized cations are the allyl cations amongst which the cyclopropenyl cations take a special position. Already since 1986, two examples, $[(Cy)_3C_3]^+$ and $[(Cy)_2(Ph)C_3]^+$, are known²⁸³ and in the same year, an allyl cation stabilized by an hydroxyl group has been published (Fig. 37).²⁸⁴ In 2002, the structure of $[C_5Me_5H_2]^+$ was determined although it was by mistake addressed as an $[C_5Me_5]^+$ cation, probably due to its unexpected formation during the reaction of C_5Me_5H with $[Ph_3C]^+$.²⁸⁵ Finally a silyl stabilized allyl cation was characterized, which formed *via* an interesting mechanism that starts with the formation of a silylium cation (Fig. 37).²⁸⁶

Ion-like carbon compounds. As mentioned before, in the analog structure of $[(m-CF_3-C_6H_4)(Ph)CF]^+$ with $[AsF_6]^-$ instead of $[AsF_{11}]^-$, stronger interactions to the anions are present.²⁶⁸ The same applies to the related Me₂CF(AsF₆).²⁶⁸ Also known is the ion-like (Me₂CH)(HCB₁₁Me₅Br₆), which displays a covalent C–Br distance of about 210 pm.²⁸⁷ Along with the latter, the preparation of H₃C(HCB₁₁Me₅Br₆) and H₃C(HCB₁₁Me₅Cl₆) was

Fig. 36 Structurally characterized substituted benzene radical cation salts.

Fig. 37 Structurally characterized delocalized cation salts.

reported, but no structural data from XRD was presented. In 2010, the strongly methylating ion-like $Me_2B_{12}Cl_{12}$ was structurally characterized with a C–Cl bond length of 182 pm.²⁸⁸

Silicon

Silylium ions (CN = 3). Silylium ions are certainly amongst the most electrophilic cations known and thus exhibit an enormous Lewis acidity. Most of them are either stabilized by bulky ligands, or display a strong interaction with the corresponding WCA and have therefore to be categorized as ion-like compounds. In addition, the first claimed "stable silyl cation" [Et₃Si]⁺ in 1993 contained a coordinating toluene ligand – a feature typical for many silylium ions.²⁸⁹ In order to obtain a truly tricoordinate silylium ion without stabilization through the anion or an additional ligand, bulkier substituents were needed. Hence, the first structurally characterized compound featuring a free silylium ion was [Mes₃Si]⁺[HCB₁₁Me₅Br₆]⁻²⁴ and in 2013, ([Pemp₃Si]⁺)₂[B₁₂Cl₁₂]²⁻ was published (Fig. 38).²⁹⁰ The latter was afterwards also synthesized and characterized with [Al(OR^{PF})₄]^{-.291} In all three structures, the cation has no closer contacts to the anion.

Delocalized cyclic cations. Despite the early characterization of cyclopropenyl cations, the first example for a comparable silicon ion was published only in 2000 (Fig. 39, left).²⁹² In this compound, however, it is not the three-membered silicon-ring with a delocalized π -system but rather a silicon butterfly with one Si–Si– σ -bond stabilizing the positive charge. A direct equivalent of a cyclopropenyl cation was finally published in 2005 (Fig. 39).²⁹³ One more example is known with the positive charge being partially delocalized over four silicon atoms.²⁹⁴ An example for a Si(II) cation with 6π -aromaticity provides the silyliumylidene-like species introduced by Driess *et al.* (Fig. 39, right).²⁹⁵ This compound is stabilized by delocalization so that, although produced through protonation with $[H(OEt_2)_2]^+[B(C_6F_5)_4]^-$, no ether molecule remains coordinated to the cation.

Ligand-stabilized silicon cations. Already in 1983, pyridine stabilized $[Me_3Si]^+$ was reported.²⁹⁶ Yet, this compound is stable to such an extent that Br^- and I^- are sufficient as anions and that it

Fig. 38 Structurally characterized tricoordinate silylium ions.

Fig. 39 Delocalized cyclic silicon centered cations.

can be prepared just by reacting Me₃SiX with pyridine. Many of these [R₃Si-L]⁺ ions stabilized by different σ -donors are known: with nitriles,²⁹⁷⁻²⁹⁹ pyridine,^{296,300} water,³⁰¹ *o*-dichlorobenzene,⁸¹ sulfur dioxide⁸¹ and bipyridine.³⁰² Even though 2,6-bis(2,6-difluorophenyl)-phenyldimethylsilylium ion has no additional ligand acting as a σ -donor, the cationic center is stabilized by one fluorine of each 2,6-difluorophenyl-substituent (Fig. 40).³⁰³ With the stronger stabilizing DMAP, the dication [Me₂Si(dmap)₂]²⁺ has been synthesized.³⁰²

 $[R_3Si-L]^+$ ions with π -donor ligands L = arenes like the before mentioned $[Et_3Si(C_7H_8)]$ are less stabilized than those with σ -donors (Fig. 42).²⁸⁹ Several different arene adducts of $[Me_3Si]^+$ were reported by Schulz and Villinger *et al.* (Fig. 42).³⁰⁴ As can be seen in Fig. 41, some of these compounds are coordinated by a second arene molecule binding in an η^6 -fashion to the proton *ipso* to the silylium center. This shows that these arena adducts are also very strong cationic Brønsted acids.

Comparable to the before mentioned 2,6-bis(2,6-difluorophenyl)phenyldimethylsilylium ion without any additional ligand, a 2,6-diarylphenyldimethylsilyl cation is existing, which is stabilized by intramolecular π -donation (Fig. 42).⁷⁶

Compounds of the type $[R_3Si-X-SiR_3]^+$ have to be treated as a special case of ligand stabilization. The first example of this type is the initially as $[Et_3Si]^+$ misinterpreted $[Et_3Si-H-SiEt_3]^+$,³⁰⁵ whose structure determination has been published about two years ago.³⁰⁶ $[Me_3Si-H-SiMe_3]^+$ ⁸¹ is also known as well as the analogous $[Me_3Si-X-SiMe_3]^+$ compounds with X = F, Cl, Br, I³⁰⁷ and trifluoro-methanesulfonate.³⁰⁸ The X-bridged species are typically addressed as halonium ions, but it appears more reasonable to address them as ligand-stabilized silvlium ions (see Fig. 43).

Calculations state that the positive charge is still located at the silicon atoms and F, Cl and Br are negatively charged.³⁰⁷ Only in the case of iodine, a small positive charge is located at the bridging atom.³⁰⁷ Additionally, bissilylated pseudohalonium cations [Me₃Si–X–SiMe₃]⁺ with X = CN, OCN, SCN, and NNN are known.³⁰⁹ Of these, only in [(Me₃Si)₂NNN]⁺ both silyl groups are attached to the same atom,³⁰⁹ so that the structure of the cation is analog to the protonated hydrogen azide³¹⁰ (see Fig. 44 and Table 5 for $[H_2N_3]^+$ [SbF₆]⁻). Some more examples with bridged SiR₃-groups, in which both groups are connected with each other, are known (Fig. 44).^{311–315}

A special case of intramolecular ligand stabilization can be observed in $[FcSiMe^tBu]^+$.³¹⁶ Here the silicon is dipped towards the iron atom due to two 3c2e bonds between C_{ipso} , Si and Fe and C'_{ipso} , Si and Fe, respectively (Fig. 45).³¹⁶

Fig. 40 Structurally characterized silylium ions stabilized by σ-donors.

Fig. 41 Molecular structure of $[Me_3Si(C_8H_{10})\cdot(C_8H_{10})]^+$. The weak interaction between the stabilized cation and the adjacent ethylbenzene is indicated by the dashed bonds. M. F. Ibad, P. Langer, A. Schulz and A. Villinger, *J. Am. Chem. Soc.*, 2011, **133**, 21016–21027. Data from this reference were used to draw this figure.

Fig. 42 Structurally characterized silylium ions stabilized by internal or external π -donors. Ar = benzene, toluene, ethylbenzene, *n*-propylbenzene, and iso-propylbenzene, *o*-xylene, *m*-xylene, *p*-xylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, mesitylene.

More intramolecular σ -donor stabilized silvlium ions are known: $[RSi(R')_2]^+$ or $[RSi(R')(R'')]^+$ with R being a pincer ligand can be seen as an extra class of ligand-stabilized silicon cations.

 $Me_3Si-X^+-SiMe_3 \iff Me_3Si-X^+SiMe_3 \iff Me_3Si^+X-SiMe_3$ Fig. 43 Canonical structures of the halogen-bridged bis-silylium ions.

In 2009, several silylium ions with OCO and SCS pincer ligands were published by Jutzi *et al.* (Fig. 46).³¹⁷

All before mentioned ligand-stabilized silicon cations contain an inter- or intramolecularly by additional donor atoms stabilized $[R_3Si]^+$ cation. Two more different types of ligand-stabilized silicon cations were published with silicon in oxidation state +IV. Both were synthesized by oxidation of silicon(II) cations through elemental sulfur (Fig. 47).^{318,319} These cations containing subvalent silicon are very rare and most of the known examples are bearing a cyclopentadienyl substituent (see Cyclopentadienyl substituted cations). However, with well stabilizing ligands, two [LSiCl]⁺ cations were synthesized (Fig. 47).^{318,320} Both are prepared just by adding the chelating ligand to NHC·SiCl₂. The NHC ligand is being replaced by L and yields the [LSiCl]⁺ cation with chloride as the anion. This shows that the silicon cationic center is largely stabilized by coordination. By using well stabilizing NHCs, it was possible to generate an [(L)(L')SiI]⁺[I]⁻ and even the dication $[L_3Si]^{2+}([I]^-)_2$.³²¹ In addition, two related silicon(II) monocations $[RSi(L)_n]^+$ were structurally characterized in which the residue R is not a halogen atom (Fig. 48).³¹⁹

Cyclopentadienyl substituted cations. So far, two cyclopentadienyl substituted silicon cations without any further stabilization through additional ligands were structurally characterized. First $[(C_5Me_5)Si]^+$ with $[B(C_6F_5)_4]^-$ was published in 2004³²² and two years later, the synthesis and characterization of $[(C_5{}^iPr_5)Si]^+[Al(OR^{PF})_4]^-$ was presented.³²³ However, the latter structure determination was of poor quality and did not allow to obtain any exact structural parameters. Additionally, two ether stabilized $[(C_5Me_5)Si]^+$ cations are known (Fig. 49).³²⁴

Fig. 45 Molecular structure of [FcSiMe^tBu]⁺. K. Müther, R. Fröhlich, C. Mück-Lichtenfeld, S. Grimme and M. Oestreich, *J. Am. Chem. Soc.*, 2011, 133, 12442–12444. Data from this reference were used to draw this figure.

Fig. 46 Structurally characterized silylium ion salts with intramolecular stabilization by pincer ligands.

Ion-like silylium compounds. In alkylsilylium ion salts without an additional stabilizing ligand, interactions between the cation and the corresponding WCA can be observed. The

Fig. 47 Structurally characterized ligand-stabilized silathionium cations.

first structurally characterized $R_3Si(WCA)$ was the iso-propyl substituted compound in 1993.³²⁵ Today, at least one example with the most common alkyl substituents ^{*t*}Bu, ^{*i*}Pr, Et and Me is known.^{81,297,326–330} Additionally, with ^{*t*}Bu₂MeSi(CB₁₁H₆-Br₆) one mixed substituted ion-like silylium compound was published.³²⁸ Another example might be Fc₃Si(OTf). However, its Si–O interaction is with 175 pm in the range of a normal Si–O bond.³³¹

Germanium, tin and lead

Cluster cations. As for silicon, no homopolyatomic cations comparable to the fullerenium ions are known for germanium, tin and lead. Nevertheless, one example of a germanium cluster exists (Fig. 50).³³² The cluster is composed of ten germanium atoms, of which seven bear substituents. The remaining three unsubstituted germanium atoms carry the positive charge, which is evenly distributed.

Enium ions. Just as for silicon, enium ions of Ge, Sn and Pb need substituents with a high steric demand to shield the cationic center. The first example of the heavier elements of group $14 - [^{n}Bu_{3}Sn]^{+}[CB_{11}Me_{12}]^{-}$ – does have, as expected,

Fig. 48 Structurally characterized ligand-stabilized cations of subvalent silicon.

Fig. 49 Structurally characterized cyclopentadienyl substituted silicon cation salts with and without additional ligands.

 $\label{eq:Fig.50} \begin{array}{l} \mbox{Lewis structure of the 5-iodo-2,4,6,8,9,10-hexakis(tri-tert-butyl-silyl)heptacyclo[4.4.0.0^{1.3}.0^{2.5}.0^{3.9}.0^{4.7}.0^{8.10}]decagerman-7-ylium ion. \end{array}$

interactions between cation and the [CB₁₁Me₁₂]⁻ WCA.³³³ At about the same time, Lambert et al. and Sekiguchi et al. published the first examples of free enium ions of germanium and tin. While Lambert relied on bulky aryl substituents to synthesize [(Tipp)₃Sn]⁺,³⁴ Sekiguchi deployed silyl groups and managed to produce $[({}^{t}Bu_{2}MeSi)_{3}Ge]^{+334}$ and $[({}^{t}Bu_{2}Me Si_3Sn^{+}_{,35}$ all with $[B(C_6F_5)_4]^-$ as their counterpart (Fig. 51). Although enium ions with aryl substituents have always been under the first examples for carbon, silicon and tin, it kept lacking an example for germanium until in 2009 [Ge({2,6- $O^{t}Bu_{2}C_{6}H_{3}_{3}^{+}[Al(OR^{PF})_{4}]^{-}$ was synthesized and characterized.336 However, the cationic center is stabilized by contacts to the oxygen atoms of the tert-butoxy residues at 286 and 288 pm.³³⁶ More recently, a mixed substituted enium ion of tin has been published (Fig. 51).³³⁷ Examples for lead are still missing and the only formally $[R_3Pb]^+$ containing ion-like

Fig. 51 Structurally characterized enium ions of germanium and tin.

substance $Et_3Pb(HCB_{11}H_5Br_6)$ has like its Si, Ge and Sn analogs stronger interactions between the ions.³³⁸

Delocalized cyclic cations. The germanium compound $[Ge_3(Si^tBu_3)_3]^+$, has been published long before the first silicon analog of a cyclopropenyl cation.³³⁹ Although it is known with a few different anions,^{340,341} it is still the only example of delocalized cyclic cations of the heavier elements of group 14 (similar to Fig. 39).

Ligand-stabilized. Far less ligand-stabilized cations of Ge, Sn and Pb in oxidation state +IV are known than of Si. $[Me_3Sn(OPPh_3)_2]^+[(MeSO_2)_2N]^-$ and $[Ph_3Sn(OPPh_3)_2]^+[(MeSO_2)_2N]^$ were synthesized already in 1994³⁴² and six years later, the $[{}^{t}Bu_{3}E(NC-{}^{t}Bu)]^{+}$ cations were synthesized with E = Ge and Sn, but only for the germanium compound the crystal structure is known.²⁹⁸ In addition, together with the analogous silicon complex, [Me2Ge(bipy)(OTf)]⁺[OTf]⁻ has been published.³⁰² Interesting is however, that the corresponding substances with DMAP coordinating to germanium and the ones with DMAP or bipyridine coordinating to tin have to be described as ion-like, since in all of them both [OTf]anions do have close contacts to the cationic center.³⁰² As already stated for silicon, symmetrical compounds of the type $[R_3E-X-ER_3]^+$ are somewhat special since the positive charge is evenly distributed and it is not possible to speak of an cation and a ligand anymore. Contrary to silicon, only one cation belonging to this type is known for the heavier homologues (Fig. 52).³⁴³ Additionally, for germanium

Norbornyl cations with the heavier group 14 elements were classified in here as ligand-stabilized cations, although one may address them as onium ions. Although the heavier norbornyl cation analogues were all published - also with silicon - no crystal structure could be determined.³⁴⁶ However, by addition of acetonitrile to the norbornyl cations, the stronger σ -donor replaces the weaker π -donating C=C double bond. An exception is the plumbanorbornyl cation, which gets coordinated by acetonitrile additionally and remains coordinated by the alkene (scXRD).³⁴⁶ A comparable π -stabilization as in the norbornyl cations can be found in the 1,4,5-trigermabicyclo[2.1.0]pent-2-en-5-ylium ion, in which the cationic center is coordinated intramolecularly by a C=C double bond.³⁴⁷ Another unique π -stabilization can be observed in bis(cyclopentenemethyl)plumbylium.³⁴⁸ This cation is intramolecularly stabilized by the C-C double bonds of the two cyclopentene substituents (Fig. 52).

Hard to classify are two germanium cations stabilized by a monoanionic bidentate bis(NHC)borate ligand (Fig. 53).349 Both originate from the attempt to synthesize a germanium dication stabilized by the before mentioned ligand through the reaction of LGeH with $[Ph_3C]^+[B(C_6F_5)_4]^-$. Instead of delivering the desired germanium dication, two different products were obtained. In one, instead of abstracting the hydride, the trityl cation attacks the lone pair of the Ge(II) cation, forming the adduct. In the other, the hydride is indeed abstracted by the trityl cation, but the resulting germanium dication is coordinated by unreacted starting material.

Apart from those examples, the ligand-stabilized cations of the heavier group 14 elements are in oxidation state +II. Already

L = DMAP

ⁿBu₂Ge²

Si^tBu₃

Si^tBu₃

^tBu₃Si

^tBu

iDr(

ⁱPrO

′PrO

PPh₃

PPh

GeⁿBu₂

O[/]Pr

 $\Omega = F$

L

-OⁱPr

·OⁱPi

Ò'Pr

Fig. 53 Germanium cations stabilized by a monoanionic bidentate bis(NHC)borate ligand.

as early as 1989, [Sn([15]crown-5)₂]²⁺ has been published along with its crystal structure.³⁵⁰ This cation is accessible directly through the reaction of SnCl₂ with two equivalents of the crown ether, which is why [SnCl₃]⁻ serves as the counterion. In this or a similar fashion it has been possible to synthesize a portfolio of different crown ether complexes of $tin(\pi)$ and $lead(\pi)$.^{351–353}

To isolate the first related Ge(n) compound, better stabilizing ligands were needed. By employing NHC ligands, a germanium dication was isolated (Fig. 54).354 The germanium center is highly stabilized by its ligands, and - although iodides are the counterions - only weak interactions between the ions are present. Another germanium containing dication was synthesized with the encapsulating cryptand [2.2.2],355 and a few years later the analogous tin complex.³⁵⁶ Today, quite a few different crown ether complexes of germanium are known as well (Table 9).357 By using other well stabilizing chelating N-donor ligands, it was also possible to isolate [(L)Ge]²⁺ cations.³⁵⁸

The autoionization reaction used for the preparation of many of the crown ether complexes has also been applied to synthesize most of the structurally characterized [(L)EX]⁺[WCA]⁻ compounds of germanium and tin (Fig. 55).^{344,359-362,389} With even stronger donating ligands, comparable salts [(L)GeCl]⁺Cl⁻ were

(Fig. 52).^{344,345}

Fig. 54 Structurally characterized dicationic compounds of germanium and tin.

prepared.^{363,364} These compounds are strongly stabilized so that even halides are sufficient as anions (Fig. 56). Related $[RE(L)]^+$ cations with the residue R not being an halogen atom are also known. In these cations, the residue is capable to stabilize the cationic center by an additional σ - or π -donation (Fig. 57).^{80,345,365-368} In case of bulky residues it was possible to work without an additional ligand and to obtain the free $[RE]^+$ cations (Fig. 57).^{365,366,369} For lead, one additional $[RE(L)]^+$ cation is known with R being a bulky aryl ligand and with a toluene molecule coordinating to the lead atom.³⁷⁰

A rather special case is $[Sn(C_7H_8)_3]^{2+}$, in which a tin(II) cation is coordinated by three toluene molecules.³⁷¹ Although lots of arene complexes of tin(II) are known, almost all of them do still have strong interactions to the anions, mostly halides and/or $[AlCl_4]^-$ (see for some examples ref. 19). An exception is the Sn(II) complex with [2.2.2]paracyclophane.³⁷² Only one of the two $[AlCl_4]^-$ ions is coordinated to the tin atom, the other one does not have interactions with

Fig. 56 Ligand-stabilized cations [(L)GeCl]⁺ with chloride as their counterion.

the cation. However, $[Sn(C_7H_8)_3]^{2^+}([B(C_6F_5)_4]^-)_2$ is the first example of a tin(1) complex with independent arenes and without additional stabilization by the anion (Fig. 58).

Cyclopentadienyl substituted cations. The tin analog of the $[(C_5Me_5)Si]^+$ cation was already published in 1979,³⁷³ about 25 years before the silicon compound was characterized by XRD. This is due to the fact, that $[(C_5Me_5)Sn]^+$ could be synthesized as its $[BF_4]^-$ salt, which is not possible in case of $[(C_5Me_5)Si]^+$ because of its instantaneous decomposition.³⁷⁴ In [(C5Me5)Sn][BF4] are still some stronger interactions present between the fluorine atoms and tin. In 2005, the structure of the $[(C_5Me_5)Sn][B(C_6F_5)_4]$ was determined in which these interactions are a lot weaker³⁷⁵ and with the same anion, $[(C_5Me_5)Pb]^+$ was synthesized and structurally characterized.³⁷⁵ The sole exception is germanium, whose $[(C_5Me_5)Ge]^+$ was only characterized by XRD with $[BF_4]^{-376}$ and $[SnCl_3]^{-377}$ as its counterion and not with any larger WCA. In addition, interesting triple-decker cations are known for tin and lead: $[({Me_5C_5}Sn)_2(\mu-Me_5C_5)]^+$ was first synthesized and structurally characterized with the [Ga(C₆F₅)₄]⁻ anion,³⁷⁸ its structure was subsequently published with $[B(C_6F_5)_4]^-$ together with the analogous lead compound (Fig. 59).375

Ion-like compounds of germanium, tin and lead. As for silicon, alkyl substituted enium ions of the heavier group 14 elements without any additional ligand need stabilizing

Fig. 55 Ligand-stabilized cations [(L)EX]⁺ of germanium and tin.

Fig. 57 Structurally characterized [RE(L)]⁺ and [RE]⁺ cations of germanium, tin and lead.

Fig. 58 Molecular structure of $[Sn(C_7H_8)_3]^{2+}$. A. Schäfer, F. Winter, W. Saak, D. Haase, R. Pöttgen and T. Müller, *Chem. – Eur. J*, 2011, **17**, 10979–10984. Data from this reference were used to draw this figure.

interactions with the WCA. However, far less examples are known for E = Ge, Sn and Pb, although already in 2000, the first example was published with ${}^{n}Bu_{3}Sn(CB_{11}Me_{12})$.³³³ The other known examples are the Et₃E(HCB₁₁H₅Br₆) compounds already mentioned before.³³⁸

Transition-metal substituted cations of germanium, tin and lead. Other than for silicon, more transition metal coordinated cations are known for the heavier elements of group 14, especially for tin. *Via* a salt elimination reaction, the complex cation $[(dppe)_2W \equiv Sn-C_6H_3-2,6-Mes_2]^+$ was synthesized with $[PF_6]^-$ as its counterion in which the W–Sn–C angle is close to 180° .³⁷⁹ A similar germanium compound was published one

Fig. 59 Structurally characterized cyclopentadienyl substituted cations of germanium, tin and lead.

year after, in 2004. In $[(MeCN)(dppe)_2W \equiv Ge(\eta^1-Cp^*)]^+$, the germanium is substituted by a Cp* and the tungsten atom is coordinated additionally by an acetonitrile molecule.³⁸⁰ As WCA serves $[B(C_6F_5)_4]^-$ in this case. A new complex cation featuring a Sn-Pt bond was published in 2010. In trans-[Pt(Me)(SnCl2)-(2-PyPPh₂)₂[BF₄], the tin atom is pentacoordinated and adopts a trigonal-bipyramidal geometry.³⁸¹ Along with that, comparable compounds were synthesized with the remaining group 10 metals, but no crystal structure determination was performed. By using an OCO-pincer ligand, a chromiumpentacorbonyl coordinated tin(II) cation was synthesized. Two variants were published, {2,6-(MeOCH₂)₂C₆H₃}(H₂O)SnCr(CO)₅(OTf), in which the tin is coordinated additionally by a water molecule and $[{2,6-(MeOCH_2)_2C_6H_3}](THF_2)SnCr(CO)_5]^+[CB_{11}H_{12}]^-$, in which the tin is hexacoordinated with two THF molecules complementing the coordination sphere.382 The former has indeed no contact between the triflate and the tin atom, but a strong hydrogen bond

Fig. 60 Structurally characterized transition metal substituted cations of germanium, tin and lead.

between the coordinated water molecule and the anion is existing, with an O–O distance of about 261 pm. Two more chromiumpentacorbonyl coordinated tin(II) cations were published in 2013, both also with a pincer-type ligand (Fig. 60).³⁸³ The same ligand was used to prepare the [RSn{W(CO)₃Cp}₂]⁺, with R = R = 4-^tBu-2,6-{P(O)(OⁱPr)₂}₂C₆H₂) and [W(CO)₃Cp]⁻ as its counterion.³⁸⁴ Recently, new platinum-coordinated cations of tin and lead were published. Starting from (Cy₃P)₂Pt(SnBr₂), [{(Cy₃P)₂Pt-SnBr}₂]⁺ was synthesized with two different anions.³⁸⁵ The analogous dimeric lead cation [{(Cy₃P)₂Pt-PbCl}₂]⁺ was accessible by using (Cy₃P)₂Pt(PbCl₂) as a starting material.³⁸⁵ Through further reaction with AlX₃, {(Cy₃P)₂Pt}₂Sn(AlBr₄)₂ respectively {(Cy₃P)₂Pt₂Pb(AlCl₄)₂ were synthesized.³⁸⁵ However, in both dications some interactions between the ions are present. Additionally, the dimeric lead cation was also synthesized with iodine instead of chlorine.³⁸⁵

Group 15 cations

Of all the pnictogen elements, especially phosphorus has a rich cation chemistry. The analogy between CR_4 and $[PR_4]^+$ displays the possibility of creating a large variety of cationic phosphorus frameworks (Fig. 61).

Over the last decades a multitude of catenated phosphorus cations were synthesized. The classical phosphino-phosphonium cation (Fig. 62, left), which can be synthesized through halide abstraction from PR_2Cl and formal insertion/coordination of the resulting $[PR_2]^+$ (see section "Oxidation state +III" below) into a R_2P-R bond/to PR_3 stands for an entire substance class of compounds typically containing organic residues $R.^{390}$ However,

Fig. 61 Analogy between cationic phosphorus atom and carbon.

we refer the interested reader to the multitude of recent reviews especially on these cations,^{391,392} the analogous interpnictogen cations (Fig. 63)³⁹³ and other types of cationic pnictogen compounds (Table 5).

Homopolyatomic cations. Except for the long-known bismuth cations, all homopolyatomic pnictogen cations were synthesized in the last 16 years. In late 1999 the third all-nitrogen molecule $[N_5]^+$ – besides N₂ and N₃⁻ – was prepared through a reaction of $[N_2F]^+[AsF_6]^-$ and HN_3 .⁴⁰⁰ The obtained compound $[N_5]^+[AsF_6]^$ is explosive but an anion exchange led to the more stable $[N_5]^+[SbF_6]^-$ and to the crystal structure of $[N_5]^+[Sb_2F_{11}]^-$.⁴⁰¹ In 2004 the reduction of SbCl₃ with $[Ga]^+[GaCl_4]^-$ in a GaCl₃benzene solution led to the square-antiprismatic arachno-[Sb₈]²⁺ Wade cluster cation.⁴⁰² Recently also the first - formally electron precise and Zintl type – phosphorus cation $[P_0]^+$ was synthesized through the reaction of P_4 and the nitrosyl salt of the $[Al(OR^{PF})_4]^-$ WCA.²⁹ By contrast, bismuth has a rich cation chemistry. The first structure of a bismuth cation was measured already in 1962. Most of them were synthesized through high temperature solid state reactions. The newer room temperature approaches are based on ionic liquids.403 Normally the clusters formed are badly soluble, but there is evidence that the use of very weakly coordinating anions like $[Al(OR^{PF})_4]^-$ can lead to $[Bi_n]^+$ clusters, which are soluble in

Fig. 62 Examples for catenated phosphorus cations in the formal phosphino-phosphonium or diphosphonium form. Also cyclic versions are available.

Fig. 63 Example for a catenated interpnictogen cation.

solvents like CH_2Cl_2 or SO_2 .⁴⁰⁴ Besides the lighter noble gases and fluorine, only arsenic has still no homopolyatomic cation. Yellow arsenic (As₄), which has now a relatively stable storage form (see section "Metal–pnictogen complexes") might be a good starting point for a future synthesis (Fig. 64).

Metal-pnictogen complexes. There are still only a few complexes with pnictogen modifications as ligands in the literature. Early examples of tetrahedro-P₄ complexes like $(PPh_3)_2Rh^{I}Cl(\eta^2-P_4)$ are better viewed as phosphide complex (PPh₃)₂Rh^{III}(P₄²⁻). By contrast, the d¹⁰-metal cation Ag⁺ is ideal for the stabilization of the non-metallic clusters and the electronic structure of the ligand stays relatively unaffected (see also chapter chalcogen cations). In 2001, the WCA $[Al(OR^{PF})_4]^-$ made it possible to crystallize the $[Ag(P_4)_2]^+$ complex and later through salt metathesis with CuI also the copper complex $[Cu(P_4)_2]^+$ was accessible. In 2012 the gold complex was obtained as $[GaCl_4]^-$ salt and completed the whole series $[M(P_4)_2]^+$ (M = Cu, Ag, Au). Recently light-stable (!) $[Ag(As_4)_2]^+[Al(OR^{PF})_4]^-$ was synthesized, which finally serves as a good storage form of yellow arsenic (As₄). As such, As₄ is both thermally and photochemically unstable. The salt made it possible to transfer the As₄ tetrahedron to gold in $[Ph_3PAu(As_4)]^+$ and opens new possibilities in the synthesis of arsenic complexes (Fig. 65).⁴⁰⁵

Diazonium cations and heavier homologues. There is a multitude of crystal structures of different cluster or cluster-like cations that contain pnictogen atoms.^{391–393,397} We decided to give

View Article Online

Review Article

Fig. 64 Examples for homopolyatomic pnictogen cations (only for bismuth, several entries are known).

an overview and to list parent (model)-compounds like $[N_2Ph]^+$ and $[N_2Mes]^+$ in case of diazonium cations⁴⁰⁶ as examples for the entire diazonium substance classes. The heavier homologues of the diazonium cations $[RNPn]^+$ (Pn = P, As) need sterically demanding groups like Mes^{*} (2,4,6^{-t}Bu₃C₆H₂) to protect the highly reactive triple bonds (Fig. 66).^{407,408}

Cluster and cage cations. The reaction of phosphorus halides PX_3 with halide abstractors led to very reactive carbene-analogous $[PX_2]^+$ cations (see chapter "Phosphenium ions"), which are able to formally insert in the X_2P -X bonds of a second equivalent to form $[P_2X_5]^+$ clusters or in the P–P bond of white phosphorus to produce $[P_5X_2]^+$ for instance. Insertion in P_4S_3 or halide abstraction from $P_4S_3I_2$ followed by rearrangements led to the phosphorus–sulphur cluster cations $[P_5S_2X_2]^{+134}$ and $[P_7S_6I_2]^+$.²³⁴ Ref. 134 contains investigations on the nature of this formal insertion reaction, which is not as simple as thought and rather follows a concerted, orbital controlled mechanism (Fig. 67).

The binary group 15 and 16 cations have also a strong tendency to form clusters. The newer examples like the antimonychalcogen cations $[Sb_{10}Se_{10}]^{2+}$ and $[Sb_7Te_8]^{5+}$ were synthesized in ionic liquids or GaCl₃ melts.^{409,410} Very recently $[P_3Se_4]^+$, the first binary P–Se-cation was characterized by six different groups with three different approaches.⁴¹¹ It is accessible from solution, but also through solid state syntheses.⁴¹² In 2004 the synthesis of the sulphur- and selenium-bismuth cations from a chloroaluminate melt completed the series of the heterocubane cluster cations $[Bi_4Ch_4]^{4+}$ (Ch = S, Se, Te) (Fig. 68).^{413,414}

 $(4n + 2)\pi$ -cations. The pnictogen cations with planar delocalized π -systems can be described as (pseudo-)aromatic systems. The fourmembered rings were all synthesized through halide abstraction from the neutral rings with two halogen atoms. The five-membered As–N ring was prepared through cycloaddition of the highly reactive

Table 5	Review articles including cationic group 15 compounds	
Year	Title	Ref.
2004	Homoatomic cages and clusters of the heavier group 15 elements. Neutral species and cations	394
2008	Catena–phosphorus cations	392
2011	Homo- and heteroatomic polycations of groups 15 and 16. recent advances in synthesis and isolation using room temperature ionic liquids	66
2012	Multiple-charged P ₁ -centered cations: perspectives in synthesis	395
2013	Catenated phosphorus compounds	391
2013	Recent advances in the syntheses of homopolyatomic cations of the non-metallic elements C, N, P, S, Cl, Br, I and Xe	11
2013	Catenated compounds – group 15 (As, Sb, Bi)	396
2014	Interpnictogen cations: exploring new vistas in coordination chemistry	393
2014	The chemistry of cationic polyphosphorus cages – syntheses, structure and reactivity	397
2015	Coordination chemistry of homoatomic ligands of bismuth, selenium and tellurium	398 and 399

Fig. 65 Molecular structure of $[Ag(As_4)_2]^+[Al(OR^{PF})_4]^-$. C. Schwarzmaier, M. Sierka, M. Scheer, *Angew. Chem., Int. Ed.*, 2013, **52**, 858–861. C. Schwarzmaier, M. Sierka and M. Scheer, *Angew. Chem.*, 2013, **125**, 891–894. Data from this reference were used to draw this figure. The disorder of the anion was omitted for clarity.

R−N≡Pn

Pn = N, P, As

Fig. 66 The diazonium cation and its heavier homologues. R e.g. Mes*.

 $[AsNMes^*]^+$, which reacts as dienophile with the 1,3 dipole tritylazide N₃CPh₃ (Fig. 69).

 $\pi^*-\pi^*$ -complexes. Like the chalcogen compounds, the pnictogen cations containing $\pi^*-\pi^*$ -interactions can be described as dimers of chalcogen radicals, whose half-occupied interacting orbitals have π^* -character. The interannular $\pi^*-\pi^*$ -bonds between the "monomers" are relatively weak. They were synthesized through halide abstraction from the chlorides of the monomers (Fig. 70).⁴¹⁵

Radical cations. Radical cations of pnictogens can be obtained through direct oxidation of Pn_2 fragments with stabilizing ligands like N-heterocyclic carbenes (NHC) or cyclic alkylaminocarbenes (CAAC). As one-electron-oxidants the trityl salt of $[B(C_6F_5)_4]^-$ was used (Fig. 71).^{208,416,417}

Bulky arylphosphines and -diphosphines (Fig. 72) can also be oxidized to their radical cations, if the cation is stabilized by a WCA. 418,419

The delocalization of the single electron over a ring system also leads to stabilization. The four-membered radical cation ring systems with different pnictogen atoms (Fig. 73) were obtained through direct oxidation with silver and nitrosyl salts of WCAs.⁴²⁰

Formal oxidation state +I. In some compounds like $[P_3Ph_6]^{+421}$ the oxidation state of the central pnictogen "P⁺" can be described as +I, which is for example supported by the unusual high field shift in ³¹P-NMR of the central phosphorus atom in these cations (-210 to -270 ppm).⁴²² In case of the ligand-stabilized arsenic cation [AsDppDIMPY]⁺ this is also supported by the synthesis: (DppDIMPY = $[\alpha, \alpha'-\{2, 6^{-i}Pr_2PhNC(Me)\}_2(C_5H_3N)]$). The reduction of AsCl₃ with SnCl₂ led to a cation with a planar carbenoid-like structure.⁴²³ Under the same conditions with a different ligand an arsa-carbenoid of type [As(NR)₂C₂H₂]⁺ was obtained (Fig. 78). This displays the difficulty of a clear assignment of oxidation states in such systems (Fig. 74).

Fig. 67 Typical examples for phosphorus cations.

Fig. 68 Examples for binary pnictogen containing cations.

Fig. 69 Heteroatomic, cationic aromatic 6π -systems containing pnictogen atoms.

Fig. 70 Arsenic cations containing $\pi^* - \pi^*$ -interactions.

Phosphenium ions (oxidation state +III). The chemistry of the highly reactive phosphenium ions $[P(R/Y)_2]^+$ (Fig. 75) was part of many studies in the past. The stability increases with the π -donor-ability

Fig. 71 Cationic phosphorus radicals stabilized by NHCs or CAACs.

Fig. 72 Phosphorus radical cations.

Fig. 73 Cyclic pnictogen radical cations.

of the substituent and the Lewis acidity with a stronger negative inductive effect $(FIA: [P(NH_2)_2]^+ < [PCl(NH_2)]^+ < [PCl_2]^+).^{424}$

For most of the reactive phosphorus cations, the decomposition is normally accompanied by the formation of strong P–X bonds (X = F, Cl. . .). This makes it necessary to use weakly coordinating anions stable against electrophilic cations. For the homoleptic halogen substituted cations, extremely weak anions are needed. The first examples of the less, but still highly reactive mixed amino-halogen substituted phosphenium cations were published already in 1976. Through the use of a halide-abstractor (MCl₃, M = Al, Ga, Fe) is was possible to prepare $[P(NR_2)CI]^+$ (R = Me, Et, ⁱPr) (X = [AICl₄]⁻) but no crystallographic data was obtained. It was not until 2012 that the first crystal structure of a halogen and a pseudohalogen mono-substituted phosphenium cation was determined. The structures of $[P(NR_2)X]^+$ (R = TMS; X = Cl, N₃, NCO, NCS) and (R = ⁱPr; X = Cl, N₃) were determined by scXRD. All cations were stabilized with the $[GaCl_4]^-$ anion. Especially the

Fig. 74 Phosphorus and arsenic cations in formal oxidation state +I.

 $Y = NR_2, CI, N_3,$ NCO, NCS, OTMS

azidophosphenium compound turned out to be a versatile starting material for further chemistry, and made it possible to derive more complex phosphor-centered cations like iminophosphorane-substituted-phosphonium salts $[^{i}Pr_{2}NPNP(Cl)_{2}NR_{2}]^{+}[GaCl_{4}]^{-}$ [R = ^{i}Pr , SiMe₃] (Fig. 76) – for instance through the reaction with the corresponding chlorophosphane R₂NPCl₂.

Miscellaneous cations in oxidation state +III. There are also some examples of the heavier homologues in oxidation state +III (Fig. 77). They were typically synthesized through halide abstraction with Lewis acids.

Another example of ligand-stabilized pnictogen cations are the N-heterocyclic carbenoid rings $[Pn(NR)_2C_2H_2]^{2+}$ (Pn = P, As, Sb), which are formally 1,4-diaza-1,3-butadiene complexes of a pnictogen cation in oxidation state +III, but the delocalization of the positive charge supports also a description as a neutral pnictogen atom. In case of the 1,3,2-diazaphospholidinium rings $[Pn(NR)_2C_2H_4]^+$ (Pn = P, As) the double bond between C4 and C5 is missing.

Reactive pnictonium cations (oxidation state +V). The halopnictonium cations $[PnX_4]^+$ with pnictogen atoms in oxidation state +V (Fig. 79), have a very different presence in the literature. For phosphorus, all four cations (X = F, Cl, Br, I) have been synthesized but for $[PF_4]^+$ no crystal structure was determined. A multitude of structures of $[PX_4]^+$ with different anions was characterized, but only a few of $[ASX_4]^+$ and $[SbX_4]^+$ are known. The cations are normally prepared from PnX₃, X₂ and a Lewis acid.

But there are also some newer, highly oxidized cations in the literature: the formal $[PnPh_3]^{2+}$ cations (Fig. 80), which have a

Fig. 76 Iminophosphorane-substituted phosphorus cation.

Fig. 77 Pnictogen cations with pnictogen atoms in formal oxidation state +III.

strong contact to the anion, serve as useful starting materials for further coordination chemistry of Pn^V compounds.⁴²⁵ The ligand stabilized formal "PO⁺" cations were prepared through the oxidation of a phosphorus carbenoid (Fig. 80, see also the phosphorus carbenoids above) with the amine-*N*-oxides Me₃NO and pyO.⁴²⁶ The charge of the carbene-stabilized formal "[PFPh₂]²⁺", which was prepared from the carbene-stabilized "[PF₂Ph₂]⁺" through fluoride abstraction is likely partially localised on the strongly bound ligand (Fig. 80).⁴²⁷

Protonated cations. With the super acidic system HF/MF_5 (M = As, Sb) it is possible to protonate hydrazoic or phosphoric acid for instance and obtain the aminodiazonium $[H_2N_3]^+$ and phosphatacidium (tetrahydroxyphosphonium) cation $[P(OH)_4]^+$ (Table 10). The structure determinations of the $[SbF_6]^-$ salts revealed the structures of the cations (Fig. 81).⁴²⁸

Group 16 cations

Hundreds of chalcogen cations are known to the literature (see Table 6 for reviews). The relatively strong Ch–Ch– and Ch–X-single bonds (Ch = S, Se, Te; X = F, Cl, Br, I) led to a great diversity of reactive compounds, which include homo- and heteropolyatomic clusters, radical cations and a large number of different $[ChX_3]^+$ structures for instance. To avoid the formation of the more stable neutral compounds, weakly coordinating anions are needed to stabilize the reactive chalcogen cations.

Homopolyatomic cations. The first observation of homopolyatomic cations were the colored solutions of elemental sulfur, selenium and tellurium in sulfuric acid in the 18th and 19th century. Over the next centuries, the nature of these solutions stayed unclear and it was not before the middle of the 20th century that the use of superacidic media and better analytical methods made it possible to characterize the responsible species. Since then, starting with $[O_2]^+[PtF_6]^-$ in 1962,⁵¹⁰ the crystal structures of a multitude of different homopolyatomic chalcogen cations were measured in the last 50 years (Fig. 82). All of them have more or less weakly coordinating anions as counter ions. In some cases, cationic clusters with unusual bonding situations including *trans*-annular interactions and negative hyperconjugation were found that presented quite a challenge for theory (*e.g.* the

Fig. 79 Classical halo-pnictonium cations in oxidation state +V.

 $[S_8]^{2+}$ dication).^{11,503,511} The cations were mostly synthesized under superacidic conditions or through solid state or solvothermal reactions at higher temperature. Either the elemental chalcogen is directly oxidized with strong oxidants like MF₅ (M = As, Sb) or WCl₆ or a combination of the elemental chalcogen, chalcogen halides ChX₄ (*e.g.* SeCl₄, TeBr₄) and a strong Lewis acid undergo a synproportionation.

Metal-chalcogen complexes. The use of very weakly coordinated metal salts M[WCA] (*e.g.* $M^+ = Cu^+$, Ag^+) made it possible to obtain complexes with very weak ligands like the elemental modifications of the chalcogen elements. Stable, metastable and hitherto unknown modifications were prepared, for example $[Cu(S_{12})(S_8)]^+$,⁵¹² $[Cu_2Se_{19}]^{2+}$ (Fig. 83)⁵⁰ and $[Ag_2Se_6]^{2+}$ (Fig. 84).⁵¹³ In all such complexes, extensive charge delocalization from the metal cation to the chalcogen ring took place as evidenced by cation-anion contacts as well as accompanying quantum chemical calculations.

Clusters/cluster-like cations. Chalcogens have a strong tendency to form clusters. There are examples for chains, rings and cages with almost every combination of the groups 15 and 16 (Fig. 68 and 85). The clusters often have delocalized charges, positive and

Fig. 78 Examples for pnictogen carbenoids.

View Article Online

Table 6	Review	articles	including	cationic	group	16 co	mpounds
---------	--------	----------	-----------	----------	-------	-------	---------

Year	Title	Ref.
2000	Recent advances in the understanding of the syntheses, structures, bonding and energetics of the	503
	homopolyatomic cations of groups 16 and 17	
2003	Homoatomic sulfur cations	504
2004	Cages and clusters of the chalcogens	505
2006	Synthesis, reactions and structures of telluronium salts	506
2011	Homo- and heteroatomic polycations of groups 15 and 16. Recent advances in synthesis and isolation using room temperature ionic liquids	66
2013	Catenated sulfur compounds	507
2013	Catenated compounds – group 16 (Se, Te)	508
2013	Recent advances in the syntheses of homopolyatomic cations of the non-metallic elements C, N, P, S, Cl, Br, I and Xe	11
2013	RCNSSS ⁺ : a novel class of stable sulfur rich radical cations	509
2015	Coordination chemistry of homoatomic ligands of bismuth, selenium and tellurium	398 and 399

Fig. 82 Selected examples for homopolyatomic chalcogen cations.

negative hyperconjugation, or show pseudo-aromaticity (Fig. 86) or $\pi^*-\pi^*$ -interactions (Fig. 87). The clusters were often synthesized through direct oxidation of neutral clusters like S_4N_4 or mixtures of the elements (*e.g.* Se and Te) with strong oxidants like MF₅ in SO₂. [NS]⁺, a useful starting material for the syntheses of further rPBC, can be obtained by halide abstraction from trichlorocyclotrithiazene (NSCl)₃ with [Ag]⁺[WCA]⁻.⁵¹⁴

 $(4n + 2)\pi$ -cations. Some planar cationic conjugated π -systems containing chalcogen atoms can be described as (pseudo-)aromatic systems. The four-membered rings are related to the homopoly-atomic cations Ch_4^{2+} and were synthesized through direct oxidation of mixtures of the elemental chalcogens instead of

the pure elements. The five-membered rings were obtained by cycloadditions of $[\rm NS]^+$ and $[\rm NS_2]^{+515}$ or in case of the selenium containing rings with Se, $[\rm Se_8]^{2+}$ or EtSeCl and $[\rm NS]^+$ as starting materials.^{516-518} $[\rm S_4N_3]^+$, a 10 π -system, was synthesized through the reaction of S_4N_4 with Se_2Cl₂ and is stabilized by the polymeric $([\rm SeCl_5]^-)_\infty$ anion.^{519}

 $π^*-π^*$ -complexes. The chalcogen cations containing $π^*-π^*$ interactions can be described as dimers of chalcogen radicals, whose half-occupied interacting orbitals have $π^*$ -character. The two $[Ch_2I_4]^{2^+}$ cations (Ch = S, Se) have a very similar structure, but include different orbital interactions. In case of $[S_2I_4]^{2^+}$ two 2e4c-bonds were formed through the $π^*$ of the diatomic molecules $([I_2 \cdots S_2 \cdots I_2]^{2^+})$.⁵²⁰ In $[Se_2I_4]^{2^+}$ the two delocalized $π^*$ orbitals of the "monomer" $[SeI_2]^{\bullet^+}$ are overlapping.⁵²¹ In the last 10 years, chalcogen systems, which are analogous to the $[I_4]^{2^+}$ cation were characterized by scXRD. The isolobality of $[Ch_2R_2]^{\bullet\bullet}$ and $[X_2]^{\bullet\bullet}$ leads to the same rectangular structural motif with two long $π^*-π^*$ - and two short σ-interactions. Overall those cations are typically diamagnetic in the solid state (Fig. 88).

Radical cations. The chalcogen elements have a rich radical cation chemistry. Most of the cations contain (pseudo-)aromatic systems or Ch–Ch fragments, over which the unpaired electron is delocalized. Strong one-electron oxidants like $[NO]^+$ or XeF₂

Fig. 83 Molecular structure of $[Cu_2Se_{19}]^{2+}$ ($[A(OC(CF_3)_3)_4]^{-})_2 \cdot C_6F_4H_2$. (a) J. Schaefer, A. Steffani, D. A. Plattner and I. Krossing, *Angew. Chem., Int. Ed.*, 2012, **51**, 6009–6012; *Angew. Chem.*, 2012, **124**, 6112–6115. Data from this reference were used to draw this figure.

Fig. 84 Molecular structure of $[(SO_2)_2Ag_2(Se_6)]^{2+}([Sb(OTeF_5)_6]^{-})_2$. D. Aris, J. Beck, A. Decken, I. Dionne, I. Krossing, J. Passmore, E. Rivard, F. Steden and X. Wang, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2004, **179**, 859–863. Data from this reference were used to draw this figure. One anion of the formula unit and the disorder of the anion and SO₂ molecules were omitted for clarity.

Fig. 85 Selected examples for cationic chalcogen clusters or cluster-like structures.

Fig. 86 Heteroatomic cationic aromatic (6 π) systems containing chalcogen atoms. (S₄N₃⁺ is a 10 π system).

combined with a Lewis acid were frequently used to synthesize the cations. There are also examples of diradicals like $(CNS_3^{\bullet^+})_2$, obtained by the reaction of homopolyatomic sulfur cations (a formal $[S_3]^+$ equivalent) and dicyanogen.^{522,523} We also refer the reader to a recently published comprehensive review about $[RCNSSS]^{\bullet^+}$ radical cations and their properties.⁵⁰⁹

Oxidation state +**II.** Chalcogen cations $[RCh]^+$ in the formal oxidation state +**II** are only known in combination with stabilizing donor ligands. It was for example possible to stabilize the formal selenium cation $[RSe]^+$ with the two amine-arms of a pincer ligand⁵²⁴ (Fig. 89). Two different Te(n) cations with the strong donors DMAP and the carbene ⁱPrIM as ligands (Fig. 89) were synthesized with the useful starting material $[(Dipp_2BIAN)Te]^{2+}([OTf]^-)_2$, a base stabilized "Te(OTf)₂", which was presented in 2009 and can also be understood as a tellurium analogue of a carbene.⁵²⁵ The thi-, selen- and tellur-irenium cations (in the figure drawn as coordination complexes of $[RCh]^+$ ions) were all synthesized with starting materials that contain Ch–Ch bonds like $Me_2S_2^{82}$ or $[Se_3Me_3]^{+526}$ or already oxidized chalcogens like $[PhTe]^+[SDF_6]^{-526}$ and alkynes.

Another example of ligand-stabilized chalcogen cations are the N-heterocyclic carbenoidic rings $[R_2C_2N_2Ch]^{2+}$ (Ch = S, Se, Te), which are formally 1,4-diaza-1,3-butadiene complexes of a chalcogen cation in oxidation state +II, but the delocalization of the positive charge supports a description as a chalcogen in oxidation state +IV (Fig. 90).⁵²⁷ The carbene-analogues were prepared through complexation of an *in situ* generated Ch²⁺ dication, which can be obtained through halide abstraction from SCl₂,⁵²⁸ SeCl₄⁵²⁹ or (Dipp₂BIAN)Tel₂⁵²⁵ (Dipp₂BIAN = 1,4-(2,6-diisopropyl)phenylbis(arylimino)-acenaphthene).

Oxidation state +IV. The $[ChX_3]^+$ cations were one of first structurally characterized reactive chalcogen cations (Fig. 91). The first experiments mainly on [TeCl₃]⁺ were published already in the 1950s.⁵³⁰ Now, a multitude of crystal structures can be found in the literature. Due to the relatively simple vibrational spectra of the four-atomic molecules, they can serve as a probe for the coordination power of the anion. The stronger the secondary interaction is, the weaker are the intramolecular Ch-X bonds and thus they get red-shifted.531 There are also over 60 crystal structures of triorganyltelluronium $[TeR_3]^+$ cations with different anions. We decided only to list the "classics" [TePh₃]⁺⁵³² and $[Te(C_6F_5)_3]^{+533}$ and to refer to a recently published review about the chemistry and structures of these cations.⁵⁰⁶ Some newer examples of compounds with chalcogen atoms in oxidation state +IV are the triazidetelluronium cation $[Te(N_3)_3]^{+534}$ and a fluoride bridged version of [TeCl₃]⁺.²⁸

Oxidation state +VI. To our knowledge, the only chalcogen cation with a chalcogen atom in oxidation state +VI is $[TePh_5]^+$.

Fig. 89 Selected chalcogen cations with chalcogen atoms in the formal oxidation state of +II.

Fig. 90 Carbene-analogous chalcogen dications.

It was obtained through halide abstraction from TePh₅Cl with silver triflate and crystallized with the classical WCAs $[B(C_6F_5)_4]^{-532}$ and $[B(Ar^{CF_3})_4]^{-}$ (Fig. 92).⁵³⁵

Protonated chalcogen cations. The use of super-acidic conditions, makes it possible to obtain the protonated forms of very weakly basic molecules like trifluorosulfonic acid (Fig. 93).⁵³⁶ In some cases, it is not possible to isolate the neutral form of a molecule, but the conjugated positively charged acid (*e.g.* carbonic acid⁵³⁷). We decided to list the protonated carbonic acid together with the sulphur species like protonated sulphuric acid in this chapter (Table 11).⁵³⁸

Group 17 cations

The electronegative halogen atoms are strongly oxidizing and have high ionization energies as well as electron affinities. This makes halogen cations good electrophiles, which need very

Fig. 91 Chalcogen cations with chalcogen atoms in oxidation state +IV. * Every combination but $[SI_3]^+$ is known.

Fig. 92 $[TePh_5]^+$, a cation with a chalcogen atom in oxidation state +VI.

oxidation-resistant WCAs to be stabilized in condensed phases. Concerning the synthesis of these highly reactive compounds, there are many similarities to the noble gas cations. Almost every halogen cation, for which a crystal structure is known, was synthesized through a halide abstraction by a strong Lewis acid like MF_5 (M = As, Sb). The starting materials are normally neutral interhalogen compounds like ClF_3 , BrF_5 , IF_7 , I_2Cl_6 , or IBr, and the majority of the obtained cations contains halogen atoms in oxidation state +III, +V and +VII (Table 7).

Fluorine cations

Because of the high electronegativity and ionization potential of fluorine, it would be very difficult to oxidize it and obtain

Fig. 93 Examples for protonated molecules obtained under superacidic conditions.

Table 7	Table 7 Review articles including cationic group 17 compounds					
Year	Title	Ref.				
2000	Recent advances in the understanding of the syntheses, structures, bonding and energetics of the homopolyatomic cations of groups 16 and 17	503				
2008	Polyvalent perfluoroorgano- and selected polyfluoroorgano-halogen(\mathfrak{m} and \mathfrak{v}) compounds	640				
2013	Recent advances in the syntheses of homopolyatomic cations of the non-metallic elements C, N, P, S, Cl, Br, I and Xe	11				

actual fluorine cations in the condensed phase. By contrast, in the gas phase this is possible.⁶⁴¹ Some bulk cationic compounds contain fluorine, but it is very unlikely that the positive charge is actually localized on the fluorine atom. Such compounds like for example the in Fig. 94 shown compound that was published as a formal disilylfluoronium ion are discussed in the chapters of the element, which has a larger positive charge density (here silicon).⁶⁴²

It should be mentioned that also electrophilic "F⁺-" or "N–F-" reagents like "Selectfluor" belong to this class of compounds that are very useful for organic transformations and compatible with solvents like CH_2Cl_2 .⁶⁴³

Chlorine, bromine and iodine cations

Homopolyatomic cations. Two homopolyatomic chlorine cations are known in the solid state and its crystal structures of $[Cl_3]^+$ and $[Cl_4]^+$ were published in 1999⁴² and 2000.⁶⁴⁴ $[Cl_2]^+$, which would be the lighter homologue to the known $[Br_2]^+$ and $[I_2]^+$, was only detected in the gas phase. $[Cl_3]^+$ can be synthesized through a reaction of ClF with AsF₅, with the adduct ${}^{\delta_+}$ Cl-F ${}^{\delta_-} \rightarrow$ AsF₅ as intermediate. This leads to a more activated ClF with a more positively charged chlorine atom and results in the formation of $[Cl_2F]^+[AsF_6]^-$, which can be described as a formal "Cl⁺" stabilized by a second equivalent of CIF. When elemental chlorine is used instead of a second equivalent of CIF, $[Cl_3]^+$ is formed. $[Cl_4]^+$, which is a homopolyatomic cation but also a $\pi^*-\pi^*$ -complex (see below: $\pi^*-\pi^*$ -complexes of group 17) can be obtained by direct oxidation of chlorine with the strong one-electron oxidant IrF₆. For bromine, three cations are known. Of those, $[Br_2]^+$ was one of the first homopolyatomic cations of the non-metals for which the crystal structure was determined. It was already in 1968 that Edwards *et al.* stabilized it with the very good $[Sb_3F_{16}]^-$ WCA.⁶⁶³ The structures of the other two known cations $[Br_3]^+$ and $[Br_5]^+$ were measured relatively late in 1991. $[Br_5]^+$ can be synthesized by oxidation of elemental bromine with the strong oxidant $[XeF]^{+211}$ and the only measurable crystals of a $[Br_3]^+$ salt were obtained from a 20 year old $[BrF_2]^+[AsF_6]^-$ solution.⁶⁴⁵ Iodine has five known cations. $[I_2]^+$, $[I_3]^+$ and $[I_5]^+$ are isostructural to the

Fig. 94 Left: Formal disilylfluoronium ion that bears a larger positive charge density at the silicon atoms. Therefore, it is discussed with the silylium cations in the section on group 14 rPBC. Right: The Selectfluor reagent.

lighter homologues and can all be obtained by oxidation from I_2 with the strong Lewis acids MF_5 (M = As, Sb). $[I_4]^{2+}$ was synthesized through the entropically unfavorable dimerization of the paramagnetic $[I_2]^{+\bullet}$ radical cation at low temperature and can be described as an rectangular planar diamagnetic $\pi^*-\pi^*$ -complex (see below: $\pi^*-\pi^*$ -complexes of group 17) (Fig. 95).

Metal-halogen complexes. The very weak coordination power of the neutral dihalogen molecules X_2 (F_2 , Cl_2 , Br_2 , I_2) made it very difficult to obtain metal-halogen-complexes. Only for diiodine, which is the strongest donor, it was possible to get polymeric $[{Ag(I_2)}_n]^{n+}$ cations through the reaction of $[Ag]^+[MF_6]^-$ (M = As, Sb) and I_2 in liquid SO₂.⁶⁴⁶ Also one example of a neutral complex with diiodine as ligand is known: [Rh₂(O₂CCF₃)₄(I₂)]·I₂.⁶⁴⁷ Dibromine and dichlorine complexes remained unknown. However, very recently,648 the use of the very weakly coordinating solvent perfluorohexane and one of the weakest anions $[Al(OR^{PF})_4]^-$ led to the isolation of the first dichlorine and dibromine complexes $[Ag(X_2)]^+$ (X = Cl, Br, also I) (Fig. 96). Moreover, diiodine turned out to have a rich coordination chemistry and formed three further structures with Ag_2I_2 -moiety as well as isolated $[Ag_2(I_2)_4]^{2+}$ as well as $[Ag_2(I_2)_6]^{2+}$ dications well separated from the counterion (Fig. 96). It should be noted that the $[Ag(X_2)]^+$ cations are structurally related to the $[X_3]^+$ cations and the polymeric $[{Ag}(I_2)]_n]^{n+}$ cations bear some similarity to $[I_5]^+$.

 $\pi^*-\pi^*$ -complexes. The three halogen containing cations that can be described as $\pi^* - \pi^*$ complexes, can be understood as adducts of two homonuclear diatomic (radical) cations. According to its synthesis from chlorine and $[O_2]^+[SbF_6]^-, [Cl_2O_2]^{+\bullet}$ can be described as complex of the paramagnetic $[O_2]^{+\bullet}$ cation with Cl_2 . For $[Cl_4]^{+\bullet}$, which is made from Cl_2 and the strong oxidant IrF₆, an initially formed paramagnetic $[Cl_2]^{+\bullet}$ could react with another equivalent of Cl_2 . In the case of $[I_4]^{2+}$, which was obtained from an $[I_2]^{+\bullet}$ solution at low temperature, a dimerization of the two paramagnetic $[I_2]^{+\bullet}$ units to give the $[I_4]^{2+}$ dimer is obvious. All three syntheses have in common that at least one molecule with a half-filled π^* orbital as HOMO is involved, for $[I_4]^{2+}$ even both "starting materials". The formed $\pi^* - \pi^*$ interaction includes two quarter bonds for $[Cl_2O_2]^{+\bullet}$ (243/241 pm, Σ vdW radii: 327 pm) and $[Cl_4]^{+\bullet}$ (293 pm, Σ vdW radii: 350 pm) and two half bonds for $[I_4]^{2+}$, where the interaction leads to 2e-4c $\pi^*-\pi^*$ bond (328 pm, Σ vdW radii: 396 pm, Fig. 97).^{11,503}

Oxidation state +I. The isolated halogens X in this oxidation state would either correspond to a triplet state X^+ or the triplet dimer $[X = X]^{2+}$ – isoelectronic to the dichalcogens O_2 to Te_2 . Neither the monomer, nor the dimer cation are hitherto known in condensed phase. Only one cation type with a formal oxidation state of +I is known: $[I(Donor)_2]^+$, in which the electrophilicity of I⁺

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Fig. 95 Structurally characterized homopolyatomic cation of chlorine, bromine and iodine.

Fig. 96 Structurally characterized metal complexes with dihalogen molecules as ligands.

Fig. 97 Structurally characterized halogen cations, which include $\pi^* - \pi^*$ -interactions. Bond lengths: $[Cl_2O_2]^+$: O–O 121, $Cl \cdots O$ 241/243, Cl-Cl 191; $[Cl_4]^+$: Cl–Cl 194, $Cl \cdots Cl$ 293; $[I_4]^{2+}$: I–I 258, $I \cdots I$ 328 [pm].

is dampened by coordination of neutral donor molecules. Thus, $[I_3]^+[AsF_6]^-$ reacted with acetonitrile to form the structurally characterized salt $[I(NCMe)_2]^+[AsF_6]^-$ (Fig. 98).⁶⁴⁹ The closely related $[I(py)_2]^+[BF_4]^-$ is a useful reagent in organic chemistry.⁶⁵⁰ For the latter it is disputable, if this is better assigned as being a pyridinium cation.

Oxidation state +III. The known interhalonium cations with the central halogen atoms in oxidation state +III are $[ClF_2]^+$, $[BrF_2]^+$, $[ICl_2]^+$, $[IBrCl]^+$ and $[IBr_2]^+$ (Fig. 99). All were synthesized

MeCN---I---NCMe

Fig. 98 $[I(NCMe)_2]^+$ cation in $[I(NCMe)_2][AsF_6]$ with iodine in the formal oxidation state +I. 649

by halide abstraction from a neutral interhalogen. Others, like $[Cl_2F]^+$ and $[IF_2]^+$ are also accessible, but no crystal structures are known.⁶⁵¹ The cations $[I_3Cl_2]^+$ and $[I_3Br_2]^+$ can also be understood as interhalonium compounds with two iodine atoms in oxidation state +III and one in -I and are in some way the lighter homologues of the homopolyatomic cation I_5^+ .^{652–654} Two recently published examples are the dialkyl chloronium cations $[ClR_2]^+$ (R = Me, Et), which were synthesized through alkylation of chloromethane and –ethane, both stabilized by the very good carborate WCA $[CHB_{11}Cl_{11}]^-$ (Fig. 100). The superacid $H(CHB_{11}Cl_{11})$ was used to generate ion-like methyl and ethyl cations "R⁺" by protonation of the chloroalkanes RCl, which than react with a second equivalent of RCl to the chloronium cations.⁶⁵⁵

In case of bromine and iodine, also some new examples were synthesized during the last 20 years. The stable cyclic bromonium and iodonium ions of sterically hindered olefins (Fig. 101) were stabilized by the $[OTf]^-$ anion and can be seen as stable intermediates of the halogenation of olefins.⁶⁵⁶

Oxidation state +V. There are also some examples of cations in oxidation state +V. Besides the classical $[XF_4]^+$ cations (X = Cl, Br, I), the two oxocations $[ClO_2]^+$ and $[BrO_2]^+$ as well as since 2008 also one example of a cation with a X^V -carbon bond were structurally characterized. This electrophilic $[IF_2(C_6F_5)_2]^+$ cation was synthesized as $[BF_4]^-$ salt through halide abstraction and ligand exchange from $C_6F_5IF_4$ and $C_6F_5BF_2$.⁶⁵⁷ Examples without crystal structures include $[OCIF_2]^{+658}$ and $[OBrF_2]^+$ (Fig. 102).⁶⁵⁹

Oxidation state +VII. In 2004, with the octahedral complexes of the series $[XF_6]^+$ (X = Cl, Br, I) the first structures of cations with oxidation state +VII were published (Fig. 103). All three cations were crystallized with the anion $[Sb_2F_{11}]^-$ and have very weak contact to the anion (Fig. 104). It is also possible to obtain the $[AsF_6]^-$ and $[SbF_6]^-$ salts, but the differentiation between the octahedral $[XF_6]^+$ and $[MF_6]^-$ would not be easily done by X-ray crystallography (*e.g.*, for $[BrF_6]^+[AsF_6]^-$ or $[IF_6]^+[SbF_6]^-$). The use of $[Sb_2F_{11}]^-$ allowed for a clear differentiation between cations and anions (Table 12).⁶⁶⁰

Group 18 cations

Due to the high ionization potential of the noble gases, their cations all need weakly coordinating and very oxidation resistant

Fig. 99 Structurally characterized halonium cations.

Fig. 100 Molecular structure of $[ClMe_2]^+[CHB_{11}Cl_{11}]^-$. E. S. Stoyanov, I. V. Stoyanova, F. S. Tham and C. A. Reed, *J. Am. Chem. Soc.*, 2010, **132**, 4062–4063. Data from this reference were used to draw this figure. Bond lengths in [pm].

Fig. 101 Stable [OTf]⁻ salts of cyclic bromonium and iodonium ions.⁶⁵⁶

anions to be stabilized. The history of noble gas compounds started in the early 1960s, when Bartlett obtained " $[Xe]^+[PtF_6]^-$ " from a reaction of $[O_2]^+[PtF_6]^-$ and xenon – the noble gas with the lowest ionization potential. Over the next decades the composition of this product stayed unclear. In 2000 a very comprehensive review about the nature of the product was published with the result that it is very likely a $[XeF]^+$ salt of a polymeric (weakly coordinating) $[PtF_5]_n$ anion.⁶⁸¹ All of the hitherto known and structurally characterized noble gas cations are included with Table 13.

Krypton cations

The only other noble gas besides xenon, for which cations are known, is krypton. The oxidation state +II is the only one known yet. The diversity of the amount of compounds and the number of hitherto realized Kr–X bonds is much smaller. Only two different fluorine-containing cations are known ([KrF]⁺ and [Kr₂F₃]⁺) and some nitrile complexes, which can be described as Kr–N compounds. [KrF]⁺ is a very strong oxidative fluorinating reagent⁶⁸² and made is possible to synthesize [XeF₅]⁺ from Xe,⁶⁸³ [ClF₆]⁺ from ClF₅,⁶⁸⁴ [BrF₆]⁺ from BrF₅⁶⁸⁵ and [O₂]⁺ from O₂.⁶⁸⁶ There are only seven crystal

Fig. 102 Structurally characterized halogen cations with halogen atoms in oxidation state $+V.^{657,660-662}$

Fig. 103 Structurally characterized halogen cations with halogen atoms in oxidation state $+\text{VII}.^{660}$

Fig. 104 Molecular structure of $[BrF_{6}]^+[Sb_2F_{11}]^-$. J. F. Lehmann, G. J. Schrobilgen, K. O. Christe, A. Kornath and R. J. Suontamo, *Inorg. Chem.*, 2004, **43**, 6905–6921. Data from this reference were used to draw this figure. Bond lengths in [pm].

structures of krypton cations in the literature and five of them with the classical $[AsF_6]^-$ and $[SbF_6]^-$ anions.

Xenon cations

The lower ionization potential calls for a richer chemistry of xenon. Thus, since the birth of noble gas chemistry, a multitude of different xenon cations containing the element in the oxidation state II, IV and VI were synthesized.

Homopolyatomic cations. The two known homopolyatomic cations are $[Xe_2]^+$ and $[Xe_4]^+$. It was only possible to obtain a crystal structure from $[Xe_2]^+$, but because of its importance $[Xe_4]^+$, which was assigned based on spectroscopic and computational evidence as being stable at higher Xe pressure, is also mentioned.

Fluoroxenon cations and related. The majority of such cations include Xe–F bonds ($[XeF_m]^+$, m = 1, 3, 5; $[Xe_2F_n]^+$, n = 3, 11, Fig. 105), but over the decades a lot of different cations with Xe–X (X = F, Cl, O, N, C) bonds were obtained and are included with Table 13 and in part also with Fig. 106. Some of them were already published in the late sixties, ^{687–689} but also recently with $[XeF]^+[SbF_6]^-$ and $[XeF_3]^+[SbF_6]^-$ some new structures were presented ^{690,691} and in 2015 the crystal structures of $[XeF_5]^+$ with the classical WCAs $[SbF_6]^-$ and $[Sb_2F_{11}]^-$ were measured for the first time, ⁶⁹² which shows that the investigation of xenon cations is still in progress.

Most of the syntheses use Lewis acids to abstract fluoride from the neutral xenon fluoride (XeF₂, XeF₄, XeF₆). Most structures contain the conjugated weakly coordinating anions of these Lewis acids ($[MF_6]^-$, M = As, Sb, Au, Ru). Another mentionable approach is the reaction of XeF₂ with the Lewis acid B(C₆F₅)₃, which led to the [F₅C₆Xe]⁺ cation containing the first Xe–C bond and the unsymmetric anion [(F₅C₆)₂BF₂]^{-.693} Through the use of the dioxydifluoride XeO₂F₂ as starting

Fig 105 Eluoroxenon cations

material, it was also possible to obtain the mixed cation $[XeO_2F]^+$ or the fluoride bridged $[F(XeO_2F)_2]^+$ (Fig. 107).⁶⁹⁴

Metal-xenon complexes. There are also some examples of metal-xenon complexes (M = Au^I, Au^{II}, Au^{III} and Hg^{II}), which can be described as part of the stabilization of modifications of main group elements as metal complexes ($[M_m(E_n)]^+$). Formally, Xe is isoelectronic to iodide I⁻, and thus complex formation appeared to be difficult, but feasible. The syntheses proceed under the superacidic conditions of the systems HF/MF_5 (M = As, Sb). In case of these compounds, the role of the anions can be described as unreactive, but not really weakly coordinating. Most of them have relatively short contacts to the anions (shorter than the sum of the van der Waals-radii) and show typical coordination spheres with the anions included (e.g. square planar trans-Au^{II}Xe₂(SbF₆)₂) (Fig. 108).⁶⁹⁵

Only the $[AuXe_4]^{2+}$ dication exists in a truly ionic structure with two $[Sb_2F_{11}]^-$ counterions in the lattice (Fig. 109).

Conclusion

Sparked by the availability of new WCAs and new WCA starting materials in combination with novel concepts like FLP and others, the number of rPBC exploded over the last one to two decades. Noteworthy additions were found for each p-block element and, despite their quite high moisture and air sensitivity, true applications of rPBC salts emerged.

Where will this lead to over the next one or two decades...? To our understanding the blue sky synthesis of rPBC salts barely accessible with good/novel WCAs in combination with suitable media will continue to function as an "eye-opener" of what is possible. Many surprising discoveries will force us to sharpen our use of bonding concepts or lead to novel applications. It is often the

Fig. 107 Examples of Xe-O-F cations.

View Article Online

Review Article

Fig. 108 Molecular structure of trans-Au^{II}Xe₂(SbF₆)₂. T. Drews, S. Seidel and K. Seppelt, Angew. Chem., 2002, 114, 470-473; Angew. Chem., Int. Ed., 2002, 41, 454-456. Data from this reference were used to draw this figure

Fig. 109 Molecular structure of tetragonal [Au^{II}Xe₄]²⁺([Sb₂F₁₁]⁻)₂. T. Drews, S. Seidel and K. Seppelt, Angew. Chem., 2002, 114, 470-473; Angew. Chem., Int. Ed., 2002, 41, 454–456. Data from this reference were used to draw this figure.

combination of structural knowledge ("Wow, this crazy cation is stable...? I would have never thought so.") that leads to the right moment of wonder and then inspiration ("Hm, if this cation is really straight forward accessible, one could use its electrophilic/ acidic/oxidizing/activating properties in application XY"). In the 21st century, it is our duty as creative scientists to use this potential from fundamentals to the first application. Do not hesitate to really seek for application of your rPBC salt, as rarely others will pick up on these ideas, since the activation barrier for synthesizing a to this application group unknown rPBC is simply too high. So do not give up until you have demonstrated a possible application - yourself or through collaborations - to a level that others will continue. And on the other hand this compilation of rPBC should encourage application based groups to identify interesting cations that may have an application. Contact the people, the chances are very good that through an informal collaboration showing a proof-of-principle new and relevant application areas may be developed.

In this respect, we are looking forward to all the scientific creativity that is breaking loose, and to realize what potentially could be done with the rPBC. This is an integral element of innovation and the justification for preparing blue sky or simply beautiful and esoteric compounds.
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. (cc)) BY-NC

 Table 8
 Group 13 cations, their counterions (WCA) as well as the synthesis routes. The entries are ordered as follows: (i) from boron- to thallium-based cations, (ii) from unsubstituted, via alkyl/aryl, Cp, arene and ligand to transition-metal substituted cations, (ii) from low to high CNs, (iv) from mono- to multinuclear group 13 complexes. Note that the structural diagrams obey a distance criterion for

 4 1 4 4 4 ¢ ¢ ÷ 1

interactions, but not necessarily	interactions, but not necessarily a zezc-understanding of every interaction line. See comment in the introduction	action line. Se	ee comment in the introduction		ticle
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
Unsubstituted					
In^+	[OTf] ⁻	Prot	$InCp^{*} + H^{+}[WCA]^{-}$	Soluble in organic solvents in contrast to the In(i)	182
-1J1+	$[{ m B}({ m Ar}^{{ m CF}_3})_4]^-/[{ m B}({ m C}_6{ m F}_5)_4]^-$	Prot	$TOEt + [H(OEt_2)_2]^+[WCA]^-$		196 and 197
TI^+	$[\mathrm{B}(\mathrm{OTeF}_5)_4]^-$	Lewis	$T1^{+}[OTeF_{5}]^{-} + B(OTeF_{5})_{3}$ in $CH_{2}Cl_{2}/$ 1.2-C, $Cl_{3}F_{3}$	I	198
Tl^+	$[\mathrm{Al}(\mathrm{OR}^{\mathrm{PF}})_{4}]^{-}/[\mathrm{Al}(\mathrm{OR}^{\mathrm{HF}})_{4}]^{-}/[\mathrm{Al}(\mathrm{OR}^{\mathrm{HF}})_{4}]^{-}$	Salt	$TIF + Li^{+}[WCA]^{-}$	I	199 and 200
Alkyl/aryl substituted				:	
$[Mes_2B]^{+}$	$[HCB_{11}Cl_{11}]^{-}/[B(C_{6}F_{5})_{4}]^{-}$	Salt	$\operatorname{Mes}_{SBF} + \operatorname{Et}_{SS}(HCB_{11}Cl_{11})/$	Me Me	32 and 113
1			[BU30] [WUA]	Me	
$egin{array}{l} \left({{ m R}_2 Al} ight) \left({ m R} = { m Me}, \; { m Et} ight) \ \left({{ m Et}_2 Al} ight) \end{array}$	$\begin{split} \left[B_{12} C l_{12} \right]^{2-} \\ \left[C B_{11} H_6 X_6 \right]^{-} \left(X = C l, \ B r \right) \end{split}$	Alk Alk	$\begin{array}{l} R_{3}Al + \left\{ \left[CPh_{3} \right]^{+} \right\}_{2} \left[B_{12}Cl_{12} \right]^{2} \\ Et_{3}Al + \left[CPh_{3} \right]^{+} \left[CB_{11}H_{6}X_{6} \right]^{-} \end{array}$	Ion-like compound Ion-like compound	87 128
$[(2,6-Mes_2C_6H_3)_2AI]^+$	$[B(C_6F_5)_4]^-$	Hyd	$(2,6-Mes_2C_6H_3)_2AlH + [CPh_3]^+[WCA]^-$	Related structure to the [MeS ₂ J5] catton, though the MeS moleties of the 2.6 -MeS ₂ C ₆ H ₃ substituent	129
$[(2,6-Mes_2C_6H_3)_2Ga]^+$	$[Li{Al(OR^{HF})_4}_2]^-$	Salt	$(2,6-Mes_2C_6H_3)_2GaCl + 2Li^+[WCA]^-$	additionally strictid the autimitum carton Similar structure as the $[(2,6-Mes_2C_6H_3)_2A]^{+}$ cation	158
Cyclopentadienyl complexed					ŝ
[(η ^{~-} -Cp) ₂ AI] [(η ⁵ -Cp [/]) ₂ AI] ⁺	$[B(C_6F_5)_4]^{-1}$	Prot Alk	$\operatorname{AlCP}_{3}^{3} + \left[\operatorname{H(OEt}_{2})_{2}\right] \left[\operatorname{WCA}\right]^{2}$ $\operatorname{Cp}_{3}^{3} \operatorname{Al} + \left[\operatorname{CPh}_{3}\right]^{4} \left[\operatorname{WCA}\right]^{-}$	11	79 131
$[(\eta^{5}-Cp^{*})_{2}AI]^{+}$	$[{Ph(Me)B(\eta^{5}-C_{5}H_{4})_{2}}ZrCl_{2}]^{-}$	Alk	$Cp^{*}_{2}AIMe + \{Ph(SMe_{2})B-(\eta^{\vee}-C_{5}H_{4})_{2}\}ZrCl_{2} + [Ph_{3}Pm-NmPPh_{3}]^{+}Cl^{-}$	12 —	132
$[(\eta^5-Cp^*)_2A]^+$ $[(\eta^5-Cp)_2(Et_2O)_2A]^+$	$[MeB(C_6F_5)_3]^-$ $[Al(OR^{PF})_4]^-$	Alk Prot	$Cp^{*}_{2}AIMe + B(C_{6}F_{5})_{3}$ AICp ₃ + [H(OEt ₂) ₂] ⁺ [WCA] ⁻	- Et ₂ O can coordinate the $[(\eta^5-Cp)_2A]^+$ cation	133 79
1153 (14 C (1			2 () () - - - - - - - - - -		
[Ga_(ŋ~-Cp*)]	$[B(Ar^{-3})_4]$	Prot	[H(OEt ₂) ₂] [WCA] + GaCp*	Cal	159
$[(\eta^{1}-Cp^{*})(\eta^{3}-Cp^{*})Ga]^{+}$	$[{ m BF}_4]^-$	Prot	$Cp^{*}_{3}Ga + HBF_{4}$	gf [B(η^5/η^1 -Cp*) ₂] ⁺ and [Al(η^5/η^5 -Cp*) ₂] ⁺	160
$[In_2(\eta^5-Cp)]^+$	[Cp ₃ In-Cp-InCp ₃] ⁻	Com	In ⁺ [OTf] ⁻ + Cp ₂ Mn in C ₆ H ₅ Me	Inverted sandwich structure (<i>g</i> . the related $[Ga_2(\eta^5-Cp^*)]^+$ cation)	183
$[In_2(\eta^5-Cp^*)]^+$	$[{ m B}({ m C_6F_5})_4]^-$	Prot	$[(G_6H_5Me)H]^+[WCA]^- + InCp^*$	le [G	185
$[(\mu - \eta^{5} - C_{5}Me_{5})In_{2}(\eta^{6} - Tol)_{2}]^{+}$	$[(C_6F_5)_3BO(H)B(C_6F_5)_3]^-$	Prot, Coi	$Prot, \ Com \ (Cp^*In)_6 + B(C_6F_5)_3 + H_2O \cdot B(C_6F_5)_3$		184 and 185
				Me	Chem

Review Article

824 | Chem. Soc. Rev., 2016, 45, 789-899

Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
Arene complexed $\begin{bmatrix} Ga(\eta^{6} - C_{6}H_{5}R)_{n} \end{bmatrix}^{+}$ $\begin{bmatrix} R = F, Me; \\ n = 2, 3 \end{bmatrix}$	[Al(OR ^{PF}) ₄] ⁻	ŏ	Ga ⁰ + Ag ⁺ [WCA] ⁻ in arene	t D B B C C C C C C C C C C C C C C C C C	31, 91 and 92
$\left[\operatorname{Ga}(\eta^{6}\operatorname{-arene})_{n}\right]^{+} (n = 2, 3)$	[Al(OR ^{PF}) ₄] ⁻ [Al(OR ^{PF}).] ⁻	Com	$\begin{split} & [Ga(G_6H_5F)_{2^{-3}}]^{+}[WCA]^{-} + arene \\ & (arene = Mes, p-Xyl, G_6Me_6) \\ & [Ga(C_2H_2F)_{-2}]^{+}[WCA]^{-} + DPF \end{split}$	Bent-sandwich (2 ligands) or tubby coordinated complex (3 ligands) First structurally characterized bent-sandwich	7 8 and 99
$\left[\mathrm{Var}(\mathrm{U1}\ \mathrm{-}\mathrm{J2Fb}_J) \right] = \left[\mathrm{In}(\eta^6\mathrm{-}\mathrm{GeH_5F})_n \right]^+ (n=2,3) \\ \left[\mathrm{In}(\eta^6\mathrm{-}\mathrm{Oe}_6\mathrm{H_4F_2})_2 \right]^+ \\ \mathrm{Var}(\omega_6 \in \Delta_{AC})^{1+} \end{array}$	$\begin{bmatrix} \operatorname{Au}(\operatorname{OR}^{\operatorname{PF}})_{4} \end{bmatrix}^{-1} \\ \begin{bmatrix} \operatorname{Al}(\operatorname{OR}^{\operatorname{PF}})_{4} \end{bmatrix}^{-1} \\ \begin{bmatrix} \operatorname{Al}(\operatorname{OR}^{\operatorname{PF}})_{4} \end{bmatrix}^{-1} \\ \operatorname{Fr}_{4} \operatorname{Ar}(\operatorname{Pr}_{4} \cap \mathcal{F})_{4} \end{bmatrix}^{-1} \end{bmatrix}$	Ox Ox Salt	[ua(UefT_5F)2-3] [WCA] + DFE In ⁰ + Ag ⁺ [WCA] ⁻ in C ₆ H ₅ F InCl + Li ⁺ [WCA] ⁻ in o -C ₆ H ₅ F ₂ [Tl(C ₆ Me ₆) ₂] ⁺ in Et ₂ O + C ₆ H ₅ Me,	ansa-arene complex Bent-sandwich complex (cf , gallium analogue) Bent-sandwich complex (cf , gallium analogue) First example of a mono- η^{6} -coordinated thallium	o anu 99 162 186
[11(1] -Ce ^{ME6}] [Tl([n ⁶ -C ₆ H ₅ Me] ₂] [†] [Tl([n ⁶ -C ₆ H ₅ Me] ₃] [†]	[H24Y[D(C6F5)3f2] [HCB11H5Br6] ⁻ [H2N{B(C6F5)3}2]	Salt Com	wacuum Cs⁺[HCB ₁₁ H ₅ Br ₆] [−] + TlF [Tl(OEt ₂) ₂] ⁺ [WCA] [−] + C ₆ H ₅ Me	complex Bent-sandwich complex (cf. gallium analogue) Tubby coordinated complex (cf. gallium analogue)	204 201 203
$\begin{split} [TI(\eta^6\text{-}Mes)_2]^+ \\ [TI(\eta^6\text{-}G_6\text{Me}_6)_2]^+ \end{split}$	$[B(OTEF_5)_4]^-$ $[H_2N\{B(C_6F_5)_3\}_2]^-$	Lewis, Com Com	$T1^{+}[OTeF_{5}]^{-} + B(OTeF_{5})_{3} \text{ in Mes}$ $[T1(OEt_{2})_{3}]^{+}[WCA]^{-} + C_{6}Me_{6}$	Tubby coordinated complex (cf gallium analogue) Tubby coordinated complex (cf . gallium analogue)	202 203
Ligand substituted (CN = 2) [Cp*B(IMes)] ²⁺	[AlCl4] ⁻	Lewis	Cp*BCl ₂ (IMes) + 2AlCl ₃	Mes North State St	210
$\left[\left({}^{t}\mathrm{Bu}_{3}\mathrm{PN}\right)_{2}\mathrm{B}\right]^{+}$	$[{ m B}({ m C}_6{ m F}_5)_4]^-$	Hyd	$(^{d}Bu_{3}PN)_{2}BH + [Ph_{3}C]^{+}[WCA]^{-}$	^t Bu ₃ P=N-B-N=P ⁻¹	114
['Bu2MeSi-Al-Si'Bu2-Si'Bu2Me] ⁺	$[B(C_6F_5)_4]^-$	Alk	$Al(SiMe^{t}Bu_{2})_{3} + [Et_{3}Si]^{+}[WCA]^{-}$	Hyperconjugation with a neighboring Si-Si bond R	134
$[Ga(IR)_2]^+$ $[R = Pr, Mes)$	[Al(OR ^{PF}) ₄] ⁻	Com	$\left[Ga(C_6H_5F)_2\right]^+\left[WCA\right]^- + IR$	R R N R	161
$[{}^{t}Bu_{2}MeSi-Ga-Si^{t}Bu_{2}-Si-Me^{t}Bu_{2}]^{+} \ [B(C_{6}F_{5})_{4}]^{-}$	$\left[B(C_6F_5)_4 \right]^-$	Alk	$Ga(SiMe^{t}Bu_{2})_{3} + [Et_{3}Si(C_{6}H_{6})]^{+}[WCA]^{-}$	Stabilized by hyperconjugation with a neighboring SI-Si bond	134
$[^{t}Bu_{3}Si-Ga-Si^{t}Bu_{3}]^{+}$	$[Al(OR^{PF})_4]^-$	Salt	$(^{t}Bu_{3}Si)_{2}GaCl + Ag^{+}[WCA]^{-}$	Linear arrangement	163
$[Ga(P^tBu_3)_2]^+$	$[Al(OR^{PF})_4]^-$	Com	$\left[Ga(C_6H_5F)_2\right]^{+}\left[WCA\right]^{-}+P'Bu_3$	'Bu ₃ P Ga [†]	162
$[In(Mes_2py)(\eta^6\text{-}C_6H_5F)]^+$	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4\right]^-$	Salt, Com	Salt, Com InBr + Na ⁺ [WCA] ⁻ + Mes ₂ py	Mes Mes Mes	187
$\left[\ln(\mathrm{IPr})_2 \right]^+$	[Al(OR ^{PF}) ₄] ⁻	Com	$\left[In(C_6H_5F)_2 \right]^+ + IPr$		161

Table 8 (continued)					viev
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
$[\ln({ m Mes_2py})_2]^+$	$[B(Ar^{CF_3})_4]^-$	Salt	In ⁺ Br ⁻ + Na ⁺ [WCA] ⁻ + 2Mes ₂ py	Mes Nes Nes Nes Nes Nes Nes	cle 187
$[TI(1,2-CI_2C_2H_4)]^{+}$	$[B(OTeF_5)_4]^-$	Lewis, Com	$Tl^{+}[OTeF_{5}]^{-} + B(OTeF_{5})_{3}$ in 1,2-C ₂ H ₄ Cl ₂		198
Ligand substituted (CN = 3) [BMes ₂ (IMe)] ⁺	[OIf]	Salt	$Mes_{3}BF + [Me_{3}Si]^{+}[OTf]^{-} + [Ag(IMe)_{2}]^{+}[Ag_{2}I_{3}]^{-}$	Mes Mes Mes	211
$[BCl_2(t'Bu)]^+$	$[B(Ar^{C})_{4}]^{-}$	Salt	$BCl_3(I^{\dagger}Bu) + Na^{\dagger}[WCA]^{-}$		74
$[{(PPh_3)_2C}BH_2]^+$	$\left[HB(C_6F_5)_3\right]^-$	Hyd	PPh₃ H₃B—<(PPh₃ + B(c ₆ F₃)₃	H PPh₃ ⁺ B √(H PPh₃ first dihydroborenium cation	118 and 119
$ \begin{bmatrix} BMes_2(DMAP) \end{bmatrix}^+ / \left[B(Ar^N)_2(DMAP) \right]^+ \\ Ar^N = 4^- (Me_2N)^- 2, 6^- Me_2^- C_6 H_2) $	[†] [Orf] ⁻	Salt	$Mes_{2}BF + Me_{3}Si-OTf + Ar^{N}{}_{2}BF + DMAP$	Mes B-N Mes	57
$[B(SubPc)]^{\dagger}(Sub = C_{24}H_{12}N_6)$	[HCB ₁₁ Me ₅ Br ₆] ⁻	Salt	$B(SubPc)Cl + Et_3Si(HCB_{11}Me_5Br_6)$		115
[CatB(O=PEt_3]] ⁺	[HCB ₁₁ H ₅ Bt ₆] ⁻	Salt, Com	Salt, Com Ag ⁺ [WCA] ⁻ + CatBBr + OPEt ₃		116
[[CatB)(PNP)PdH] ⁺	$[B(Ar^{CF_3})_4]^{-/}[CB_{11}H_{12}]^{-}$	Other	[[PNP]Pd(THF]] ⁺ [WCA] ⁻ + CatBH	Me Me Me Me Me Me Me Me Me Me Me Me Me M	Chem Soc Rev ² 11

Table 8 (continued)

Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
[ArN(C(=CH ₂)NAr)(C(Me)NAr)- AlH] ⁺ (Ar = DIPP)	$\left[\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4} ight] ^{-}$	Hyd	$ArN(CMeNAr]_2 + AlH_3 \cdot NMe_2Et + [Ph_3C]^+[WCA]^-$		135
$[{HC(CMeNAr)_2}AlMe]^+ (Ar = DIPP)$	[B(C_6F_5)_4]^/[MeB(C_6F_5)_3]^	Alk	$\label{eq:constraint} \begin{array}{l} \left\{ HC(CMeNAr)_{2} \right\} AlMe_{2} + \left[CPh_{3} \right]^{+} \left[WCA \right]^{-} / \\ B(C_{6}F_{5})_{3} \end{array}$	Me DIPP+	136
$[Ga(\eta^6\text{-}G_6H_5F)_2(DTBMP)]^+$	$[Al(OR^{PF})_4]^-$	Com	$[Ga(\eta^6 \mu G_0H_5F)_n]^{\dagger}[WCA]^{-} + DTBMP$ $(n = 2, 3)$	Me N Ga	164
$ [Ga(pyrazine)_3]^{+} / [{Ga(\mu-pyrazine)_2^{-} [Al(OR^{DF})_4]^{-} (\eta^1-pyrazine)]^{+}]_{\infty} $	- [Al(OR ^{PF}) ₄]-	Com	$[Ga(C_6H_5F)]^+[WCA]^- + pyrazine (n = 2, 3)$	N N N N N N N N N N N N N N N N N N N	164
$[Ga(PPh_3)_3]^+$	$[Al(OR^{PF})_4]^-$	Com	$\left[Ga(C_{6}H_{3}Me)_{2}\right]^{*}\left[WCA\right]^{-}+PPh_{3}$	Ph ₃ P ² ("PPh ₃)	31, 91 and 92
[(ⁱ Pt ₂ -ATI)InMe] ⁺	$\left[B(G_6F_5)_4 \right]^-$	Other	Thermolysis of [{ ⁱ Pr ₂ - ATI(CPh ₃)}InMe ₂] ⁺ [WCA] ⁻	ŊŃ NNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	190
$ \begin{array}{l} \left[\left\{ ArN = CPh \right\}_2 (NC_5H_3)In \right]^{\dagger} \\ \left(Ar = 2, 4^{+3} bu_2 C_6H_3, 2, 5^{+5} bu_2 C_6H_3, \left[OTf \right]^{-2} \\ 2, 6 - Et_2 C_6H_3, 2, 6^{-1} Pr_2 C_6H_3, \right) \end{array} $	[OTf]-	Com	In ⁺ [WCA] ⁻ + bis(imino)pyridine ligand		188 and 189
$[\ln(\mathrm{PPh_3})_3]^{+}$	$[Al(OR^{PF})_4]^-$	Com	$[In(C_6H_5F)_n]^+[WCA]^- + 3 PPh_3 (n = 2, 3)$	Ph Ar Trigonal pyramidal (cf. gallium analogue) Mes K	162
$ \begin{bmatrix} TI(Mes_2py)(\eta^6 \cdot C_6H_5R)_2 \end{bmatrix}^{\dagger} \\ (R=F, Me) $	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4\right]^-$	Salt, Com	Salt, Com TlCl + Na ⁺ [WCA] ⁻ + Mes ₂ py in C ₆ H ₅ R	Mes R	187
[TI(timtmb ^{rBu})] ⁺	[OTf]-	Com	T1 ⁺ [WCA] ⁻ + timtmb ^{zBu}		205 205

Review Article

ess Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access	(cc)) BY-NC

Table 8 <i>(continued)</i>						Review
Cation	WCA	Class ^a	Synthesis	Comment/structure	Ref.	w Art
$ [{\rm ArN=CPh}_2({\rm NC}_5{\rm H}_3){\rm Tl}]^+ \ [{\rm Ar}=2,6{\rm Et}_2{\rm C}_6{\rm H}_3,2,5{\rm ^-f}{\rm Bu}_2{\rm C}_6{\rm H}_3) $	[OTf] ⁻	Com	Tl ⁺ [WCA] ⁻ + bis(imino)pyridine ligand	Provide the second seco	206	icle
Ligand substituted (CN = 4)						
[{(PPh ₃) ₂ C}BH ₂ (DMAP)] ⁺	$[HB(C_6F_3)_3]^-$	Com	$[{(PPh_3)_2C}BH_2]^{\dagger}[WCA]^{-} + DMAP$	Me.N	118 and 119	
$\left[\mathrm{BH}_2(\mathrm{PR}_2\mathrm{H})_2\right]^+\left(\mathrm{R}={}^t\mathrm{Bu},\mathrm{Cy},\mathrm{Ph}\right)$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Salt	$[\mathbf{BH}_2(\mathbf{PR}_2\mathbf{H})]^+\mathbf{Br}^- + \mathbf{Na}^+[\mathbf{WCA}]^-$	HR2PNB/PR2H H2 Me, Me ⁺	120	
$[[(1-MIM)_2(9BBN)]^+$	$\left[B(Ar^{CF_3})_4\right]^-$	Com	[PMAF-9BBN]] ⁺ [WCA] ⁻ + 1-MIM		212	
$\begin{split} [Me_{2}Al(OEt_{2})_{2}]^{\dagger}\\ [Me_{2}Al(THF)_{2}]^{\dagger}\\ [Me_{2}Al(NPhMe_{2})_{2}]^{\dagger}\\ [H_{2}Al(NMe_{3})_{2}]^{\dagger} \end{split}$	[MeB(C ₁₂ F9)3] ⁻ [{Me ₂ Si(NDIPP) ₂ }3Zr ₂ Cl ₅] ⁻ [B(C ₆ F ₅) ₄] ⁻ [(AlH) ₈ (CCH ₂ ² Bu) ₆] ²⁻	Alk Alk Prot, Con Other	$\begin{array}{llllllllllllllllllllllllllllllllllll$	- -	77 143 144 145	
[[Pytsi]AlMe] ⁺	[MeB(C ₆ F ₅) ₃] ⁻	Alk	$(Pytsi)AIMe_2 + B(C_6F_5)_3$	Silves Silves Me2	137	
[H2C{hpp}2AlMe2] ⁺	[BPh4] ⁻	Prot	[{hpp}H_2C{hpp}H]^*[WCA]^ + AlMe_3		138	
$[\{H_2C=C(BOX-Me_2)_2\}AI-(Me_2)_2]^+$	$[B(C_6F_5)_4]^-$	Hyd	$BOX-Me_2$ Al $(Me)_2 + [CPh_3]^+[WCA]^-$		139	C
[{BOX-Me ₂ }Al(Me)(NMe ₂ Ph)] ⁺	[MeB(C ₆ F ₅) ₃] ⁻	Alk	{BOX-Me ₂ }Al(Me) ₂ + B(C ₆ F ₅) ₃ in NMe ₂ Ph	Me Ali Mezh	139	hem Soc Rev

View Article Online

ss Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access	(cc)) BY-NC

					em
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref. 00
[{6-{CH₂NMe₂}-2-CPh₃-4-Me- C ₆ H₂O}Al(ⁱ Bu)(NMe₂Ph)] ⁺	$\left[\mathrm{HB}(\mathrm{C_6F_5})_3\right]^-$	Hyd		CPh3 SBu Al-NMe2Ph Me	Sev 213 and 214
$[\{HC(CPhNSiMe_3)_2\}-Al(Do)Me]^{\dagger}$ $(Do = Et_2O, THF)$	[B(C_6F_3)_4]^/[MeB(C_6F_5)_3]^	Prot/Alk, Com	$ \begin{array}{l} \left\{ HC(CPhNSiMe_3)_2 \right\} \\ AIMe_2 \\ \left[HNMe_2 \\ Ph \right]^{+} \left[WCA \right]^{-} + Et_2 \\ O/B(C_6 F_5)_3 + \\ THF \end{array} $	Ph SiMe ₃ the SiMe ₃ the SiMe SiMe SiMe ₃ the SiMe	215
$[(ArN)C(Me)CHPPh_2(NAr)-AlMe(OEt_2)]^+ (Ar = DIPP)$	$\left[\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4} ight]^{-}$	Alk, Com	(ArN)C(Me)CHPPh ₂ (NAr)MMe ₂ + [Ph ₃ C] ⁺ [WCA] [−] in Et ₂ O	Me Ar → Ar → Me Ar	216
$[(^{t}Pr_{2}-ATT)AI[Et](Do]]^{+}$ (Do = CIPh, NCMe)	$\left[B(C_6F_5)_4 ight]^-$	Alk, Com	$({}^{i}Pr_{2}$ -ATI)AlEt ₂ + $[CPh_{3}]^{+}[WCA]^{-}$ in PhCl/ + MeCN	N ^{iPr} , Et	140 and 141
[(SchNMe2)AIMe] ⁺	$[BPh_4]^-$	Salt	(SchNMe ₂)AlMeCl + Na ⁺ [WCA] ⁻		142
$[\{\eta^2-0,p-(2-PPh_2-4-Me-6^{-f}Bu-C_6H_20)\}_2A]^{\dagger}$	$\left[\mathrm{MeB}(\mathrm{G_6F_5})_3 ight]^-$	Alk	$\{\eta^2-0, P-(2-PPh_2-4-Me-6^fBu-C_6H_2O)\}_2AIMe + B(C_6F_5)_3$	^{tBu} ^{DPPh2} ^{tBu} ^{tBu}	217
$[[H_2C=C(BOX.Me_2)_2]Ga-(Me)_2]^{\dagger}$	$\left[\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4} ight] ^{-}$	Hyd	{BOX-Me ₂ }Ga(Me) ₂ + [CPh ₃] ⁺ [WCA] ⁻		165
[{BOX-Me2}Ga(Me)] ⁺	$[MeB(C_6F_5)_3]^-$	Alk	{BOX-Me ₂ }Ga(Me) ₂ + B(C ₆ F ₅) ₃ in NMe ₂ Ph	Me CMe2 Me Me Me NMe2Ph	165
[(ⁱ Pr ₂ -ATI)Ga(Me)(ClPh)] ⁺	$\left[B(C_6F_3)_4 ight]^-$	Alk, Com	Alk, Com $(Pr_2-ATI)GaMe_2 + [CPh_3]^+[WCA]^-$ in PhCl	Nipr Sea Nipr CiPh	Review Ar

Table 8 (continued)

lable 8 (continued)					
Cation	WCA	$Class^a$	Synthesis	Comment/structure	Ref.
$[\{1,2-(N^iPr)_2-5-CPh_3-cyclohepta-3,6-diene\}InMe_2]^+$	$\left[B(C_6F_5)_4 ight]^-$	Other	$(^{i}Pr_{2}-ATI)InMe_{2} + [Ph_{3}C]^{+}[WCA]^{-}$	Ph ₃ C N ^{Pr} Me	190
[(ⁱ Pr ₂ -ATI)In(Me)(NMe ₂ Ph)] ⁺	$[B(C_6F_5)_4]^-$	Prot	$(^{i}Pr_{2}-ATI)InMe_{2} + [HNMe_{2}Ph]^{+}[WCA]^{-}$	WPr Me Nipr Me Nipr NMe₂Ph	190
$[T1(OEt_2)_4]^+$	$[H_2 N \{B (C_6 F_5)_3\}_2]^-$	Prot	TIOEt + $[H(OEt_2)_2]^+[WCA]^-$ in Et_2O	oet2 Et₂o ^{∽TI} ···oet₂ Oet₂	203
Ligand substituted (CN = 5)				Me	
$[{\rm Salen}^{\rm CF_3}]{\rm Al}[{\rm OEt}_2]]^+$	$[MeB(C_6F_5)_3]^-$	Alk	${\rm (Salen^{CF_3})AIMe+B(C_6F_5)_3}$ in ${\rm Et_2O}$	Me OEF2	147
$\left[Ga(\eta^{1} - G_{3}H_{5})_{2}(THF)_{n}\right]^{+} (n = 2, 3)$	$\left[B(C_6F_3)_4\right]^{-}/\left[B(A\tau^{Cl})_4\right]^{-}$	Prot	Ga(ŋ¹-C₃H₅)₃(THF) + [HNMe₂Ph]] [†] [WCA] ⁻		166
$[\ln(CH_2SiMe_3)_2(THF)_3]^+$	$\left[\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4} ight]^{-}$	Prot	In(CH ₂ SiMe ₃) ₃ + [HNMe ₂ Ph] ⁺ [WCA] ⁻ in THF		191
[Tl(NPPh) ₂ (η ⁶ -C ₆ H ₅ Me)] ⁺ NPPh = 2,5-bis(2-pyridyl)-1- phenylphosphole	$[Al(OR^{PF})_4]^-$	Com			218
Ligand substituted (CN ≥ 6)				R MeOH	
[DoAl(MeOH) ₂] ⁺ (Do = Salen, Acen)	[BPh4] ⁻	Salt, Com	Salt, Com DoAlCl + Na ⁺ [WCA] ⁻ + MeOH		148 and 149

830 | Chem. Soc. Rev., 2016, **45**, 789–899

(continued	
ω	
e	
þ	
m'	

Table 8 (continued)					Chem
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
[Salpen('Bu)Al(THF)_2] ⁺	[BPh4] ⁻	Salt, Com	Salt, Com Salpen('Bu)AlCl + Na ⁺ [WCA] ⁻ + THF		tev 150 and 151
[(SchNMe2)Al(OPh)-(THF)2] ⁺	[BPh4] ⁻	Com	[[SchNMe2]AlPh] ⁺ [WCA] ⁻ + O2 in THF	OPH	142
[GaH(THF) ₄ (OTf)] ⁺	$[Ga(THF)_4(OTf)_2]^-$	Prot	GaCp* + HOSO ₂ CF ₃ in THF	THF., OTF THF., Ga、THF THF H	167
[Ga ^{III} {(bipy) ₃ }• ²⁺	$\left[A(OR^{PF})_{4} \right]^{-}$	Com	$(n = 2, 3) \bigcup_{n = 1}^{N} = \bigvee_{n = 1}^{N} \bigvee$	N, Ga, N N, Ga, N N N N N N N N N N N N N N N N N N N	17
$[Ga([18]crown-6)(\eta^6-/\eta^1-C_6H_5F)_2]^+ \ [Al(OR^{PF})_4]$	[Al(OR ^{PF}) ₄] ⁻	Com	$[Ga(n^6 - C_6 H_5 F)]^+ [WCA]^- + [18]crown-6$ (n = 2, 3)		168
[In([18]crown-6)] ⁺	[OTf]-	Com	In ⁺ [WCA] ⁻ + [18]crown-6	No coordinated solvent, but a strong anion-cation interaction: cf . In-O = 227.2 pm and 278.5 pm comm of the non-dar Wools rootid 215 pm.)	192 and 193
$[\ln([18]crown-6)(\eta^{6}-/\eta^{1}-C_{6}H_{5}F)_{2}]^{+}$ $[\ln([15]crown-5)_{2}]^{+}$	[Al(OR ^{PF}) ₄] ⁻ [OTf] ⁻	Com Com	$ [In(\eta^{6}-C_{6}H_{5}F)_{n}]^{+}[WCA]^{-} + [18]crown-6 \\ [n = 2, 3] \\ In^{+}[WCA]^{-} + [15]crown-5 $	Similar structure to the gallium analogue (see above) Sandwich complex	168 194
[{HC(3,5-Me ₂ pz) ₃ } _n TI] ⁺ (n = 1, 2)	$[PF_6]^-$	Com	$\mathrm{Tl}^{+}[\mathrm{WCA}]^{-} + \mathrm{HC}(3,5\mathrm{-Me}_{2}\mathrm{pz})_{3}$		C19 Keviev
[T1[[18]crown-6]] ⁺	$\left[H_{2}N\{B(C_{6}F_{5})_{3}\}_{2}\right] ^{-}$	Com	$[T](G_6H_5Me)_2]^+[WCA]^- + [18]crown-6$	s alogue, vo coui	v Article

lable 8 (continued)						le
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.	N Art
Transition-metal substituted [[FP*)(BMes)] ⁺	$[\mathbf{B}(\mathbf{Ar}^{CF_3})_4]^-$	Salt	(FP*)(BMes)Br + Na ⁺ [WCA] ⁻		220	licle
[CpFe(CO)(PCy ₃)-(BNCMes ₂)] ⁺	$\left[\mathbf{B}(\mathbf{Ar^{Cl}})_{4}\right]^{-}$	Salt	CpFe(CO)(PCy ₃)(B(Cl)-NCMes ₂) + Na ⁺ [WCA] ⁻	CysP Comments Mes	221	
$\label{eq:constraint} \begin{split} & \left[CpM(CO)(R)\{B(NCy_2)\} \right]^+ (M = Fe, \left[B(Ar^{CF_3})_4 \right]^- \\ & Ru; \ Do = CO, \ PMe_3, \ PPh_3 \end{split}$	$\left[B(Ar^{CF_3})_{4}\right]^{-}$	Salt	$CpM(CO)(R)\{B(NCy_2)Cl\} + Na^+[WCA]^-$		12 and 124	
$[(Cy_3P)_2(MeCN)Pt(B\equiv O)]^+$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Salt, Com	salt, Com $(Cy_3P)_2Pt(B \equiv O)(Br) + Ag^+[WCA]^- + MeCN$	PCy3+ O≡B-Pt-NCHMe PCy3	121	
$[\{(OC)_5Mn\}_2(\mu -B)]^+$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}})_4]^-$	Salt	$\{(OC)_5Mn\}_2(\mu\text{-}BBr) + Na^+[WCA]^-$		222	
[[(FP')_2(µ-B)] ⁺	$\left[\mathbf{B}(\mathbf{Ar}^{\mathbf{CF}_3})_4\right]^-$	Salt	$(FP')_2B(CI) + Na^+[WCA]^-$		222	
[Fc(NC ₅ H ₂ Me ₂)BPh] ⁺	[Al(OR ^{PF}) ₄]-	Salt	Ag ⁺ /Li ⁺ [WCA] ⁻ +		223	
$[(FP) \{ B(N^{i}Pr_{2}) (OPPh_{3}) \}]^{+}$	$\left[B(Ar^{CF_3})_4\right]^-$	Com	$\left[\left[FP \right] B \left(N^{i} P_{12} \right) \right]^{+} \left[WCA \right]^{-} + Ph_{3}PO$	OC BPPh ₃	224	Chem So

Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
$[[FP]B{N(^{i}Pr)(CMe_{3})}(Do]]^{+}$ (Do = Ph ₂ C=O, Me ₂ C=N ⁱ Pr)	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4\right]^-$	Com, other	[[(FP)==B=N ⁱ Pr ₂] ⁺ [WCA] ⁻ + Do	OC OC Do Do Do Do Do Do Do Do Do Do Do Do Do	225
$[[FP]B(NCy_2)(Do]]^+$ $(Do = C_5H_4PPh_3, 4-Pic)$	$[B(Ar^{CF_3})_4]^-$	Com	[[FP]=B=NCy ₂] ⁺ [WCA] ⁻ + Do		12
[CpRu(CO) ₂ {B(NCy ₂)-(4-Pic)}] ⁺	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4\right]^-$	Salt, Com	Salt, Com $\operatorname{CpRu}(\operatorname{CO}_{2} \{B(\operatorname{NCy}_{2})CI\} + \operatorname{Na}^{+}[WCA]^{-} + 4-\operatorname{Pic}$		124
[[FP*)B(Cl)[LB]] ⁺ (Do = 3,5-lutidine, PMe ₃ , IMe)	$\left[B(Ar^{\rm Cl})_{4} \right]^{-}$	Salt	$(FP^{\star})B(Cl_2)(Do) + Na^{+}[WCA]^{-}$		226
[[FP*]B(nacnac]] ⁺	$\left[B(Ar^{CF_3})_4 \right]^-$	Salt, other	r Mes Not	Mes NB	227
$\left[[FP]C(NCy)_2BNR_2\right]^+ \left(R = {}^iPr, Cy \right) \left[B[Ar^{CF_3}]_4 \right]^-$	$[B(Ar^{CF_3})_4]^-$	Ins	[[FP](BNR)_2] ⁺ [WCA] ⁻ + RN—C—NR (substoichiometric)		228
[(H)(PNP)Pd(BCat)] ⁺	$\left[B(Ar^{CF_3})_4 \right]^-$	Other	[[BCat][PNP]Pd(BCat]] ⁺ [WCA] ⁻ + H ₂ O	Me Me	117

					:i)
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	efe.
$\left[\left(R_3 P \right)_2 Pt\{B(Fc)Br\} \right]^+ \left(R = {}^i Pr, \ Cy \right) \left[B(Ar^{CF_3})_4 \right]^-$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CB}})_{\mathrm{d}}]^{-}$	Salt	$(R_3P)_2Pt(Br)\{B(Fc)Br\} + Na^{+}[WCA]^{-}$		229 and 230
$\begin{split} & [[Cy_3P]_2Pt\{B(X)X']]^+ \\ & (X = Br; X' = ortho-tolyl, {}^tBu, NMe_2, [B(Ar^{CF_3})_4]^-/[B(C_6F_5)_4]^- \\ & Pip, Br; XX' = (NMe_2)_2, CatB) \end{split}$, $[B(Ar^{CF_3})_4]^{-}/[B(C_6F_5)_4]^{-}$	Salt	$(Cy_3P)_2Pt(Br)\{B(X)X'\} + Na^+/K^+[WCA]^-$	X B==Pt PCy ₃	231
$\begin{split} & [(Cy_3P)_2Pt(Br)\{B(NC_5H_{4}\text{-}4\text{-}R)X\}]^+ \\ & (R=Me, X=NMe_2, Pip, Br; \\ & R={}^{t}Bu, X=Pip) \end{split}$	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4\right]^-$	Salt	$(Cy_3P)_2Pt(Br){B(Pr)-(NC_5H_4-4-R)X} + Na^+[WCA]^-$	×	125
$[(Cy_3P)_2Pt\{B(Br)(NMe_2)\}-(NCMe)]^+ \ [B(At^{CF_3})_4]^-/[B_{12}Cl_{12}]^{2-}$	$\left[B(Ar^{CF_3})_4\right]^{-}/\left[B_{12}Cl_{12}\right]^{2-}$	Com/salt, Com	$\begin{array}{l} & (\mathrm{Cy}_3\mathrm{P})_2\mathrm{Pt}\{\mathrm{B}(\mathrm{Br})(\mathrm{NMe}_2)\} + \mathrm{NCMe}(\mathrm{Cy}_3\mathrm{P})_2\mathrm{Pt}\{\mathrm{B}(\mathrm{Br})(\mathrm{NMe}_2)\}\mathrm{Br} + \\ & \{\mathrm{Na}^+\}_2[\mathrm{WCA}]^{2^-} + \mathrm{MeCN} \end{array}$	Me ₂ N PCy ₃ + B=Pt-NCMe Br PCy ₃	230
$[(Cy_3P)_2Pt(BCl_2)]^+$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Salt	(Cy ₃ P) ₂ Pt(BCl ₂)Cl + Na ⁺ [WCA] ⁻	ciPcy3_ [†] B==Pt ciPcy3	230
[Cp*Ru(P ⁱ Pr ₃)(BH ₂ Mes)] ⁺	$[B(C_6F_5)_4]^-$	Salt	Cp*Ru(P ⁱ Pr ₃)-(BH ₂ MesCl) + Li ⁺ [WCA] ⁻ ·2.5OEt ₂		232
$[(PMAF)_2BH_2]^+$	$[B(C_6F_5)_4]^-$	Hyd, Com	Hyd, Com PMAF-BH ₃ + [CPh ₃] ⁺ [WCA] ⁻ + PMAF	Hes Mes	212
$[Rh(PPh_3)_2(\kappa^1,\eta-PPh_2BH_2\cdot PPh_3)]^+$	$[\mathbf{B}(\mathbf{Ar}^{CF_3})_4]^-$	Salt, Com	Salt, Com ClRh(PPh ₃) ₃ + Na ⁺ [WCA] ⁻ + H ₃ B·PPh ₂ H	Ph ₃ P入Rh ^A BA	120
[FcBMe(bipy)] ⁺	$[\mathbf{PF}_6]^-$	Salt, Com	Salt, Com FcBBrMe + bipy + [NH ₄] [†] [WCA] ⁻		Chem

Table 8 (continued)					
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
[FcB(Pic) ₃] ²⁺	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Salt, Com	Salt, Com Br ₂ BFc + 2Na ⁺ [WCA] ⁻ + 3Pic	Me 2 ²⁺ Me Me Antroportion Antroportion dication	122
$[[FP]{C(NCy)_2B-(NCy)_2CNR_2}]^{\dagger}$ $(R = {}^{1}Pr, Cy)$	$[B(Ar^{CF_3})_4]^-$	lns	[[FP]{B(NR_3)}] + CyN=C=NCy		124 and 228
[(dppe)Cp*FeGal]⁺	$[B(Ar^{CF_3})_4]^-$	Salt	(dppe)Cp*FeGa1 ₂ + Na ⁺ [WCA] ⁻		233
[[FP*)2Ga] ⁺	$[B(Ar^{CF_3})_4]^-$	Salt	(FP*)2GaCl + Na ⁺ [WCA] ⁻		169
[[FP*)2Ga(4-Pic)] ⁺	$\left[B(Ar^{CF_3})_4 \right]^-$	Salt, Com	Salt, Com (FP*)2GaCl + Na ⁺ [WCA] ⁻ + 4-Pic		170
[[FP*)Ga(Mes)(dtbpy)] ⁺	$[B(Ar^{CF_3})_4]^-$	Salt, Com	Salt, Com (FP*)Ga(Mes)I + Na ⁺ [WCA] ⁻ + dtbpy	DCC Here Mes	234

Table 8 <i>(continued)</i>					
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
$[[FP^*)Ga(phen)(Y)]^+ (Y = Cl, S^pTol) [BPh_4]^-$	ol) [BPh4] ⁻	Salt, Com/ Lewis	$2(FP^*)GaCl_2 + Na^+[WCA]^- + phen/$ [(FP^*)Ga(phen)(Cl)] ⁺ + Me ₃ SiS ^p Tol	Ga Fecp*(CO)2	171
[[FP]Ga(OEt ₂){[(NCy) ₂ -C ['] Bu}] ⁺	$\left[\mathbf{B}(\mathbf{Ar^{CF_3}})_4\right]^-$	Salt, Com	Salt, Com $[FP]Ga[CI]{(NCy)_2C'Bu} + Na^{+}[WCA]^{-}$ in Et_2O	(OC)₂CPFe, N Et₂o Gá))→ ^t Bu Cy	235
[[FP]2Ga(bipy)] ⁺	[Cl ₂ Ga(FP) ₂] ⁻	Lewis, Com	2ClGa(FP) ₂ + bipy		236
$[\ln Pt(PPh_3)_3]^+$	$[B(Ar^{CF_3})_4]^-$	Com	$\ln^{1}[WCA]^{-} + Pt(PPh_{3})_{4}$	Ph ₃ P/Ph ₃ P Ph ₃ P/PPPh ₃	179 and 180
$[[phen)_{2}In-Ag(\eta^{3}\text{-}C_{6}H_{5}F)]^{2+}$	$[Al(OR^{PF})_4]^-$	Com			17
[[(FP*)2In] ⁺	$[B(Ar^{CF_3})_4]^-$	Salt	(FP*) ₂ InCl + Na ⁺ [WCA] ⁻		195
$[(\mathrm{FP}^*)_2\mathrm{In}(\mathrm{THF})]^+$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Com	[[[FP*)2In] ⁺ [WCA] ⁻ + THF		195
$[TI(\eta^5-FeCp_2)]^+$	$[H_2N\{B(C_6F_5)_3\}_2]^-$	Others	$[T1(\eta^{6}\text{-}G_{6}H_{5}Me)_{3}]^{+}[WCA]^{-}+2.2FeCp_{2}$	TI−€Fe	204 204

lable 8 (continued)					
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
$[Tl_2(n^5$ -FeCp ₂) ₃] ²⁺	$[{ m H}_2 { m N} \{ { m B} ({ m G}_6 { m F}_5)_3 \}_2]^-$	Com	$[TI(\eta^6-C_6H_5Me)_2]^{\dagger}[WCA]^{-} + FeCp_2$	$ \bigoplus_{1:1 \text{ mixture of } [T (n^5, FeCp_2)]^4 \text{ and } [T (n^5, FeCp_2)_{21}^4 \text{ and } [T (n^5, Fe$	203
$[Tl\{(\eta^5As_5)FeCp^*\}_3]^+$	$[FAl{OC_6F_{10}(C_6F_5)}_3]^-$	Salt, Com	Cp*Fe(n ⁵ -As ₅) + Tl [*] [PF ₆] ⁻ + Ll [*] [WCA] ⁻ Me ₅ As As = Fe As As A	As A	176
[{P[Ph2)CH20x}(Cl)(Tl)Pt-CH2Ph}] ⁺ [PF ₆] ⁻	[PF ₆] ⁻	Other	$TI^{+}[WCA]^{-} + \{P(Ph_{2})CH_{2}ox\}Pt(CI)-CH_{2}Ph\}$		208
Multinuclear [{IPr(H2B)}2(µ-H)] ⁺	$\left[HB(C_6F_5)_3\right]^-$	Hyd	$IPr + B(C_6F_5)_3$	Prits, H, B, IPr	118 and 119
$[\{Me_{3}N(H_{2}B)\}_{2}(\mu\text{-}H)]^{+}$	$[B(C_6F_5)_4]^-$	Hyd	$Me_3N-BH_3 + [CPh_3]^+[WCA]^-$	Me ₃ N、 _B [×] H、 _B [×] NMe ₃ [†] H ₂ H ₂	237
$\left[\mathrm{B}_{4}\mathrm{H}_{2}(\mathrm{u}\mathrm{-hpp})_{4}\right]^{2+}$	$\left[HB(G_6F_5)_3 ight]^-$	Hyd, Com	Hyd, Com [HB(μ -hpp]] ₂ + B(C ₆ F ₅) ₃		123
$\begin{split} & \left[\left[\left\{ 6 \cdot (CH_2 NM \varepsilon_3)^{-2} \cdot CPh_3 \cdot 4 \cdot M e \right. \right. \\ & \left. C_6 H_2 O \right\} A l (R) \right]_2 \right]^{2+} \left(R = C_6 H_{13} \right) \end{split}$	$[B(C_6F_5)_4]^-$	Com	$[\{6-(CH_2NMe_3)-2-CPh_3-4-Me-C_6H_2O\}Al(^{1}Bu)(BrPh)]^{+}[WCA]^{-} + 1-hexene$	e Me_N_A_R_A_A_Me_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_	152
$[\{2-(CH_2Do)-6-R-C_6H_3O\}AIMe-(\{2-(CH_2Do)-6-R-C_6H_3O\}AIMe_2)]^{\dagger}$ (R = Ph, 'Bu; Do = NMe_2, NC_4H_8, NC_5H_{10})	$\left[\operatorname{MeB}(\operatorname{C_6F}_{5,3})^{-}\right]^{-}$	Alk	$\{2\text{-}(CH_2D0)\text{-}6\text{-}R\text{-}C_6H_3O\}AIMe_2+B(C_6F_5)_3$		238 and 214

lable 8 (continued)					viev
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
$[\{MeC(NR)_2\}_2Al_2Me_3]^+ (R = {}^iPr, Cy) [B(C_6F_5)_4]^-/[MeB(C_6F_5)_3]^-$	$f = [B(C_6F_5)_4]^{-1} [MeB(C_6F_5)_3]^{-1}$	Alk, Com	$\{MeC(NR)_2\}AIMe_2 + [CPh_3]^+[WCA]^-/B(C_6F_3)_3$		156 156
$[AlEt(\mu^{-1}^{2},\eta^{1-1}^{1}Pr_{2}-ATI)-(\mu-Et)AlEt_{2}]^{\dagger}$	$[B(C_6F_5]^-$	Com	[[ⁱ Pr ₂ -ATI)Al(Et)] ⁺ [WCA] ⁻ +AlEt ₃	N ^t Pr Et Me NiPr CH2 Et2 Et2	141
[{(ⁱ Pr ₂ -AT1)AlMe} ₂ (µ-Me)] ⁺	$\left[B(C_6F_5)_4 \right]^-$	Alk, Com	Alk, Com (ⁱ Pr ₂ -ATI)AlMe ₂ + [CPh ₃] ⁺ [WCA] ⁻		141 and 239
$[\{(^{i}Pr_{2}\text{-}ATI)AI(\mu\text{-}O^{i}PI)\}_{2}]^{2^{+}}$	$\left[B(C_6F_5)_4 \right]^-$	Com	[[ⁱ Pr ₂ -AT1)Al[Et]] ⁺ [WCA] ⁻ + acetone		141 and 153
$ \begin{bmatrix} Me_{2}Al(\mu-OSi(R^{1:23})_{3})_{2}Al-Me-\\ (NMe_{2}Ph)]^{+} (R^{1}, R^{2} = Me; \\ R^{3} = Me, ^{\prime}Bu) \end{bmatrix} $	$[B(C_6F_5)_4]^-$	Prot	Me2Al(µ-OSIR3)2AlMe2 + [HNMe2Ph] ⁺ [WCA] ⁻	Me_Al_Me _Al_Me _Al_Me _Al_Me _Al_Me _Al_Me_2Ph _Me_2Ph _Me_2P	154
$[\{\!(^{i}Pr_{2}\text{-}ATI)AI\text{-}(\mu\text{-}C\!\equiv\!C^{t}Bu)\}_{2}]^{2^{+}}$	$\left[B(C_6F_5)_4 ight]^-$	Com	[(ⁱ Pr ₂ -ATI)Al(Et)] ⁺ [WCA] ⁻ + <i>tert</i> -butyl acetylene	Bu NiPr PrN	141 and 153
[{(tacn)AlMe}2] ²⁺	$[MeB(C_6F_5)_3]^-$	Alk	$[[tacn]AlMe_2]_2 + B(G_6F_5)_3$		240
[{(OSSO)AI} ₂] ²⁺	$[MeB(C_6F_5)_3]^-$	Alk	(OSSO)AIMe + B(C ₆ F ₃) ₃		Chem Soc Rev

Table 8 (continued)

Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
[[n ⁶ -C ₆ H ₅ F]Ga-(µ-η ⁶ - <i>m</i> -TP] ₂ - Ga(n ⁶ -C ₆ H ₅ F]] ²⁺	$[Al(OR^{PF})_4]^-$	Com	$[Ga(\eta^6 - G_6H_5F)_n]^+[WCA]^- + m-TP(n = 2, 3)$	first structurally characterized dicationic <i>anso</i> -arene complex	8 and 99
$[{}^{f}_{i}BuC(N^{i}Pr)_{2}]GaMe^{-}_{i}\\ {}^{f}_{i}BuC(N^{i}Pr)_{2}]GaMe_{2}]^{\dagger}$	$[B(C_6F_5)_4]^-$	Alk, Com	Alk, Com {'BuC(N'Pr) ₂ }GaMe ₂ + [Ph ₃ C] ⁺ [WCA] ⁻	Me., A Me Me Nipr tau Ne., Ga XY- ^t Bu iprix ^{(Bu}	156
$[\{(^{\rm i} Pr_2 \text{-} ATI) GaMe\}_2(\mu \text{-} OH)]^+$	$[B(C_6F_5)_4]^-$	Other	[[ⁱ Pr ₂ -ATI]Ga(Me)(NMe ₂ Ph)]] ⁺ [WCA] ⁻ + H ₂ O	Nipr Me Me Nipr	172
[{(Salomphen)Ga}(µ-Cl)] ⁺	$[BPh_4]^-$	Salt	(Salomphen)GaCl + Na ⁺ [BPh ₄] ⁻	Me Bu CI	241
[(BuGa) ₄ (µ-OH) ₆] ²⁺	$\left[\mathrm{HCB_{11}Br_{6}Me_{5}} ight]^{-}$	Other	$\left[\left[(2,6\text{-Mes}_2C_6H_3)\text{GaBu}\right]^+\left[\text{WCA}\right]^- + H_2\text{O}\right]$	HO ∏Ga−OH BuGa ← O <u>O</u> H-GaBu HO = Ga−OH	173
$[\{(PPh_3)_3In\}_2(\mu - PPh_3)]^{2+}$	$[Al(OR^{PF})_4]^-$	Com	$[In(C_6H_5F)_n]^+[WCA]^- + PPh_3 (n = 2, 3)$ $[In(C_6H_6F)_1]^+(WCA]^- + bibv$	One PPh ₃ moiety functions as a bridge between both In^{I} cations	h 162
$[\ln_{3}(\operatorname{bipy})_{5-6}]^{3+}$	$[Al(OR^{PF})_4]^-$	Com	(n = 2, 3) $N N =$		17
$[In_4(Do)_6]^{4+}$ (Do = bipy, phen)	$[Al(OR^{PE})_4]^-$	Com	$\begin{bmatrix} In(C_{g}H_{g}F)_{n}]^{T}[WCA]^{-} + phen \\ (n = 2, 3) \\ N & = $	first cationic indium cluster	17

Review Article

Table 8 (continued)					
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
[In4{(CpMo(CO) ₂) ₂ P ₂ } ₈] ⁴⁺	$[Al(OR^{PF})_4]^-$	Com	$[In(o-C_6H_4F_2)_2]^{\dagger}[WCA]^{-} + \{CpMo(CO)_2\}_2(P_2)$	$\begin{array}{c c} P - I_{0} - P_{1} & \\ P & P_{1} & P_{1} \\ P_{2} - I_{1} - P_{1} & P_{1} I_{1} - P_{2} \\ P_{2} & P_{1} & P_{1} \\ P_{2} & P_{1} & P_{2} \\ P_{2} & P_{2} & P_{2} & P_{2} \\ \end{array}$	186
$\begin{split} & [\{\{ArN=CPh\}_2(NC_5H_3)T\}_{2^-} \\ & (\mu \cdot \eta^6 \cdot C_6H_5R)]^{2^+}(Ar = 2,6 \cdot Et_2C_6H_3, \ [OTf]^- \\ & 2,5^-Bu_2C_6H_3; \ R = H, \ Me) \end{split}$	3, [OTf] ⁻	Com	2[(ArN=CPh) ₂ (C ₅ H ₃ N)Tl] ⁺ [WCA] ⁻ + C ₆ H ₅ R		206
[Tl ₂ (NPPh) ₄] ²⁺ NPPh = 2,5- bis(2-pyridyl)-1-phenylphosphole	[Al(OR ^{PF}) ₄] ⁻	Com	TI ⁺ [WCA] ⁻ + NPPh in CH ₂ Cl ₂ / <i>n</i> -pentane N ⁻ PPh N ⁻	PhP ¹ TrPhP PhP ¹ TrPh PhP ¹	218
$[Tl(\beta-triketimine)_2]^{2+}(R = Me, {}^tBu) [B(Ar^{CF_3})_4]$	1) [B(Ar ^{CF3}) ₄] ⁻	Com	$Tl^{+}[WCA]^{-} + \beta$ -triketimine	DIPP-M DIPP-NNN DIPP-NNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	14
$[Tl_2({CpMo(CO)_2})_6]^{2+}$	$[Al(OR^{PF})_4]^-$	Com	${CpMo(CO)_2}^2 + Tl^{+}[WCA]^{-}$	$\begin{array}{c} P_{2} \stackrel{p-R}{\longrightarrow} p$	207
$\left[TI_{3}F_{2}Al(OR^{HF})_{3}\right]^{+}$	$[Al(OR^{HF})_4]^-$	Salt, othe	Salt, other TIF + 2Li ⁺ [WCA] ⁻	TI-OR ^{HE} OR ^{HE} F	200
$\left[T \right]_4 (\mu \text{-OH})_2 \right]^{2+}$	$[H_2N\{B(C_6F_5)_3\}_2]^-$	Other	$[Tl(OEt_2)_2]^+[WCA]^- + H_2O$		203
$[{\rm TI(OR)}_4(\mu-{\rm CI})_2\}^+]_n$	$[PF_6]^-$	Other	$RuCl_2(DMeOPrPE)_2 + Tl^+[WCA]^-$	"Arrested" chloride abstraction yielding a one-dimensional coordination polymer	209

lable & (continued)					
Cation	WCA	$Class^{a}$	Synthesis	Comment/structure	Ref.
Multinuclear transition-metal substituted	bstituted) 	
[(CpFe(CO){B(NCy ₂)})_2- (µ-dmpe)] ²⁺	$[B(Ar^{CF_3})_4]^-$	Com, salt	Com, salt [FP]{B(NCy_2)}Cl + dmpe + Na ⁺ [WCA] ⁻	Cy₂N [≤] B5 ² Fe ² P ² CO Cy₂N ⁵ B5 ² Fe ² P ² CV2 Me2 Me	124
[[BCat](PNP)Pd(BCat)] ⁺	$[B(Ar^{CF_3})_4]^{-}/[CB_{11}H_{12}]^{-}$	Other	[[PNP]Pd[THF]] ⁺ [WCA] ⁻ / [PNP]Pd[CB ₁₁ H ₁₂] + CatB-BCat	B-N-Pd Brat B-N-Pd Brat Me	117
$[(C_{y_3}P)_2\{Pt(BBr)\}_2(\mu - C_6H_4)]^{2+}$	$[B(C_6F_5)_4]^-$	Salt	$\begin{array}{l} \{[Cy_3P]_2Pt(Br)(BBr_2)\}_2-(\mu-C_6H_4) + \\ K^+[WCA]^- \end{array}$	Cy ₃ P, PCy ₃ P, PCy ₃ Cy ₃ P, PCy ₃ PCy ₃	125
$[\{(Cy_3P)_2PtB\}_2(\mu \cdot O)_2]^{2+}$	[Al(OR ^{PF}) ₄] ⁻	Salt	$(Cy_3P)_2BrPt(B \equiv O) + Ag^+[WCA]^-$	$\begin{array}{c} Cy_3P \\ Pt-B \\ Cy_3P \\ Cy_3P \end{array} \xrightarrow{O} \begin{array}{c} PCy_3 \\ PCy_3 \\ PCy_3 \\ PCy_3 \end{array}$	242
[{(bipy)(Me)B} ₂ (µ-Fc)] ²⁺	$[\mathbf{PF}_6]^-$	Salt, Com	Salt, Com Fc(BBrMe) ₂ + 2bipy + [NH ₄] ⁺ [WCA] ⁻		126 and 127
[{(FP)Ga(Mes)}_2(\mu-Cl)] ⁺	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Salt, Com	Salt, Com [FP]Ga(Mes)(Cl) + Na ⁺ [WCA] ⁻	Mes Mes T+ Ga Ga (OC)2CpFe ČÍ FeCp(CO)2	195
$ [\{\{FeCp(CO)_2\}Ga\{(NCy)_2 - C'Bu\}\}_2^{-1} - [B(Ar^{CF_3})_4]^{-1} $	$[\mathbf{B}(\mathbf{Ar^{CF_3}})_4]^-$	Other	[FpGa(OEt_2)-{(NCy)_2C'Bu}]]^{+[WCA]^- + H_2O	(CO) ₂ CDFe Fecp(CO) ₂	235

Review Article

Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc) BY-NC

Table 8 (continued)					
Cation	WCA	$Class^a$	Synthesis	Comment/structure	Ref.
$[\{\operatorname{Ga}(\operatorname{P_5FeCp}^*)_3\}^+]_n$	[Al(OR ^{PF}) ₄] ⁻	Com	$P_{S}FeCp^{*} + [Ga(o-C_{e}H_{4}F_{2})_{2}]^{*}[WCA]^{-}$ $P_{P-P} = P_{P-P}^{e}$	PPP PPP PPP PPP PPP PPP PPP PPP PPP PP	176
[{(DDP)(THF)Ga}_2Au] ⁺	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CP}_3})_4]^-$	Salt, Com	Salt, Com {(DDP)Ga}2AuCl + Na ⁺ [WCA] ⁻ in THF	Me Ar North Me Ar	174
[{{THF}}(DDP)GaZn(THF)}_2- (µ-Cl) ₂] ²⁺	$[B(Ar^{CF_3})_4]^-$	Salt, Com	(DDP)(Cl)GaZn(Cl)(THF)2 + Na ⁺ [WCA] ⁻ in THF	Me Ar Me Ar Me Ar Me Ar Me Ar Me	175
$[{\rm In}\{\eta^{5}-E_{5}){\rm FeCp^{*}}_{3}]^{+}]_{n} (E = P, As) [Al(OR^{PF})_{4}]^{-}$) [Al(OR ^{PF}) ₄] ⁻	Com	EsFeCp* + In*[WCA] ⁻ Mes ₅ E-E = Fe	One-dimensional coordination polymer/similar structure to $[{Ga}(P_3FeCp^*)_3]^+]_n$	176
$[{\rm TI}\{(\eta^{5}-E_{5}){\rm FeCp}^{*}\}_{3}\}^{+}]_{n} (E = P, As) \ [{\rm AI}[{\rm OR}^{PF}]_{4}]^{-}$	s) [Al(OR ^{PF}) ₄] ⁻	Com	EsFecp* + TI [†] [WCA] ⁻ Mes E ^{-E} = Fe E ^{-E} = Fe	One-dimensional coordination polymer/similar structure to $[\{Ga(P_5FeCp^*)_3\}^*]_n$	207 and 176
ECp^* substituted (E = Al, Ga) [Rh(COD)(AlCp*)_3] ⁺	$[B(Ar^{CF_3})_4]^-$	Com	[Rh(COD) ₂] ⁺ [WCA] ⁻ + 3AlCp*	AICP*	157
[Cp*Fe(GaCp*) ₃] ⁺	$[B(Ar^{CF_3})_4]^-$	Com	[Fe(MeCN) ₆] ²⁺ {[WCA] ⁻ } ₂ + 4GaCp*	Cp*Ga Fe. (GaCp*	243

lable 8 (continued)					hei
Cation	WCA	$Class^a$	Synthesis	Comment/structure	Ref.
[Cp*Co(GaCp*) ₃] ²⁺	$[B(Ar^{CF_3})_4]^-$	Ox, Com	Ox, Com [Co(MeCN) ₆] ²⁺ {[WCA] ⁻ } ₂ + 4GaCp*	Cp*Ga ^{CO} ·GaCp*	c Rev
[Cu(GaCp*) ₄] ⁺	$[B(Ar^{CF_3})_4]^-$	Com	$[Cu(MeCN)_4]^+[WCA]^- + 4GaCp^*$	Gacp* Cp*Ga ^{CU} · 'Gacp* Gacp*	243
$[2n(GaCp^*)_4]^{2+}$	$[B(Ar^{CF_3})_4]^-$	Prot, Com	Prot, Com ZnMe ₂ + $[H(OEt_2)_2]^+[WCA]^-$ + 4GaCp*	Gacp*² ⁺ Cp*Ga ^Z n, 'Gacp* Cp*Ga∠ ^Z n, Gacp*	175
[Zn2(GaCp*)e] ²⁺	$[B(Ar^{CF_3})_4]^-$	Other	Zn2Cp*2 + [Ga2Cp*]^[WCA] ⁻ mechanism unclear	31 C C	244
$[m Rh(COD)(m Gacp^*)_3]^+$	$[B(Ar^{CF_3})_4]^-$	Com	$[Rh(COD)_2]^+[WCA]^- + 3GaCp^*$	Gacp* Gacp* Gacp*	157
$[{\rm Rh}({\rm NBD})({\rm PCy_3})-({\rm GaCp^*})_2]^+$	$[\mathrm{B}(\mathrm{Ar}^{\mathrm{CF}_3})_4]^-$	Com	$[Rh(NBD)(PCy_3)_2]^{+}[WCA]^{-} + 2GaCp^{*}$	Gacp [*] Gacp [*] Gacp [*]	157
$\left[Pt(H)(GaCp^{*})_{4} ight] ^{+}$	$[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4]^-$	Prot	$Pt(GaCp^*)_4 + [H(OEt_2)_2^*]^+[WCA]^-$	PH ====================================	180
[[Ga)Ru(PCy ₃) ₂ (GaCp*) ₂] ⁺	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{CF}_3})_4\right]^-$	Other	$Ru(PCy_3)_2(GaCp^*)_2(H)_2 + [Ga_2Cp^*]^+[WCA]^-$	Ga Cy ₃ P/, Ru-GaCp* Cy ₃ P C aCp*	177
[[Ga)Ni(GaCp*) ₄] ⁺	$[\mathrm{B}(\mathrm{Ar}^{\mathrm{CF}_3})_4]^-$	Other	$Ni(GaCp^*)_4 + [FeCp_2]^+[WCA]^-$	Cp*Ga/, Ni∹GaCp* Cp*Ga/, Ni∹GaCp* Cp*Ga daCp*	178
[[Ga)Pt(GaCp*) ₄] ⁺	$[\mathrm{B}(\mathrm{Ar}^{\mathrm{CF}_3})_4]^-$	Com	$Pt(GaCp^*)_4 + [Ga_2Cp^*]^+[WCA]^-$	Cp*Ga/, Ft-GaCp* Cp*Ga/, Ft-GaCp* Cp*Ga⊂	179 and 180
[[Cp*Ga)₄Rh{Ga(Me)}] ⁺	$[B(Ar^{CF_3})_4]^-$	Prot	$(Cp^{*}Ga)_{4}Rh-(\eta^{1}-Cp^{*}GaMe) + [H(OEt_{2})_{2}]^{+}[WCA]^{-}$	PMe+ Ga Cp*Ga <i>∿</i> :Rh-GaCp* Cp*Ga⊄p*	Review

Review Article

Table 8 (continued)					
Cation	WCA	$Class^{a}$	Synthesis C	Comment/structure	Ref.
[[Cp*Ga) ₄ Rh{Ga(Me)-{py]}] ⁺	$[B(Ar^{CF_3})_4]^-$	Com	[[Cp*Ga) ₄ Rh(GaMe)] ⁺ [WCA] ⁻ + py	py _{Sea} Me ⁺⁺ Cp*Ga、Rh-GaCp* Cp*Ga GaCp*	181
[Ru(COD)(H)(GaCp*) ₃] ⁺	$\left[B \left(Ar^{CF_3} \right)_4 \right]^-$	Com	[Ru(COD)(H)(DMH) ₃] ⁺ [WCA] ⁻ + 3GaCp*	accelor* − Gacp* Gacp*	245
$[Ru(GaCp^*)_4 - \{\eta^3 - (CH_2)_2 C(Me)\}]^{2+} [B(Ar^{CF_3})_4]^{-}$	$[B(Ar^{CF_3})_4]^-$	Prot	$Ru(GaCp^*)_3(TMM) + [H(OEt_2)_2]^+[WCA]^-$ TMM = η^4 -C(CH ₂) ₃	MeCH2 CH2 Cp*Ga // CaCp* Cp*Ga GaCp*	177
[{Ru(GaCp*) ₃ -[(CH ₂) ₂ C{CH ₂ (µ- Ga)]}] ₂] ⁺	$\left[B\left(Ar^{CF_3}\right)_4\right]^-$	Com	Ru(GaCp*) ₃ (TMM) + [Ga ₃ Cp*] ⁺ [WCA] ⁻	$H_2C_{H_2}C_{H$	177
$[\{(GaCp^*)_{3}Pt\}[Pt(H)-(GaCp^*)_{3}]-(\mu-Ga)]^{2+}$	$\mathrm{B}(\mathrm{Ar}^{\mathrm{CF_3}})_4]^-$	Prot, Com	Prot, Com $Pt(GaCp^*)_4 + [H(OEt_2)_2^*]^+[WCA]^-$	Cp*Ga_GaCp* H Cp*Ga_Pt-Ga_Pt.vGa*Cp GaCp* Gacp* Gacp*	180
[Pt ₃ (GaCp*) ₆ (μ-Ga)] ⁺	$[B(Ar^{CF_3})_4]^-$	Other	Pt(GaCp*) ₄ + [FeCp ₂] ⁺ [WCA] ⁻ (substoichiometric)	Cp*Ga-Ptpt Cp*Ga-Ptpt Cp*Ga-Ptpt Cp*Ga-Ptpt Cp*Ga-Ptpt Ga Ga Ga Cp*GaCp* Cp*Ga-Ptpt Ga Cp*Ga-Ptpt GaCp* Cp*Ga-Ptptpt Cp*Ga-Ptptptptptptptptptptp	178
a Classification according to the introduction (Table 2).	introduction (Table 2).				

Homopolyatomic and cage cations Homopolyatomic and cage cations $\begin{bmatrix} C_{\alpha} \\ $	$C_{76} + [Ar_3N]^+[WCA]^-$	keı.
$ \begin{array}{c} B_{1,3}S_{1} & \left[\frac{[ASF_{n}]^{T}}{[Ag(HCB_{1,1}H_{3}CI_{n})^{2}]} & O_{n} \\ B_{1,3}S_{1} & \left[\frac{[ASF_{n}]^{T}}{[Ag(HCB_{1,1}H_{3}CI_{n})^{2}]} & O_{n} \\ B_{1,3}S_{1} & \left[\frac{[ACB_{1,1}H_{3}CI_{n}]^{2}}{O_{n}} & S^{\dagger}(B_{1,3}) \\ \end{array} \right] \\ \end{array} \qquad \qquad$	$C_{e,0} + [Ar_sN]^{+}[WCA]^{-}$	44 259
$ \begin{array}{c} \left[\begin{array}{c} \left[HGB_{11}H_{5}GI_{6}\right] ^{T} \\ \left[Ag(HGB_{11}H_{5}GI_{6}\right) ^{2} \right] ^{T} \\ e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e$	$C_{60} + 3$ AsF ₅ Polymeric	260
$ \begin{array}{c} \left[B(C_6F_4H)_4 \right]^{-1} \\ \left[B(C_6F_$	$C_{60} + H(WCA)$ $(C_{59}N)_2 + 2[HBPC]^{\bullet+}[WCA]^{-}$	259 261
$ \begin{array}{c} \left[B(C_6F_4H)_4 \right]^{-1} \\ \left[B(C_6F_4H)_4 \right]^{-1} \\ \left[B(C_6F_4H)_4 \right]^{-1} \\ \left[B(C_6F_4H)_4 \right]^{-1} \\ \left[A_{12}Br_7 \right]^{-1} \\ \left[A_{12}Br_6 \right]^{-1} \\ \left[A_{12}Br_7 $	¹ Bu ₃ Si, حالم	
$ \underbrace{\left[Al_{2}Br_{7}\right]^{+}}_{Al_{2}Br_{7}]^{-}} \begin{bmatrix} Al_{2}Br_{7}\right]^{-} \\ \begin{bmatrix} HCB_{11}Me_{5}Cl_{6}\right]^{-} \\ \begin{bmatrix} HCB_{11}Ol_{11}\right]^{-} \\ \begin{bmatrix} HCB_{11}Ol_{11}\right]^{-} \\ \begin{bmatrix} HCB_{11}Me_{5}Br_{6}\right]^{-} \\ \end{bmatrix} $	^t Bu ₃ Si [∕] Gé ⁼ Ge ⁻ Si ^t Bu ₃ + KI + K*[WCA] ⁻	332
$ \underbrace{\left\{ A_{12}B_{17} \right\}^{\dagger}}_{\left[HCB_{11}Me_{5}Cl_{6} \right]^{-}} \begin{bmatrix} HCB_{11}Me_{5}Cl_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} HCB_{11}Cl_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} HCB_{11}Me_{5}Br_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} HCB_{11}Me_{5}Br_{6} \end{bmatrix}^{-} \end{bmatrix} $		
$\begin{array}{c} \left[HCB_{11}Me_5Cl_6 \right]^{-} \\ \left[Al_2Br_7 \right]^{-} \\ \left[HCB_{11}Cl_{11} \right]^{-} \\ \left[HCB_{11}Me_5Br_6 \right]^{-} \end{array}$	Br + 2 AlBr ₃	86
+	^{<i>n</i>} BuH + Me ⁺ [WCA] ⁻ or 'BuH + Me(WCA) 'RuBr + 2 α IBr-	265 266
	Thermal decomposition of $[Et_2Cl][CHB_{11}Cl_{11}]$ <i>n</i> -pentane + Me(WCA) or	267
	+ me(wca)	265
	+ Me(WCA) or + +	265
L	Me(WCA)	
[HCB ₁₁ I ₁₁] [Edding	p-CH ₃ -C ₆ F ₄ -CF ₃ + Et ₃ Si(WCA) + PhF	56

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. (cc) BY-NC

Table 9 (continued)

Review Article

View Article Online

Table 9 (continued)

Cation	Anion	Class. ^a	Synthesis	Comment	Ref.
ŞiMe ^t Bu₂ ^{+Ge.} SiMe ^t Bu₂	$[B(C_6F_5)_4]^-$	ŏ	SiMe ^t Bu₂ 'Bu₂MeSi ^{-Ge} SiMe ^t Bu₂ + [Ph₃C1 ⁺ [WCA] ⁻		334
μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	[Al(OR ^{PF}) ₄] ⁻	Salt	$(Ar)_3GeBr + Ag^+[WCA]^-$	R = O'Bu	336
SiMe′Bu₂ ⁺ ^{Sn} `SiMe′Bu₂	$[B(C_6F_5)_4]^-$	ox	SiMe′Bu₂ 'Bu₂MeSi ^{`SIN} SiMe′Bu₂ + [Ph₃C]*[WCA] [¯]		335
[(Tipp) ₃ Sn] ⁺ Messi siMes	$[B(C_6F_5)_4]^-$	Other	(allyl)(Tipp) ₃ Sn + [E] ⁺ [WCA] ⁻ Me ₃ Si	[E1 ⁺ not exactly defined, likely [Et ₃ Si(C ₆ H ₆)] ⁺ or comparable	34
	$[B(C_6F_5)_4]^-$	Com, Lig		$\mathbf{R} = \mathbf{E}\mathbf{t}, \ ^{\mathrm{i}}\mathbf{P}\mathbf{r}$	337
Delocalized (cyclic) cations [C ₆ H ₇] ⁺ H, ,H	$[HCB_{11}Me_5Br_6]^-$	Prot	$C_6H_6 + H(WCA)$		386
+)	$[HCB_{11}H_5Br_6]^-$	Prot	$C_6H_6 + H(WCA)$		387
^ -/	[HCB ₁₁ H ₅ Br ₆] ⁻	Prot	$G_6Me_2H_4 + H(WCA)$		387
X +)>	[HCB11H5Br6] ⁻	Prot	$C_6Me_3H_3 + H(WCA)$		387
I I I	$[B(C_6F_5)_4]^-$	Prot	$Et_3Si(WCA) + HCl + C_6(Me)_5H$	C-H F-C interactions	388

s Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Acces	(ce)) BY-NC

Table 9 (continued)

Table 9 (continued)					
Cation	Anion	$Class.^{a}$	Synthesis	Comment	Ref.
x x	[HCB ₁₁ H ₅ Br ₆]	Prot	$C_6Me_6 + H(WCA)$		387
$\begin{bmatrix} C_6Me_7 \end{bmatrix}^+$ $\begin{bmatrix} C_6F_6 \end{bmatrix} e^+$ $\begin{bmatrix} C_6F_6 \end{bmatrix} e^+$	$[AlCl_{4}]^{-}$ $[Sb_{2}F_{11}]^{-}$ $[Os_{2}F_{11}]^{-}$ $[Os_{2}F_{11}]^{-}$	Other Ox Ox	$C_6Me_6 + CH_3CI + AICI_3$ $C_6F_6 + [O_2]^+[WCA]^-$ $C_6F_6 + OSF_6 + SBF_5$	Crystallized out of HF In HF	277 278 278
C6BL6 C6BL6 C6L6 C6L6 C4L6	$\begin{bmatrix} A_{25}F_{11} \end{bmatrix}$ $\begin{bmatrix} A_{25}F_{11} \end{bmatrix}$ $\begin{bmatrix} A_{5}F_{6} \end{bmatrix}$ $\begin{bmatrix} S_{2}F_{6} \end{bmatrix}$	5 8 8 8 8 8	$C_{6}C_{6} + 20C_{5}$ $C_{6}Br_{6} + [O_{2}]^{\dagger} [ASF_{6}]^{-} + HSO_{3}F$ $C_{6}I_{6} + ASF_{5}$ $C_{6}I_{6} + SbF_{5}$ $C_{6}I_{6} + SbF_{5}$	In HF In HF	280 279 279
[C646] [C6HF5]•+ E E E -	[OII] [AsF ₆] ⁻	Other Ox	$[C_{646}][ASF_6] + HUIT C_{64H_5} + [O_2]^+[WCA]^-$		279
	[SbF ₆] ⁻	Ŏ	$C_6H_2F_4 + [O_2]^{+}[WCA]^{-}$		279
́L	$[AsF_6]^-$	ŏ	$C_{6}H_{3}F_{3} + [O_{2}]^{4}[WCA]^{-} + AsF_{5}$		279
	[SbF6] ⁻	ŏ	$C_6H_3F_3 + [O_2]^4[Sb_2F_{11}]^-$	In HF	279
	$[Sb_2F_{11}]^-$	ŏ	$C_6F_5(CF_3) + \left[O_2\right]^{+} \left[WCA\right]^{-}$	In HF	280
	$[Sb_2F_{11}]^-$	ŏ	$C_6F_4(CF_3)_2 + SbF_5$	In HF	280
	$[Sb_2F_{11}]^-$	ŏ	$C_{6}H_{2}Cl_{4} + [O_{2}]^{+}[WCA]^{-}$		280

Review Article

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. (cc) BY-NC

Table 9 (continued)

View Article Online

Table 9 (continued)

						en
Cation	Anion	Class. ^a	Synthesis	Comment	Ref.	1 500
Et, Et-SiOSO Et	[HCB ₁₁ Me ₅ Bī ₆] ⁻	Ion	$Et_3Si(WCA) + SO_2$		81	c Rev
- HO	[OTf]-	Ion	$Me_2Si(OTf)_2 + bipy$		302	
E E E E E E E E E E E E E E E E E E E	$\left[B(C_6F_5)_4 \right]^-$	Hyd	Me ₂ ArSiH + [Ph ₃ C] ⁺ [WCA] ⁻		303	
	[OTf] ⁻	Ion	$Me_2Si(OTf)_2 + 2DMAP$		302	
Et -Si +	$[B(C_6F_5)_4]^-$	Hyd	$Et_3SiH + [Ph_3C]^+[WCA]^-$		289	
[Me ₃ Si(Ar)] ⁺	$\left[B(G_6F_5)_4 \right]^-$	Lig	[Me ₃ SiHSiMe ₃] ⁺ [WCA] ⁻ + arene	Ar = benzene, toluene, ethylbenzene, <i>n</i> -propylbenzene, and iso-propylbenzene, <i>o</i> -xylene, <i>m</i> -xylene, <i>p</i> -sylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, mesitylene	304	
	$[B(C_6F_5)_4]^-$	Hyd	Ar Ar Si H + [Ph ₃ c] ⁺ [WCA] ⁻		76	
$\begin{bmatrix} Me_3 SiHSiMe_3]^{\dagger} \\ Et_3 SiHSiMe_3]^{\dagger} \\ Me_3 SiXSiMe_3]^{\dagger} \\ Me_3 Si:CN-SiMe_3]^{\dagger} \\ Me_3 Si:CN-SiMe_3]^{\dagger} \\ Me_3 Si:SCN-SiMe_3]^{\dagger} \\ [Me_3 Si)_2 NNN]^{\dagger} \end{bmatrix}$	$\begin{array}{l} \left[HCB_{11}HCI_{11}\right]^{-}\\ \left[B(C_{6}F_{5})_{4}\right]^{-}\\ \left[B(C_{6}F_{5})_{4}\right]^{-}\\ \left[B(C_{6}F_{5})_{4}\right]^{-}\\ \left[B(C_{6}F_{5})_{4}\right]^{-}\\ \left[B(C_{6}F_{5})_{4}\right]^{-}\\ \left[B(C_{6}F_{5})_{4}\right]^{-}\\ \end{array}$	Hyd Hyd Ion Ion Ion Ion	2Me ₃ SiH + [Ph ₃ C] ⁺ [WCA] ⁻ 2Et ₃ SiH + [Ph ₃ C] ⁺ [WCA] ⁻ Me ₃ SiX + Me ₃ Si[WCA) Me ₃ SiCN + Me ₃ Si[WCA) Me ₃ SiSON + Me ₃ Si[WCA) Me ₃ SiSON + Me ₃ Si[WCA)	X = F, Cl, Br, I	81 306 309 309 309 309	
F ₃ C-S=0 O-S=0 SiMe ₃	$[B(C_6F_3)_4]^-$	Ion	Me ₃ Si(OTf) + Me ₃ Si(WCA)		308	Review Article

Table 9 (continued)					
Cation	Anion	Class. ^a	Synthesis	Comment	Ref.
Me ₂ Si, H [_] SiMe ₂	$[B(C_6F_5)_4]^-$	Hyd	Me ₂ HSi SiHMe ₂ + [Ph ₃ C] ⁺ [WCA]		311
Me ₂ Si F SiMe2	$[B(C_6F_5)_4]^-$	Other	<u>+</u> ⁺ ≥		311
Ar ₂ Si Ar.	$[B(C_6F_5)_4]^-$	Hyd	Ar2HSi SiHAr2 + [Ph3C]*[WCA]	Ar = Tol	312
(Me ₃ SI) ₂ C'SI Me ₃ SI) ₂ C'SI Me ₂	$\left[B(C_6F_5)_4 ight]^-$	Other	(Me ₃ Si) ₃ CSiMePhH + [Ph ₃ C] ⁺ [WCA] ⁻		313
Me ₃ Si Si Me ₂ Me ₃ Si Si Si Me ₃ Si Si Me ₂	$[B(C_6F_5)_4]^-$	Other	Me ₃ Si SiMe ₃ Si Me ₃ Si Me ₃ Si SiMe ₃ SiH ₂ Me ₃ Si SiMe ₃ + [ph ₃ C] [*] [WCA] ⁻ or Me ₃ Si SiMe ₃		314
Me ₃ Si Si Si Me ₂ Me ₃ Si Si Me ₂ Me ₂	$[B(C_6F_5)_4]^-$	Other	Me ₃ Si Si H Me ₃ Si Si Me ₃ Si Si +H ₂ O		314
Me₂Si (+) SiMe₂ Me₂Si SiMe₂ Me₃Si SiMe₃	$[\mathbf{B}(\mathbf{C}_6\mathbf{F}_5)_4]^-$	Other	[(Me) ₃ Si] ₃ C ₁ X Si (Me) ₃ Si Si(Me) ₃ + [Et ₃ Si(C ₆ H ₆)] ⁺ [WCA] ⁻	X = Cl, Br	315
E	$[B_{12}C _{12}]^{2-}$	Hyd	$2FcMe^{f}BuSiH + [Ph_{3}C]_{2}^{+}[WCA]^{-}$		316

Chem Soc Rev

Review Article

This journal is © The Royal Society of Chemistry 2016

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. (cc) BY-NC

Table 9 (continued)

Table 9 (continued)

Review Article

Table 9 (continued)

	Anion	Class. ^a	Synthesis	Comment	Ref.
[OTf] ⁻		Ion	$Sn(OTf)_2 + cryptand[2.2.2] \text{ or } 2SnCl_2 + cryptand[2.2.2] + 4Me_3Si(OTf)$		356
$[SnCl_3]^-$		Ion	2SnCl ₂ + cryptand[2.2.2]		356
[SnBr ₃] ⁻		Ion	2SnCl ₂ + cryptand[2.2.2] + 4Me ₃ SiBr		356
$\left[\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4}\right]^{-}$		Com	ⁿ Bu ₂ Pp		346
$[B(C_6F_5)_4]^-$		Other	$Et_2Pb\left[\left(\begin{array}{c} & & \\ $		348
[SnCl ₃] ⁻		Salt	SnCl ₂ + THF Li		389
[GeBr ₃] ⁻		Ion	$GeBr_2 + bipy$	Bulk product is GeBr ₂ (bipy)	359
[GeCl ₃]-		Ion	GeCl ₂ .dioxane + pmdta		359
C_		Ion	GeCl ₂ dioxane + ⁿ Bu ₃ P ₂ N _N ≤ P ⁿ Bu ₃		363

Review Article

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. (cc) BY-NC

Review Article
Table 9 (continued)

lable 9 (continued)					
Cation	Anion	Class. ^a Sy	Synthesis Comment	aent	Ref.
Ph Ph SiMe ₃	$[Al(OR^{PF})_4]^-$	Salt	Ar, Cl N–Sn, Me ₃ Si + Ag*[WCA] ⁻ or Li*[WCA] ⁻		366
Ph Ph Sin+	$[A(OR^{PF})_4]^-$	Lig	Physical Phy		366
Dipp N, Dipp	$\left[MeB(C_6F_5)_3\right]^-$	Lewis	Ar N Ar .Sn Me + B(GeFs)3		367
THE SUPERIOR	[SbF ₆] ⁻	Salt	Photo		368
i-Pro-p=0 i-Pro-p=0 i-Pro-p=0 i-Pro-p=0	$[B(Ph)_4]^-$	Salt	f-Bup=0 i-PrO-p=0 i-PrO-p=0 i-PrO + Na*[WCA]		345
'Pro-P=0 'Pro-P=0' 'Pro-P=0' 'Pro-P=0' '2,	$\left[B(Ar^{CF_3})_{4} \right]^{-}$	Salt	'Pro'-P=0 'Pro-P=0 'Pro-P=0 + Na*[WCA]"		345
	$[B(C_6F_5)_4]^-$	Other (T	$(Tipp)_{2}Sn + [Et_{3}Si(C_{7}H_{8})]^{\dagger}[WCA]^{-}$		371

(continued)
б
e,
q

Table 9 (continued)					
Cation	Anion	Class. ^a	Synthesis	Comment	Ref.
[Pb(NO ₃)([12]-crown-4) ₂] ⁺ [Pb([15]-crown-5) ₂] ²⁺ [Pb(benzo-[15]-crown-5) ₂] ²⁺	[Pb(NO ₃) ₃ [[12]crown-4]] ⁻ [Pb(NO ₃) ₃ [[15]crown-5]] ⁻ [Pb(NO ₃) ₃ (benzo-[15]crown-5)] ⁻	lon Ion Ion	$\begin{array}{l} Pb(NO_3)_2 + [12]crown-4\\ Pb(NO_3)_2 + 2[15]crown-5\\ Pb(NO_3)_2 + benzo-[15]crown-5\\ \end{array}$		351 351 351
Dipp N Dipp	$[B(C_6F_5)_4]^-$	Salt	Ar N Ar Pb Ar Cl + Li'[wca]		367
Tipp	$\left[B(C_6F_5)_3(CH_3)\right]^-$	Lewis	Tipp + B(C ₆ F ₅) ₃		370
Cyclopentadienyl substituted cations Si ⁺	$[B(C_6F_5)_4]^-$	Prot	$(Me_5C_5)_2Si + [Me_5C_5H_2]^{\dagger}[WCA]^{-}$		322
ipr Si pr ipr ipr	$[Al(OR^{PF})_4]^-$	Prot	$(Me_5C_5)(^iPr_5C_5)Si + [H(OEt_2)_2]^+[WCA]^-$		323
	$[\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4}]^{-}$	Com	[[(Me ₅ C ₅)Si] ⁺ [WCA] ⁻ + dme		324
	$[B(C_6F_5)_4]^-$	Com	[[(Me ₃ C ₅)Si] ⁺ [WCA] ⁻ + [12]crown-4		324
* e t	$[\mathrm{BF}_4]^-$	Prot	$(C_5Me_5)_2Ge + H(WCA)$		376
* 3 - 6 -	[SnCl ₃] ⁻	Lewis	$(C_5Me_5)GeCl + SnCl_2$		377
*5 5	$[BF_4]^-$	Prot	$(C_5Me_5)_2Ge + H(WCA)$		373

Table 9 (continued)

Cation	Anion	Class. ^a	Synthesis	Comment	Ref.
* <i>5</i> -	$[B(C_6F_5)_4]^-$	Salt	(C ₅ Me ₅)SnCl + Li ⁺ [WCA] ⁻		375
⁺a-)∕-	$\left[B(C_6F_5)_4 \right]^-$	Salt	$(C_5Me_5)PbCl + Li^+[WCA]^-$		375
the state of the s	$[Ga(C_6F_5)_4]^-$	Other	$(C_5Me_3)_2Sn + Ga(C_6F_5)_3$		378
t Surser Surser	$[B(C_6F_5)_4]^-$	Com	$[[C_5Me_5]Sn]^{+}[WCA]^{-} + (C_5Me_5)_2Sn$		375
t Add Add Add Add Add Add Add Add Add Ad	$[B(C_6F_5)_4]^-$	Com	$\left[\left[\mathrm{C}_5\mathrm{Me}_5\right]\mathrm{Pb}\right]^{+}\left[\mathrm{WCA}\right]^{-}+\left(\mathrm{C}_5\mathrm{Me}_5\right)_2\mathrm{Pb}$		375
Ion-like compounds $Me_2(B_{12}Cl_{12})$ $(Me_2CH)(HCB_{11}Me_3Br_6)$ $Me_2CF(ASF_6)$ $(m^cCF_3-C_6H_4)(Ph)CF(ASF_6)$ $Me_3SI(HCB_{11}F_{11})$ $Me_3SI(HCB_{11}F_{11})$ $Me_3SI(HCB_{11}H_5Br_6)$ $E_{13}SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(HCB_{11}H_5Br_6)$ $Pr_3SI(PCH_{11}H_5Br_6)$ Pr_3		Salt Lewis Lewis Lewis Hyd Hyd Hyd Hyd Hyd Hyd Hyd Hyd Cuber Cox Lewis	$ \begin{bmatrix} Li \end{bmatrix}_{+}^{+} [WCA]^{-} + 2.2MeF + 2.6AsF_{5} \\ (H_{3}C)_{2}CHCl + (H_{3}C)(HCB_{11}H_{3}Br_{6}) \\ (H_{3}C)_{2}CF2 + AsF_{5} \\ C_{6}H_{3}CF_{2} + AsF_{5} \\ C_{6}H_{3}CF_{3} + AsF_{5} \\ Me_{3}SiH + [Ph_{3}C]^{+} [WCA]^{-} \\ Pr_{3}SiH + [Ph_{3}SiH + [Ph_{3}C]^{+} [WCA]^{-} \\ Pr_{3}SiH + [Ph_{3}C]^{+} [WCA]^{-} \\ Pr_{3}SiH + [Ph_{3}C]^{+} [WCA]^{-} \\ Pr_{3}SiH + [Ph_{3}C]^{+} [WCA]^{-} \\ Pr_{3}$	1:1 mixture with [Li] ₂ ⁺ [WCA] ⁻	288 287 268 326 326 328 328 328 328 328 328 328 328 328 328

Table 9 (continued)

Table 9 (continued)					
Cation	Anion	Class. ^a S	Synthesis	Comment	Ref.
ⁱ PrO ⁱ PrO-P=O ⁱ PrO-P=O ⁱ PrO-P=O ⁱ PrO	[Cl04] ⁻	lon	'PrO 'PrO-P=0 'PrO-P=0 'PrO' + DMAP + DMAP		383
¹ PrO ¹	[W(CO) ₃ Cp] ⁻	Prot	¹ PrO ¹ PrO-P=0 ¹ PrO-P=0 ¹ PrO-P=0 ¹ PrO ¹ PrO +HW(CO) ₃ (Cp		384
Cy₃Ŗ Pt−Sn [™] Br″Sn−Pt Cy₃P Pr	[AlBr4] ⁻	Lewis	Cy₃P ^B LBr Pr−Sn Cy₃P + AlBr₃		385
Cy₃P Pt−Sn ^{™Br} Sn−Pt Cy₃P	$\left[\mathbf{B}(\mathbf{Ar}^{\mathrm{Cl}})_{4}\right]^{-}$	Salt	Cy₃P Br Pt−sn Cy₃P + Na*[WCA] ⁻		385
$\{(Cy_3P)_2Pt\}_2Sn(AlBr_4)_2$		Lewis	Cy₃Ŗ Pt−Sn ^{™,Br} ,Sn−Pt Cy₃P AlBr		385
Cy ₃ P Pt-Pb, Cl, Pb-Pt Cy3P	$[AlCl_4]^-$	Lewis	Cy₃P SICI Pt t Pb Cy₃P + AICI₃		385
Cy ₃ P Pt-Pb, Cl, Pb-Pt Cy ₃ P Cy ₃ P	$[B(Ar^{C})_{4}]^{-}$	Salt	CysP SIC Pt-Pb CysP + Na"[WCA]		385
Cy3R Pt-Pb, L Pb-Pt Cy3P Cy3P	$[A Cl_4]^-$	Salt	CysP pt-Pb., Cl, Pb-Pt Cy3P Nal		385
$\{(Cy_3P)_2Pt\}_2Pb(AlCl_4)_2$		Lewis	$\begin{array}{c} Cy_{3}P\\ p_{1}-Pb \\ Cy_{3}P\\ Cy_{3}P \\ AlCl_{3} \end{array} \begin{array}{c} PCy_{3} \\ PCy_{3} \\ PCy_{3} \\ PCy_{3} \\ PCy_{3} \\ PCy_{3} \end{array} \begin{array}{c} P\\ P\\ PCy_{3} \\ P\\ PCy_{3} \\ P\\ P$		385

cess Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Acc	(cc)) BY-NC

Table 10 Overview on selected and structurally characterized pnictogen cations

				7	
Cation	Anion	Class."	Synthesis	Comment"	Ref.
Homopolyatomic cations [N ₅] ⁺ [P ₆] ⁺	$[\mathrm{Sb}_2\mathrm{F}_{11}]^-$ $[\mathrm{Al}(\mathrm{OR}^{\mathrm{PF}}_{1d})_d]^-$	Other Ox	$[N_2F]^+[SbF_6]^- + HN_3 \text{ in aHF}$ $P_a + [NO]^+[Al[OC(CF_3]_a]^-$	2.5 equiv. of P., no X-rav	401 29
$[Sb_{8}]^{2+}$	[GaCl ₄]		SbCl ₃ + Ga ⁺ [GaCl ₄] ⁻ in GaCl ₃ /C ₆ H ₆		402
$[\mathbf{Bi}_2]^{4\tau} \cdot [\mathbf{Bi}_9]^{3\tau}$ $2[\mathbf{Bi}_7]^{+} \cdot [\mathbf{Bi}_6]^{2+}$	$\mathrm{[Ag_3Bi_3Br_{15}]^{3-}.6[Br]^{-}}$ $2[\mathrm{IrBi_6Br_{12}]^{-}[\mathrm{IrBi_6Br_{13}]^{2-}}]$	Lewis, Ox Lewis, Ox	Bi + BiBr ₃ + Ag Bi + Ir + BiBr ₃	HTS $(350 \ ^{\circ}C)$ HTS $(1000 \ ^{\circ}C)$	429 430
		Lewis, Ox	$Bi + BiCl_3 + AICl_3$	SLH	431
$[Bi_5]^{3+}$ [n:]3+	ڊ 	Lewis, Ox	Bi + BiCl ₃ + [BMIM]Cl/AlCl ₃	Ionic liquid based synthesis	403
[b15] [Bi_] ³⁺ .2SO.	$\begin{bmatrix} AIX_4 \end{bmatrix} (\mathbf{X} = BI, \mathbf{I}) \\ \begin{bmatrix} A \in \mathbf{F}_{-} \end{bmatrix}^{-}$	Lewis, UX Lewis, Ov	$BI + BIX_3 + AIX_3$ $BI + AcF_1 in SO_2$	HIS (490 °C (IJ, 520 °C (BFJ) No X-rav	432 196
$[\mathbf{Bi}_{\mathbf{B}}]^{2+}$	[AlCl ₄]	Lewis, Ox Lewis, Ox	$Bi + BiCl_3 + AlCl_3$	HTS THE	433
$[\mathbf{B}_{\mathbf{B}_{\mathbf{i}}}]^{2+}_{5+}$	$[{ m Ta}_2{ m O}_2^2{ m Br}_7]^-$ ${}^{4}{ m [Ta}_1{ m C}_1^{-2}[{ m Ta}_1^2-{ m Cr}_1^2]^2-$	Lewis, Ox Lewis, Ox	Bi + BiBr ₃ + TaBr ₅ Bi + BiCl	HTS (570 °C), traces of H_2O HTS (275 °C) bi Cl	434 125 and
[61G]	4[ماريح] الماريحية]	LCWID, UA	DI + DIUI3	1113 (323 C), DIGUI7	435 allu 236
$[\mathbf{B}\mathbf{i}_{9}]^{5+}_{5+}$	$[Bi]^+.3[HfCl_6]^{2-}$	Lewis, Ox	$Bi + BiCl_3 + HfCl_4$	SLH	436
[Bi ₉] ⁵⁺	$[\mathrm{B1}]\cdot\mathrm{3[NDCI_6]}$ $[\mathrm{Sn_7Br_{24}]^{10-}}$	Lewis, Ux Lewis, Ox	B1 + BICl ₃ + NDCl ₅ B1 + BiBr ₃ + Sn	H1S (550 °C), Nb(v) to Nb(v) reduction HTS (250 °C), C_{4v} symmetric	434 437
Metal-nonmetal-cluster complexes					
$\begin{bmatrix} \operatorname{Cu}(\mathbf{P}_4)_2 \\ \cdots \\ $	$[\mathrm{Al}(\mathrm{OR}^{\mathrm{PF}})_4]^-$	Com	$\operatorname{Cul} + [\operatorname{Ag}]^+ [\operatorname{Al}(\operatorname{OR}^{\operatorname{PF}})_4]^- + \operatorname{P}_4$		438
[Cu(P4)] [Ao(D.)_]+	[GaCI4] [Al(OP ^{PF}).] ⁻	Com	$CuCI + GaCI_3 + P_4$ $\Delta \alpha^{+} \Gamma \Delta I (OR^{PF}) = - P_2$		439 70
$[AS(P_4)_2]$ $[Ag(P_4)]^+$	$\begin{bmatrix} AU(ON) \\ [GaCl_4]^{-} \end{bmatrix}$	Com	Ag $[Au(ON_{j4})]$ $+ r_4$ Ag $Cl + Ga Cl_3 + P_4$		72 439
$[Au(P_4)_2]^+$	[GaCl ₄] ⁻	Com	AuCl + GaCl ₃ + P_4		439
$[Cp^{M}(dppe)(P_{4})]^{T}(M = Fe, Ru)$ $[CnOs(PPh_{2}), (P_{4})]^{T}$	[BPh ₄] ⁻ [OTF]-	Salt	[Cp*M(dppe)Cl] + P ₄ + Na ⁺ [BPh ₄] ⁻ [CnOs(PPh ₂) ₂ Cl] + Ao ⁺ [OTF] ⁻		440 441
$[CPRu(PPh_3)_2(F_4)]^{2+}$		Com, salt			442
[{CpRu(PPh ₃) ₂ }- {CpOs(PPh ₃) ₂ }(P,)] ²⁺	[OTf] ⁻	Com	$[CpOs(PPh_3)_2(P_4)]^{+} + [{CpRu(PPh_3)_2}]^{+}$	Bridging end-on/end-on	441
$[Ag(As_4)_2]^{(-4)}$	$\left[AI(OR^{PF}_{m,2})_{4} \right]^{-1}$	Com	$Ag^{+}[Al(OR^{PF})_{4}] - As_{4}$		405
[AuPPh ₃ (As ₄)] ⁺ [Cn*Ru-(dnne)(As ₄)] ⁺	$[Al(OR^{FF})_4]^-$ [Al(OR^{PF}).]^-	Com, salt	t $[Ag(As_4)_2]^{T}[Al(OR^{PF})_4]^{-} + AuPPh_3Cl$ t $[Ag(As_4)_2]^{T}[Al(OR^{PF})_4]^{-} + Cn^*Ru_1(dnne)Cl$		405 443
$\left[\operatorname{Ag}(P_4S_3)_n \right]^+ (n = 1, 2)$	$[Al(OR^{PF})_4]$		$Ag^{+}[Al(OR^{PF})_{4}]^{-} + P_{4}S_{3}$		444
[Ag ₂ (P ₄ S ₃) ₆] ⁺ [{CnR11(PPh ₂) ₂ ,(P.S.)] ²⁺	$[Al(OR^{PF})_4]^-$	Com salt	$\begin{array}{l} \operatorname{Ag}^{*}[\operatorname{Al}(\operatorname{OR}^{\operatorname{Pr}})_{a}]^{-} + \operatorname{P}_{4}\operatorname{S}_{3} \\ [\operatorname{CnRu}(\operatorname{Pph}_{2})_{a},\operatorname{Cl}] + \operatorname{P}_{a}\operatorname{S}_{a} + \operatorname{Ao}^{*}[\operatorname{OTF}]^{-} \end{array}$		170 442
[[~Priv(x 1 13)2]2[x 403]]	[]	ame (moo	[110] 347 - 547 - 103/2011 - 103/2011		
Clusters, cluster-like and catenated cations $[N_2Ph]^+$ $[BF_4]^-$	d cations $[BF_4]^-$	Other	PhNH ₂ + NaNO ₂ in HCl _(aq) and Na ⁺ [BF ₄] ⁻	N–N triple bond	445
Z					
F ₃ C					
\geq	$[BF_4]^-$	Other	$H_2NC_6(CF_3)_5 + [NO]^+[BF_4]^-$		446
CF ₃					
$Mes-N\overset{+}{\equiv}N$	$[OsO_2(NO_3)_2(Mes)]^-$	Other	$[N_2Mes]^+[NO_3]^- + [OsO_2(NO_3)(Mes)]^+$		447
SMT			Hor(N.(TMS).). + Ao ^{+[} [GaC].] ⁻ or Bi(N.(TMS).). +		
N=N + TMS TMS	[GaCl4] ⁻	Other	GaCl ₃ + Cl ₂	LTS $(-80 \ ^{\circ}C)$	448

s Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access	(cc)) BY-NC

Table 10 (continued)

Table 10 (continued)					
Cation	Anion	Class. ^a	Synthesis	$\operatorname{Comment}^{b}$	Ref.
$Mes^* - N \equiv P$	$[AlCl_4]^-$	Lewis	Mes*-NPCI + AlCl ₃	N-P triple bond	407
^{'P'-} , N'-PCy ₃	[GaCl4] ⁻	Other	$\left[P(N^iPr_2)N_3\right]^+\left[GaCl_4\right]^- + PCy_3$		449
(Pr', N, P, N, N, N, R) 'Pr 'Pr 'R = 'Pr, SIMe3	[GaCl4] ⁻	Other	$[P(N^iPr_2)N_3]^+[GaCl_4]^- + P(NR_2)Cl_2$	N2 as leaving group	449
$\begin{bmatrix} \swarrow_{n}^{IBu} \\ Bu \\ Bu \\ Ph_{3} \\ Ph$	[SbF ₆] ⁻	Salt	$[(^{d}BuIM)NPCl(C(PPh_{3})_{2})]^{+}[Cl]^{-} + Ag^{+}[SbF_{6}]^{-}$	Dicationic iminophosphorane	450
$egin{bmatrix} P_2Ph_5 \end{bmatrix}^+ \ P_2Me_{6}^{2^+} \ P_2Br_5 \end{bmatrix}^+ \ P_2L_5 \end{bmatrix}^+ \ P_2L_5 \end{bmatrix}^+ \ P_2L_5 \end{bmatrix}$	$ \begin{bmatrix} OTF \end{bmatrix}^{-} \\ \begin{bmatrix} OTF \end{bmatrix}^{-} \\ \begin{bmatrix} AI(OR^{PF})_{4} \end{bmatrix}^{-} \\ AII_{4}^{-} \\ \begin{bmatrix} AI(OR^{PF})_{4} \end{bmatrix}^{-} \\ \end{bmatrix} $	Lewis Lewis Salt Lewis Salt	$\begin{split} Ph_2 PCl + TMSOTf + PPh_3 \\ P_2 Me_4 + MeOTf \\ PBr_3 + Ag^* [Al(OR^{PF})_4]^- \\ Pl_3 + All_3 \\ Pl_3 + Ag^* [Al(OR^{PF})_4]^- \end{split}$	First homoleptic phosphine- phosphonium	451 452 453 453
Ph, P, P, Ph Ph, P, P, Ph Ph, Ph, Ph	[AlCl4] ⁻	Lewis	$PPh_3 + PCl_3 + AlCl_3$	$\left[P(PPh_3)_2 \right]^+$	421
Me, Me P, P, Me Me, P+, piMe	[OIf] [_]	Lewis	$P_2Me_4 + PMe_2Cl + TMSOTf$	[[PMe ₂] ₃] ⁺	455
Ph ++ 	[AlCl4]	Prot	$[P(PPh_3)_2]^{+}[AlCl_4]^{-} + AlCl_3 + HCl$		456
${f [P_{3}I_{6}]}^{+}$ ${f [PMe(AsMe_{3})_{2}]}^{+}$ ${f [P_{4}Ph_{8}]}^{2+}$	$[F(AI(OR^{PF})_3)_2]^-$ $[OTf]^-$ $[OTf]^-$	Salt Other Lewis	$P_4 + I_2 + Ag^+[Al(OR^{PF})_4]^-$ MePCl ₂ + AsMe ₃ + TMSOTf PPhCl ₂ + PPh ₃ + TMSOTf	$[[PRL_2]^3]^+$ $[PRL_2]^+$	457 458 459

Table 10 (continued)

Cation	Anion	Class. ^a	Synthesis	$\operatorname{Comment}^{b}$	Ref.
$[P_4NO]^+$	$[Al(OR^{PF})_4]^-$	Other	$\mathbf{P}_4 + [\mathrm{NO}]^+ [\mathrm{AI}(\mathrm{OR}^{\mathrm{PF}})_4]^-$	Insertion in P ₄ , no X-ray	78
Mes P + C + C + Mes	[GaCl4] ⁻	Lewis	ClP(PMes*)2PCl + GaCl3	Bicyclic phosphine-phosphonium	460
$ \begin{array}{l} \left[\left(PPh \right)_{2} \left(PnPh_{3} \right)_{2} \right]^{2+} \left(Pn = As, \; Sb \right) \\ \left[P_{5}Bt_{2} \right]^{+} \end{array} \end{array} $	$\left[\mathrm{AlCI}_{4} \right]^{-} \left[\mathrm{AlCI}_{4} \right]^{-}$	Lewis Lewis,	$\begin{array}{l} PPhCl_2 + PnPh_3 + AlCl_3 \\ P_4 + PBr_3 + Ag^{\dagger} \left[Al(OR^{PP})_4 \right]^{-} \end{array}$	Insertion in P ₄	461 453 and
$[P_5Ph_2]^+, [P_7Ph_6]^{3+}$	[GaCl4] ⁻	other Lewis,	$P_4 + Ph_2PCI + GaCl_3$	Different stoichiometries, insertion in	462 68
$[P_5RCl]^+$ (R = Me, Et, ¹ Pr, Cy, Ph,	[GaCl ₄] ⁻	otner Lewis,	$P_4 + RPCl_2 + GaCl_3$	P4, H15 (60-/0 °C) Insertion in P4	463
$C_{6}F_{5})$ $[P_{5}R_{2}]^{+}$ (R = Me, Et, ¹ Pr, Cy, Mes, [$[GaCl_4]^-$	other Lewis,	$P_4 + R_2PCI + GaCl_3$	Insertion in P_4	464
[P ₅ (NCy ₂)CI] ⁺	[GaCl4] ⁻	otner Lewis, other	$P_4 + P(NCy_2)Cl_2 + GaCl_3$	Insertion in P ₄	465
$\mathbf{x} = \mathbf{B}_{\mathbf{r}}_{\mathbf{r}}}}}}}}}}$	$\left[A[OR^{PF}]_4 \right]^-$	Salt, other	Salt, other $P_4S_3 + PX_3 + Ag^+[A[OR^{PF})_4]^-$	Initial insertion in P ₄ S ₃	134
Ph ₃ P ⁺ PPh ₃ P ⁺ PPh ₃	[AlCl4]	Other	$[P_4(AsPh_3)_2]^{2+}([AlCl_4]^-)_2 + PPh_3$	Ligand exchange	466
Ph ₃ As ⁺ Ph ₃ As ⁺ AsPh ₃	[AICI4] ⁻	Other	$AsPh_3 + PCl_3 + AlCl_3$		466
	[Al(OR ^{PF}) ₄] ⁻	Salt	$P_4S_3I_2 + Ag^{*}[Al(OR^{PF})_4]^{-}$		234
Ph ₃ As, p, P, p, AsPh ₃ Ph ₃ As, p, P, p, AsPh ₃ Ph ₃ As, p, P, p, AsPh ₃	[0Tf] ⁻	Other	$(AsPh_3)(OTf)_2 + PCl_3 + Ph_3As$		467
A S S S S S S S S S S S S S S S S S S S	$[AlCl_4]^-$	Lewis, other	$P_{(red)} + Se + SeCl_4 + BMImCl/AlCl_3$	Ionic liquid based synthesis, rhombohe ⁻ 412 dral and orthorhombic modification	412

Chem Soc Rev

This journal is © The Royal Society of Chemistry 2016

s Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access	(cc)) BY-NC

Table 10 (continued)

Table 10 <i>(continued)</i>					
Cation	Anion	Class. ^a	Synthesis	$\operatorname{Comment}^{b}$	Ref.
$[P_3Se_4]^+$	$[AlCl_4]^-$	Lewis,	$P_3Se_4 + Me_5C_6Br + AlCl_3$	In solution, orthorhombic modification	412
$[P_3Se_4]^+$	$[Ga_2Cl_7]^-$	Lewis,	$PCl_3 + SeTMS_2 + GaCl_3$	In solution	412
$\left[\mathbf{P}_{5}\mathbf{S}\mathbf{e}_{2}\mathbf{P}\mathbf{h}_{2} ight]^{+}$	$\left[GaCl_{4} \right]^{-}$	OX	$\left[P_5 Ph_2 \right]^{+} \left[GaCl_4 \right]^{-} + Se$	(160 $^{\circ}$ C) HTS (160 $^{\circ}$ C)	464
$[P_5Se_2Cy_2]^+$ Mecs_N $\longrightarrow \Lambda_c$	[GaCl ₄] -	Ox I euric	$[P_5Cy_2]^+ + GaCl_3 + Se$ $Mee*MAcCl + GaCl_3$	HTS $(140 \ ^{\circ}C)$ N_A6 triale hand	464 408
$[AS_3N_3Ph_3Cl_3]^+$	[GaCl ₄]	Lewis	Ness Ives of + Gault N.As.,Ph.,Cl, + Gault	N-AS utple bound AS ₃ N ₃ ring	408 468
$[As_2Me_6]^{2+-2}$		Other	$Me_3As + PCl_3 + TMSOTf$	0	458
$\left[\mathrm{As_2Ph_6} ight]^{2+}$	$[AlCl_4]^-$	ОX	$AsPh_3 + PCl_3 + AlCl_3$		466
As	[AsF6] ⁻	Ň	$As_4S_4 + AsF_5$ in SO_2		469
$[As_3S_4]^+$	$[SbF_6]^-$	Ox	$As_4S_4 + SbF_5$ in SO_2		469
S As - S - S - S - S - S - S - S - S - S -	[Alcl4]	Ox, Lewis	Ox, Lewis As + AsCl ₃ + S + AlCl ₃	HTS (80 °C)	470
$\begin{array}{c} Se^{-AS}\\ Se^{-AS}\\ AS^{-AS}\\ AS^{-AS}\\ AS \end{array}$	[SbF6] ⁻	XŎ	As + Se + SbF ₅ in SO ₂		469
$[As_3Se_4]^+$ ($[Sb_2Se_2]^+$),	$[AlCl_4]^-$ $[AlCl_4]^-$	Ox, Lewis Ox	As + AsCl ₃ + Se + AlCl ₃ Sb + Se + BMImCl/AlCl ₃	HTS (80 °C) Ionothermal, HTS (160 °C)	470 67
Second Se	2+ [AlCl₄] ⁻	Ox, others	Ox, others Sb + Se + SeCl ₄ + BMImCl/AlCl ₃	Ionic liquid based synthesis	409
$([Sb_2Te_2]_{5+}^{\dagger})_{\pi}$	[AlCl_] ⁻ 3[Ga_Cl_] ⁻ -2[GaCl_] ⁻ /2[Ga_2Cl_] ⁻ . 3[GaCl_] ⁻	Ox, Lewis Ox, Lewis	Sb + Te + SbCl ₃ + NaCl + AlCl ₃ Sb + Te + SbCl ₃ + GaCl ₃	HTS (130 °C), polymeric AlCl ₃ /GaCl ₃ melt	15 410
$\begin{bmatrix} & f = \\ S_{P_1} = \\ S_{P_1} = \\ f = \\ S_{P_1} = \\ $	$[MCl_4]^-$ (M = Al, Ga)	Ox, Lewis	Ox, Lewis Sb + Te + SbCl ₃ + MCl ₃ + NaCl	AlCl ₃ /GaCl ₃ melt	410

ss Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Acce	(cc)) BY-NC

Table 10 (continued)

lable 10 <i>(continued)</i>					
	Anion	Class. ^a	Synthesis	$\operatorname{Comment}^{b}$	Ref.
	$\begin{bmatrix} A X_4]^-\\ \begin{bmatrix} A (OR^{PP})_4 \end{bmatrix}^- \end{bmatrix}$	Lewis Other	$\begin{array}{l} BiX_3 + AIX_3 \\ \left[Bi_5\right]^{+} \left[AsF_6\right]^{-} + Li^{+} \left[Al(OR^{PF})_4\right]^{-} + C_6Me_6 \end{array}$	471 Evidence for soluble $[Bi_n]^{x+}$ salts, partial 404 decomposition of anion and solvent	471 404
	[AlCl ₄] ⁻	Ox, Lewis	Ox, Lewis Bi + BiCl ₃ + Ch in AlCl ₃ /NaCl	HTS (130 °C), heterocubane, series $Bi_4Ch_4^{4+}$ (Ch = S, Se, Te) complete	413
	[AICI4] ⁻	Ox, Lewis	Ox, Lewis Bi + BiCl ₃ + Te in AlCl ₃ /NaCl	HTS (130 °C), heterocubane	414
	$([\operatorname{BiBr}_4]^{-})_\infty$	OX	$Bi_2Pd + Bi + Br_2$	HTS (1000 $^{\circ}$ C) Pd@ $[Bi_{10}]^{4+}$	472
	[GaCl4]-	Lewis	CIP(µ-NTer) ₂ PCl + GaCl ₃	P_2N_2 ring	473
	$[N_3(GaCl_3)_2]^-$	Other	$\left[ClP(\mu-NTer)_{2}P\right]^{\dagger}\left[GaCl_{4}\right]^{-}+TMSN_{3}+GaCl_{3}$	P_2N_2 ring	473
Mes_NAS N-N	[GaCl4] ⁻	Other	$[Mes-NAs]^{+}[GaCl_4]^{-} + Ph_3CN_3$	Cycloaddition	408
	[GaCl4]	Lewis	ClAs(µ-NTer) ₂ AsCl + GaCl ₃	As ₂ N ₂ ring	474
	[orf] ⁻	Salt	$ClAs(\mu\text{-NTer})_2AsCl + Ag^+[OTf]^-$	As ₂ N ₂ ring	474

Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39. Construction String This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.	
Open A eg) BY-No	

Table 10 (continued)					
Cation	Anion	Class. ^a	Synthesis	$\operatorname{Comment}^{b}$	Ref.
N _{3, Ter} As N As N As As	$[N_3(GaCl_3)_2]^-$	Lewis	$[ClAs(\mu-NTer)_2As]^+[GaCl_4]^- + TMSN_3 + GaCl_3$	As ₂ N ₂ ring	474
$[As(\mu\text{-}NTer)_2As]^{2+}$	[OTf] ⁻	Salt	$Clas(\mu\text{-}NTer)_2AsCl + Ag^{+}[OTf]^{-}$	As ₂ N ₂ ring, 4π system, 2 equiv. of	474
$\left[ClSb(\mu-NTer)_{2}Sb \right]^{+}$ $\left[Sb(\mu-NTer)_{2}Sb \right]^{2+}$	[Gacl4] ⁻ [OTf] ⁻	Lewis Salt	ClSb(µ-NTer) ₂ SbCl + GaCl ₃ ClSb(µ-NTer) ₂ SbCl + Ag ⁺ [OTf] ⁻	Ag [O11] Sb ₂ N ₃ ring Sb ₂ N ₃ ring, 4π system, 2 equiv. of	475 475
$\left[\mathrm{IBi}(\mu\text{-NTer})_{2}\mathrm{Bi} ight]^{+} \left[\mathrm{Bi}(\mu\text{-NTer})_{2}\mathrm{Bi} ight]^{2+} ight]$	$[B(C_6F_5)_4]^-$	Salt Salt	$\begin{split} IBi(\mu\text{-}NTer)_2BiI + \left[Ag(Tol)_3\right]^+ \left[B(G_6F_5)_4\right]^-\\ ClBi(\mu\text{-}NTer)_2BiCl + Ag^+ \left[OTT\right]^- \end{split}$	Ag [O11] Bl ₂ N ₂ ring Bl ₂ N ₂ ring, 4π system, 2 equiv. of Ag ⁺ [O17f] ⁻	475 475
$\pi^{*-\pi^{*}}$ -complexes					
S S S S S S S S S S S S S S S S S S S	[GaCl4] ⁻	Lewis	$AsS_2(CH)_2Cl + GaCl_3$		415
N N N N N N N N N N N N N N N N N N N	$\left[MCl_4\right]^- \left(M = Al, Ga\right)$	Lewis	$As(NMe)_2(CH)_2Cl + MCl_3$		415
Radicals					
t ddi ddi ddi ddi ddi ddi ddi ddi ddi dd	$[B(C_6F_5)_4]^-$	Ŏ	$ [P(CN(Dipp)C_{10}H_{13})N(C(N(Dipp))_2C_2H_2)] + \\ [CPh_3]^{*} [B(C_6F_5)_4]^{-}$	CN(Dipp)C₁₀H₁₃=CAAC, cyclic alkylaminocarbene	416
TMS_N_P_N_TMS].* TMS_N_P_N_NTMS_]	[SbF ₆] ⁻	Ŏ	$\left[\left(\mathrm{NTMS}\right)_2\left(\mathrm{PNTMS}_2\right)_2\right] + \left[\mathrm{NO}\right]^+ \left[\mathrm{SbF_6}\right]^-$		420

Table 10 (continued)					
Cation	Anion	Class. ^a	Synthesis	$\operatorname{Comment}^{b}$	Ref.
Tipp P. Tipp	$[X]^{-} = [SbF_6]^{-}, [Al(OR^{PF})_4]^{-}$	OX	$PTipp_3 + Ag^+[X]^-$		418
Tipp, Tipp	$[Al(OR^{HT})_4]^-$	ŏ	$P_2Tipp_4 + Ag^+[Al(OR^{HT})_4]^-$		419
Ter Ter]+	$\left[\mathrm{B}(\mathrm{G}_{6}\mathrm{F}_{5})_{4} ight] ^{-}$	ŏ	$[P_2(NTer)_2] + [Ag(Tol)_3]^{+}[B(G_6F_5)_4]^{-}$		476
Pn = P, As	$\left[B(C_6F_5)_4 ight]^-$	ŏ	$\left[P_{2}(C(N(Dipp))_{2}C_{2}H_{2})_{2}\right]+\left[CPh_{3}\right]^{4}\left[B(C_{6}F_{5})_{4}\right]^{-}$	C(N(Dipp)) ₂ C ₂ H ₂ —NHC, N-heterocyclic carbene	208
t ddiQ ddiQ ddiQ V	$[B(C_6F_5)_4]^-$	ŏ	$[P_{2}(CN(Dipp)C_{10}H_{18})_{2}] + [CPh_{3}]^{+}[B(C_{6}F_{3})_{4}]^{-}$	$NC_{10}H_{18} = tetramethylamide$	477
2 ⁱ PrN, Pr-P, NiPr ₂].+	$[Al(OR^{PF})_4]^-$	ŏ	$\left[P_4(N^iPr_2)_4\right] + \left[NO\right]^+ \left[BF_4\right]^- + Li^+ \left[A\right](OR^{PF})_4\right]^-$		420
Ter P-N-AS	$[\mathbf{B}(\mathbf{C}_6\mathbf{F}_5)_4]^-$	ŏ	$[AsP(NTer)_2] + [Ag(Tol)_3]^{+}[B(C_6F_5)_4]^{-}$		476
Dipp dip Dipp	[GaCl ₄] ⁻	Ŏ	$[As_2(C(N(Dipp))_2C_2H_2)_2] + GaCl_3$		417

Review Article

Table 10 (continued)					
Cation	Anion	Class. ^a	Synthesis	Comment ^b	Ref.
Ter N-AS] :+	$[B(C_6F_5)_4]^-$	Ŏ	$\left[As_2(NTer)_2\right] + \left[Ag(Tol)_3\right]^{\dagger} \left[B(C_6F_3)_4\right]^{-}$		476
Oxidation state +I	[sbcl _s .THF] ⁻	Lewis	AsCl ₃ + SnCl ₂ + DppDIMPY	$[AsL_3]^+, DppDIMPY = [\alpha, \alpha' - [2, 6^-!Pr_2PhN-C(Me))_2(C_5H_3N)]$. 423
Oxidation state +III $[P(N^{i}Pr_{2})_{2}]^{+}$	$[GaCl_4]^-$	Lewis	$P(N^{i}Pr_{2})_{2}Cl+GaCl_{3}$	$[\mathbf{P}\mathbf{X}_2]^{\dagger}$	478 and
$ \begin{split} & \left[P(NCy_2)Cl \right]^+ \\ & \left[P(N^{1}Pr_2)Cl \right]^+ \\ & \left[P(NTMS_2)Cl \right]^+ \\ & \left[P(N^{1}Pr_2)N_3 \right]^+ \\ & \left[P(NTMS_2)N_3 \right]^+ \\ & \left[P(NTMS_2)N_3 \right]^+ \\ \end{split} \right. \end{split} $	[GaCl ₄] ⁻ [GaCl ₄] ⁻ [GaCl ₄] ⁻ [GaCl ₄] ⁻) [GaCl ₄] ⁻	Lewis Lewis Other Other	$\begin{array}{l} P(NCy_2)Cl_2+GaCl_3\\ P(N'Pr_2)Cl_2+GaCl_3\\ P(N'TMS_2)Cl_2+GaCl_3\\ P(N'TMS_2)Cl_2^{-1}+GaCl_3^{-1}^{-1}+TMSN_3\\ P(N'TMS_2)Cl]^{+}[GaCl_4]^{-}+TMSN_3 \end{array}$	$[PX_2]^+$ $[PX_2]^+$ $[PX_2]^+$ $[PX_2]^+$ $[PX_2]^+$	465 449 449 449 449 480 and
$ \begin{bmatrix} P(NTMS_2)OTMS \end{bmatrix}^+ \\ PCp^*CI \end{bmatrix}^+ \\ PCp^*ZI \end{bmatrix}^+ \\ \begin{bmatrix} PCp^*_2 \end{bmatrix}^+ \\ \begin{bmatrix} ASCp^*CI \end{bmatrix}^+ \\ \begin{bmatrix} ASCp^*CI \end{bmatrix}^+ \\ \begin{bmatrix} ASCp^*CI \end{bmatrix}^+ \\ \begin{bmatrix} BPDCI_2(ASMP_3) \end{bmatrix}^{2+} \\ \begin{bmatrix} BICI_2(SPP_3) \end{bmatrix}^{2+} \\ \end{bmatrix} $	$ \begin{bmatrix} GacI_4 \end{bmatrix}^- \\ CI(AI(OR^{PP})_3)_2 \end{bmatrix}^- \\ CI(AI(OR^{PP})_3)_2 \end{bmatrix}^- \\ CI(AI(OR^{PP})_3)_2 \end{bmatrix}^- \\ CI(AI(OR^{PP})_3)_2 \end{bmatrix}^- \\ CII(AI(OR^{PP})_3)_2 \end{bmatrix}^- \\ \begin{bmatrix} OIII_4 \end{bmatrix}^- \\ OIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIII_4 \end{bmatrix}^- \\ OIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIII_4 \end{bmatrix}^- \\ OIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \\ \\ \begin{bmatrix} OIIII_4 \end{bmatrix}^- \\ \\ \\ \\ \end{bmatrix}^- \\ \\ \end{bmatrix}^- \\ \\ \end{bmatrix}^- \\ \end{bmatrix}^-$	Other Lewis Lewis Lewis Lewis Lewis Lewis Lewis Lewis	$ \begin{bmatrix} P(NTMS_2)CI \end{bmatrix}^{\dagger} \begin{bmatrix} GaCI_4 \end{bmatrix}^{-} + TMSCNO \\ PCp^*CI_2 + PhF.Al(OR^{Pp})_3 \\ PCD^*_2CI + PhF.Al(OR^{Pp})_3 \\ ASCP^*CI_2 + PhF.Al(OR^{Pp})_3 \\ ASCI_3 + ASMe_3 + TMSOTf \\ SbCI_3 + ASMe_3 + TMSOTf \\ SbPhCI_2 + ASPh_3 + AlCI_3 \\ BICI_2 + ASPh_3 + AlCI_3 \\ BICI_3 + ASPh_3 + AlCI_3 \\ BICI_3 + SSPh_3 + AlCI_3 \\ BICI_3 + SSPPh_3 + AlCI_3$	$ \begin{bmatrix} PX_2 \end{bmatrix}^+ \\ \begin{bmatrix} PR_2 \end{bmatrix}^+ \\ \begin{bmatrix} PR_2 \end{bmatrix}^+ \\ \begin{bmatrix} PR_2 \end{bmatrix}^+ \\ \begin{bmatrix} AsRX_1 \end{bmatrix}^+ \\ \begin{bmatrix} SbX_2 L \end{bmatrix}^+ \\ \begin{bmatrix} SbX_2 L \end{bmatrix}^+ \\ \begin{bmatrix} BiXL \end{bmatrix}^{2+} \\ \begin{bmatrix} BiXL \end{bmatrix}^{2+} \\ \begin{bmatrix} BiX_2 L \end{bmatrix}^{2+} \\ \begin{bmatrix} BiX_2 L \end{bmatrix}^+ \\ \end{bmatrix} $	$ \begin{array}{c} 481\\ 482\\ 482\\ 482\\ 482\\ 483\\ 484\\ 483\\ 483\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 483\\ 484\\ 484$
$\begin{bmatrix} BI_1(N_2,IMD_3)_2 \end{bmatrix} \begin{bmatrix} t^2 Bu_{N_1 \to N_2} \\ \vdots \\ \vdots \end{bmatrix}^+$	[GaU4] [BF4] ⁻	Lewis Salt	$\mathrm{Bl}(\mathrm{N}_2 \mathrm{I} \mathrm{MD}_3)_2 \mathrm{Cl} + \mathrm{GaCl}_3$ $\mathrm{PCl}(\mathrm{N}^{f}\mathrm{Bu})_2 \mathrm{C}_2 \mathrm{H}_2 + \mathrm{Ag}^{+}[\mathrm{BF}_4]^{-1}$	لعنامين المراجع المراجع P carbenoid	485 486
+ [ng, N, N, ng,]	[PF6] ⁻	Salt	$PCl[N^{t}Bu]_{2}C_{2}H_{2} + Ag^{+}[PF_{6}]^{-}$	P carbenoid	487
$\left[Me_2 N_{N_{N_{2}}, N_{2}} N_{N} Me_2 \right]^{+}$	[GaCl4] ⁻	Lewis	$PCl(NMe)_2C_2H_4 + GaCl_3$	P carbenoid	479
*	[GeCl ₅] ⁻ .[Cl] ⁻	Other	$Ge(N'Bu)_2C_2H_4 + PCl_3$	P carbenoid	488

Chem Soc Rev

872 | Chem. Soc. Rev., 2016, 45, 789–899

Table 10 (continued)

lable 10 <i>(continued)</i>					
Cation	Anion	Class. ^a	Synthesis	Comment ^b	Ref.
$\left[n_{\mathbf{R}_{i}} N_{i}^{\mathbf{A}_{i}} N_{i} n_{\mathbf{R}_{j}} \right]$	$[PF_6]^-$	Salt	$PCl(N^{t}Bu)_{2}C_{2}H_{4}+Ag^{+}[PF_{6}]^{-}$	P carbenoid	487
Dipp N, P, N, Dipp	[GaCl ₄] ⁻	Lewis	PCl(NDipp) ₂ C ₂ H ₄ + GaCl ₃	P carbenoid	426
Mes~N, Mes]	[SbCl ₅ .THF] ⁻	Lewis	$AsCl_3 + SnCl_2 + (MesN)_2C_2H_2$	As carbenoid	423
+ [ng/N××/ng,]	[GeCl ₅] ⁻ ·[Cl] ⁻	Other	$Ge(N^{4}Bu)_{2}C_{2}H_{4} + AsCl_{3}$	As carbenoid	488
+ 	[GaCl ₄] ⁻	Lewis	$As(^{i}PrN)_{2}C_{10}H_{6}Cl + GaCl_{3}$	As carbenoid	489
+ N H N H N H N H N H N H N H N H N H N	[AlCl4]	Lewis	AsCl(HN)SC ₆ H ₄ + AlCl ₃	As carbenoid	490
+ S S S S S S S S S S S S S S S S S S S	[AICl4]	Lewis	AsClS ₂ C ₆ H ₃ CH ₃ + AlCl ₃	As carbenoid	490
*	[GaCl ₄] ⁻	Lewis	AsCl(NMe)2C3H6 + GaCl3	As carbenoid	491
+ N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_	[OTY] ⁻	Other	$Sb^{(1}PrN)_2C_{10}H_6(NMe_2) + HOTF$	Not planar through the ligand NHMe ₂	489

s Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access	(cc) BY-NC

Table 10 *(continued*)

					rci
Cation	Anion	Class. ^a	Synthesis	Comment ^b	Ref.
$\left[ng_{i}^{N_{i}^{\prime}}N_{i}^{N_{i}^{\prime}}ng_{i}^{\prime} \right]$	$[Sb_2Cl_8]^{2-}$	Lewis	$[Sb(^{t}BuN)_{2}C_{2}H_{2}]^{+} + SbCl_{3}$	Sb carbenoid	492
Oxidation state +V $[PF_4]^+$ $[PF_4]^+$ $[PF_4]^+$ $[PCI_4]^+$ $[PI_4]^+$ $[PI_4]^+$ $[PI_4]^+$ $[PI_4]^+$ $[PI_4]^+$ $[PI_4]^+$ $[ASBr_4]^+$ $[ASBr_4]^+$ $[ASBr_4]^+$ $[SbCI_4]^+$ $[SbCI_4]^+$ $[SbBr_4]^+$	$ \begin{bmatrix} BF_4 \end{bmatrix}^-, \begin{bmatrix} SbF_6 \end{bmatrix}^-, \begin{bmatrix} Sb_2F_{11} \end{bmatrix}^- \\ \begin{bmatrix} Sb_3F_{16} \end{bmatrix}^-, \begin{bmatrix} Sb_2F_{14} \end{bmatrix}^- \\ \begin{bmatrix} SnCI_6 \end{bmatrix}^2 - \\ \begin{bmatrix} Al(OR^{Pp}_{14}) \end{bmatrix}^- \\ \begin{bmatrix} Al(CR^{Pp}_{14}) \end{bmatrix}^- \\ \begin{bmatrix} AlL_4 \end{bmatrix}^- \\ \begin{bmatrix} AlL_4 \end{bmatrix}^- \\ \begin{bmatrix} Al(OR^{Pp}_{14}) \end{bmatrix}^- \\ \begin{bmatrix} Al(OR^{Pp}_{14}) \end{bmatrix}^- \\ \begin{bmatrix} As(OTeF_5)_6 \end{bmatrix}^- \\ \begin{bmatrix} As(OTeF_5)_6 \end{bmatrix}^- \\ \begin{bmatrix} As(OTeF_5)_6 \end{bmatrix}^- \\ \begin{bmatrix} Sb_2F_{11} \end{bmatrix}^- \\ \begin{bmatrix} Sb(OTeF_5)_6 \end{bmatrix}^- \\ \end{bmatrix} $	Lewis Lewis Lewis Salt Lewis Lewis Salt Lewis, Ox Salt Lewis, Ox Cox Ox	NF ₃ + F ₂ + BF ₃ or SbF ₅ PF ₅ + SbF ₅ PCl ₅ + SnCl ₄ PBr ₃ + Br ₂ + Ag ⁺ [Al(OR ^{PF}) ₄] ⁻ PBr ₃ + ICl + AlCl ₃ in CS ₂ Pl ₃ + I2 + AlBr ₃ in CS ₂ Pl ₃ + I2 + AlBr ₃ in CS ₂ Pl ₃ + I2 + Ad ² [Al(OR ^{PF}) ₄] ⁻ Pl ₃ + I2 + Ag ⁺ [Al(OR ^{PF}) ₄] ⁻ AsCl ₃ + Cl ₂ + AsF ₇ AsCl ₃ + Cl ₂ + AsF ₇ AsBr ₃ + Br ₂ + As ⁺ [Al(OR ^{PF}) ₄] ⁻ AsBr ₃ + As ⁺ [Al(OR ^{PF}) ₄] ⁻ AsBr ₃ + Br ₂ + As ⁺ [Al(OR ^{PF}) ₄] ⁻ AsBr ₃ + Br ₃ + B	No X-ray For more structures see ref. 495	493 494 495 495 495 499 500 502 502 502
$\begin{bmatrix} Dipp \\ N & P \\ N & P \\ Dipp \\ L = NMe_3, py \end{bmatrix}^{+}$	[GaCl4] ⁻	ŏ	$\left[(CH_2)_2 (NDipp)_2 P \right]^+ + OL$	"PO ⁺ " cation	426
Mes Price 2+	$[B(C_6F_3)_4]^-$	Lewis	$\left[\left(SIMes\right)PF_2Ph_2\right]^{\dagger} + \left[Et_3Si[Tol]\right]^{\dagger}\left[B(C_6F_5)_4\right]^{-}$	''PFPh ₂ ^{2+,} ' cation	427
$\left[Ph_{3}Pn\right]^{2+}\left(Pn=Sb,\ Bi\right)$	[OTf] ⁻	Salt	$Ph_3PnCl_2 + Ag^+[OTf]^-$	Strong contact to the anion	425
Protonated cations $[H_2N_3]^+$ $[P(OH)_4]^+$	[SbF ₆] ⁻ [SbF ₆] ⁻	Prot Prot	HN ₃ + HF/SbF ₅ H ₃ PO ₄ + HF/SbF ₅		310 428
^{<i>a</i>} Classification according to the introduction: lassified. ^{<i>b</i>} HTS = high temperature synthesis.	Lewis = Lewis acid l	en bond het	nalogen bond heterolysis, Ox = oxidation, Com = complexation reaction, Prot = protonation, other = all other reactions not	on, Prot = protonation, other = all other	reactions not

Review Article

Table 11 Overview on structurally characterized chalcogen cations

Cation	Anion	Clace ^a	Sunthacis	domment ^b	Daf
Utamonoliotomio ontiono	TIONTY	COMO	a) it it is a local sector of the local sector		
HOMOPOIVATOMIC CAUOUS Γ_{\sim} ¹⁺	_[עדע]	ć			
[O2] [0]		ŏč	$O_2 + PtF_6$		510
[O2] [2]2+		ŏ ö	$O_2 + Ptr_6$	Neutron diffraction	559 - 10
	[ASF6]	č	$S + ASF_5 II SO_2$		540
$\begin{bmatrix} \mathbf{S}_4 \end{bmatrix}^- \cdot 4 \begin{bmatrix} \mathbf{S}_7 \mathbf{I} \end{bmatrix}$	$[ASF_6]$ $F_2 = -2^2 - (F_2 = -) ($	Ox, Lewis	$\mathbf{S} + \mathbf{I}_2 + \mathbf{ASF}_5$ in \mathbf{SO}_2		540 and 541
$[\mathbf{S}_4]^{\mathbb{Z}}$	$[SD_{9}F_{39}]^{2}$ (= $[(SDF_{6})_{5}(SD_{2}F_{4})(SD_{2}F_{5})]^{2}$)	č	$S + SDF_5 III SO_2$	Traces of Br ₂ were added	542
$\begin{bmatrix} \mathbf{S}_4 \end{bmatrix}^{-1}$ ASF ₃	$[ASF_6]$, OX	$S + ASF_5 + ASF_3$ in HF	Traces of Br ₂ were added	543
$[\mathbf{S}_{3}]^{2+1}$	$[AsF_6]^-$, OX	$S + HF/ASF_5$		544
$[\mathbf{S}_{3}]^{2}$	$[SbF_6]^{-} \cdot [Sb_3F_{14}]^{-} (= [(SbF_6)_2(SbF_2)]^{-})$, ox	$S + SbF_5 in SO_2$		542
$[\mathbf{S_8}]^2$	[ASF6]	č č	$[S_8]^{-1}$ ([ASF_6])_2 IN SO ₂ /SO ₂ CIF		73
$\begin{bmatrix} \mathbf{S}_{19} \end{bmatrix}^2$	[ASF6]	č	$S + ASF_5 II SO_2/SO_2CIF$		545 - 10
$[S_{19}]^{2}$	[SbF ₆]	, OX	$S + SbF_5 IN SO_2$		542
[Se4] ⁻ [So]2+	$\begin{bmatrix} AICI_4 \end{bmatrix}$	Lewis, Ox	$Se + SeCI_4 + AICI_3$ $s_2 + s_2CI_3 + MCI_3$		540 225
	(м – м. п.) Гећ в 1-(≙[(ећв.) (ећ	LEWIS, UX	26 + 26014 + MU14 50 + 645 ;; 50		C C C Z
	[2015] (12 לפור מיום (12 לפור מיום) [12 לפור מיום] [נו מיום מיום מיום מיום מיום מיום מיום מיו	ŏč	SE T SUF5 III SU2 S + So + ShE in SO		74C
[904] [Se.]2+	[bbgr39] (=[(bbr6)5(bb2r4)(bb2r5)]) [MoOCL1]	ő č		HTS (190 °C)	548
[774] 		- VO	$[Se_{1}]^{2+[MO_{0}O_{0}O_{1}]^{2-}} + [Se_{1}]^{2+[MO_{1}O_{1}]^{2-}}$ or		
$[Se_4]^{2/2}$	$[Mo_2O_2Cl_8]^- \cdot [MCl_6]^- (M = Zr, Hf)$	Lewis, Ox	Se, SeCl ₄ + MoOCl ₄ + MCl ₄	HTS (120 $^{\circ}$ C)	549
$[Se_8]^{2+}$	[AlCl ₄] ⁻	Lewis, Ox	Se + SeCl ₄ + AlCl ₃	Crystals from vapour-phase transport	550
$[Se_8]^{2+}[Te_6]^{4+}SO_2$	$[ASF_6]^-$	ОX	Se + Te + AsF_5 in SO ₂	4 4	551
$\left[\mathrm{Se}_{10} ight]^{2+1}$	$[SbF_6]^-$	OX	Se + SbF ₅ in SO ₂		552
$[Se_{10}]^{2+}$	$[\mathrm{SO}_3\mathrm{F}]^-$	Ox	$Se + AsF_5 in SO_2$		553
$[Se_{10}]^{2+}$	$[Bi_4Cl_{14}]^-$	Lewis, Ox	Se + SeCl ₄ + BiCl ₃	HTS (90 $^{\circ}$ C)	554
$[\mathbf{Se}_{17}]^{2+}$	[wcl ₆] ⁻	OX	Se + WCl ₆		555
$[Se_{17}]^{2+}$	[NbCl ₆]	Lewis, Ox	Se + SeCl ₄ + NbCl ₅ in SnCl ₄	Solvothermal (150 $^{\circ}$ C)	556
$[\mathbf{Se}_{17}]^{2+}$	[TaBr ₆] ⁻	Lewis, Ox	Se + SeBr ₄ + TaBr ₅ in SiBr ₄	Solvothermal (150 °C)	556
$[Te_4]^{2+}$	$[AlCl_4]^{-}[Al_2Cl_7]^{-}$	Lewis, Ox	$Te + TeCl_4 + AlCl_3$	HTS $(250 ^{\circ}C)$	557
[Tra.] ²⁺	[Sh.E.]_	Ň	$Te + ShF_{-}$ in SO_{-}	Germanium was added to obtain mixed	546
[1 c4] 		Š		cations	040
$[Te_4]^{2+}$	[WCl ₆] ⁻	Ň	$Te + WCl_6$	HTS (190 $^{\circ}$ C)	558
$[Te_4]^{2+}$	[wcl ₆]	ХО	$Te + WCl_6$	Traces of Br_2 were added, β -mod.	559
$[Te_4]^{2+}$	$[\mathbf{Zr_2Br_{10}}]^{2-1}$	Lewis, Ox	$Te_2Br + ZrBr_4$	HTS $(210 \circ C)$	560
$[Te_4]^{4+}$		Lewis, Ox	$Te + TeCl_4 + HfCl_4$	HTS (200 $^{\circ}$ C)	235
$\left[{ m Te}_4 ight]^{2+}$	$[MCl_6]$ (M = Nb, Ta), [TaBr_6],	Lewis, Ox	$Te + TeCl_4 + MCl_5$	HTS (170 $^{\circ}$ C)	561
[T.a.]2+	[142/110/] [bi.cl.]2 ⁻ [bi.Br.] ² -	I euric Ov	$Te + TeV + BiV_{c}(V = C Br)$	HTTS (170°C)	567
[1C4] [TPa.]2+		Lewis, Ox Lewis Ov	$TC = TCA_4 = DIA3 (X = CI, DI)$ The + TPC[. + NhC[. + NhOC].		563
[±54] [Te,]2+		Ox Ox	$Te + MoOCl_{4}$	HTS (250 °C)	564
(Te_{10}^{2+}) , Te_{12}^{2+}	$[Bi,Cl_{1,\epsilon}]^{2}$	Lewis. Ox	$Te + TeCl_A + BiCl_2$	HTS $(150 \circ C)$	565
+	MCl_6^{122} (M = Zr, Hf)	Lewis, Ox	$Te + TeCl_4 + MCl_4$		103
$[Te_6]^{2+}$	[wcl ₄ o]	, vo	$Te + WOCl_4$	HTS $(150 \ ^{\circ}C)$	566
$[Te_6]^{2+}$	[NbCl ₄ o]	Lewis, Ox	$Te + TeCl_4 + NbOCl_3$		567
$[Te_6]^{4+} \cdot 2AsF_3$	$[AsF_6]^-$	ОX	$Te + AsF_5 in SO_2$		568
$(\text{Te}_{7}^{2+})_n$	$[AsF_6]^-$	Other	$[Te_4]^{2+}[AsF_6]^{-}_2 + Fe(CO)_5 \text{ in } SO_2$	Reduction of Te ₄ ²⁺	569
$(\mathrm{Te}_{7}^{2+})_n$		Lewis, Ox	$Te + TeCl_4 + BeCl_2$	HTS (250 °C)	565
$(\text{Te}_{7^{-1}})_n$	$[WBr_4O]^- [Br]^-$	Ň	$Te + WOBr_4/WBr_5$	HTS (230 °C)	570
$(1e_7^-)_n$ $(Te_2^+)_n$		ŠĈ	Te + WOCI4/WCI5 Te + TeCl + NhOCl	HIS (150 °C) HTS (225 °C)	5/1 101
$(TC)^{n}$	[NbBr,O] ⁻ [Br] ⁻	őő	Te,Br + NbOBr,	HTS (220 °C)	101
$[Te_s]^{2+ii}$	-	OX O	$Te + WCl_6$	HTS $(200 \circ C)$	572
$[Te_8]^{2+}$	$[\text{ReCl}_6]^{2-}$	Lewis, Ox	$Te + TeCl_4 + ReCl_4$	HTS (230 $^{\circ}$ C)	573

Synthesis Te + TeCl ₄ + BiCl ₃ Te + TeBr ₄ + UBr ₅ in SiBr ₄ Te + TeCl ₄ + TaCl ₅ + TaOCl ₃ +
Te + VOCl ₃ Te + VOCl ₃
$\begin{array}{c} Cu^+ + S\\ Cu^+ + S\\ Ag^+ + S\\ Cu^+ + Se\\ Cu^+ + Se\\ Ag^+ + Se\\ Ag^+ + Se\end{array}$
$\begin{array}{l} Ag^+_{} + Se_{(grey)} \\ Ag^+_{} + Se_{(grey)} \\ Ag^+_{} + Se_{(red)} \end{array}$
(NSCI) ₃ + AlCl ₃ S ₄ N ₄ + AlCl ₃ S ₄ N ₄ /S ₃ N ₃ Cl ₃ + SbCl ₅ in SO ₂ S.N. + SS ₄ E. in SO.
S ₃ N ₃ Cl ₃ + SbCl ₅ in SoCl ₂ [SCl ₃] ⁺ [ASF ₆] ⁻ + S ₈ in SO ₂ [NS ₂] ⁺ [ASF ₆] ⁻ + (CN) ₂ in SO ₂
Te + Sn + AsF ₅ in SO ₂ S + Te + AsF ₅ in SO ₂ [SeCl ₂] ⁺ [AsF ₂] ⁻ + Se in
$\begin{bmatrix} Se_{4} \end{bmatrix}^{2+1} ([ASF_{6}]^{-})_{2} + Ph_{2}Se_{2} \\ Te + I_{2} + ASF_{3} in SO_{2} or [SeI_{3}]^{+} [ASF_{6}]^{-}_{2} + \\ r_{2} = 12^{+1}r_{2} + r_{2} = 1^{-1} \end{bmatrix}$
$[Se_8]^{-}$ ($[ASF_6]^{-}$) Te + I ₂ + WCl ₆ Te Br + MCOB
MOOCl ₃ , Te + WOLDI3, TEU4 + MUNU2/ MOOCl ₃ , Te + WBr ₅ /WOBr ₃ Se + Te + MF ₅ in SO ₂
Se + $[Te_6]^{2+}$ $[[MOCl_4]^-]_2$ S + Se + Te + AsF ₅ in SO ₂ Se + Te + MF ₂ in SO ₂
Te + $[Se_6]^{2+} ([AsF_6]^-)_2$ in SO ₂
$\begin{split} \text{NSCl} + \text{HgCl}_2 \\ [\text{SN}]^+[\text{MF}_6]^- + [\text{S}_2\text{N}]^+[\text{MF}_6]^- \text{ in SO}_2 \\ \text{S}_4\text{N}_4 + \text{Se}_2\text{Cl}_2 \text{ in SOCl}_2 \end{split}$
$S + Se + SbF_5 in SO_2$
$ \begin{array}{l} [[SSe_{2}N_{2}]_{2}]^{2+}[[AsF_{6}]_{2} + AsF_{5} \text{ in } SO_{2}\\ [NS]^{+}[AsF_{6}]^{-} + [Se_{3}]^{2+}[AsF_{6}]^{-}\\ [NS]^{+}[AlCL_{1}]^{-} + Se^{EtSeCI} \end{array} $
Se + Te + SbF ₅ in SO ₂ Se + Te + SbF ₅ in SO ₂

(cc)) BY-NC

s Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access	(cc)) BY-NC

Table 11 (continued)

Table 11 (continued)					
Cation	Anion	$Class^{a}$	Synthesis	$\operatorname{Comment}^{b}$	Ref.
π*-π*-complexes 					
N N N N N N N N N N N N N N N N N N N	$[AsF_6]^-$	ХО	$S_4N_4 + AsF_5 \text{ in } SO_2$		599
$[S_6N_4]^{2+}$	$[S_2O_2F]^-$, $[SO_3F]^-$	Ň	$S_4N_4 + HSO_3F$ in SO_2		600
S	$[AsF_6]^-$	OX	$S + I_2 + AsF_5$ in SO_2		520
+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	[Sb ₂ F ₁₁]	Ŏ	Se + $[I_2]^{\dagger}[Sb_2F_{11}]^{-}$ in SO ₂		521
Ň- Ň	$\left[MF_{6}\right]^{-}\left(M=As,Sb\right)$	Other	$S_4N_4 + [Se_4]^{2+} ([MF_6]^-)_2 \text{ in } SO_2$		601
Me See See See See See See See See See S	$[BF_4]^-$	ŏ	$Me_2Se_2 + XeF_2 + BF_3 \cdot OEt_2$		82
	[OTf] [_]	Ň	$\mathrm{Et}_{2}\mathrm{Te}_{2} + \mathrm{[NO]}^{+}\mathrm{[OTf]}^{-}$		602
	[OTf] [_]	Ň	$\mathrm{Et}_{2}\mathrm{Te}_{2}+[\mathrm{NO}]^{+}[\mathrm{OTf}]^{-}$		82 and 602
Radicals					
S(:+) S(:+) S(:+)	$[AsF_6]^-$	OX	$S_4N_4 + [Te_4]^{2+}([AsF_6]^{-})_2 \text{ in } SO_2$		600
$\begin{bmatrix} S \\ S \\ S \end{bmatrix} \cdot 0.5 \text{ Etcn}$	[NTf2]-	OX	TTF + 0.5XeF ₂ + TMSNTf ₂	TTF = Tetrathiafulvalene	82

Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access /	(ce) BY-NC

Table 11 (continued)

Cation	Anion	Class ^a	Synthesis	Comment ^b	Ref.
t:	[SbCl6] ⁻	Ň	$(C_8H_{10})_2S_2 + SbCl_5$	Strong transannular interactions	603
Solution of the second	[OIY]-	ŏ	$(NeoS)_2 + [NO]^+$	Diorgano disulfide-nitrosonium adduct	604
S − 1.5 El ₂ O	[FAI(OR ^{PF}) ₃] ⁻	OX	$C_{12}H_8S_2 + XeF_2 + Al(OC(CF_3)_3)_3$	$C_{12}H_8S_2 = thianthrene$	82
d d d d d d d d d d d d d d d d d d d	[Al(OR ^{PF}) ₄] ⁻	OX	$1,8-(SPh)_2Nap + [NO]^+$	S-S-3e-0-bond Nap = naphthalene	605
	$[AsF_6]^-$	ŎX	$S + AsF_5 + (CN)_2$ in SO_2	Traces of Br_2 were added	522
$(CNS_3^{\bullet+})_2$	$[SbF_6]^-, [Sb_2F_{11}]^-$	OX	$S + SbF_5 + (CN)_2$ in SO_2	Traces of Br_2 were added	523
	$[Sb_2F_{11}]^-$	ŏ	$(C_6F_5S)_2 + SbF_5$		606
	[A52F11] ⁻	Ŏ	$(C_6F_5Se)_2 + AsF_5$		606
Mes Ch-Ch Mes Ch-Ch Mes Ch-Ch Mes Ch-Ch Ch C	[SbF ₆] ⁻	ŏ	$(2,6-Mes2C_6H_3Ch)_2 + [NO]^+$		606
Oxidation state +II [Me ₂ S-SMe] ⁺ [MeS-S(Me)-SMe] ⁺	[SbCl ₆] ⁻ [SbCl ₆] ⁻	— Ox, Lewis	$-$ - $-$ Ox, Lewis $S_2Me_2 + SbCl_5$	=[S ₃ Me ₃] ⁺	607 607

T

Table 11 (continued)

Cation	Anion	$Class^{a}$	Synthesis	$\operatorname{Comment}^{b}$	Ref.
$\begin{bmatrix} R \\ N, \tilde{S}, N \\ \tilde{N} \end{bmatrix}^{2+}$ $R = Dipp, Dmp$	[OIf] ⁻	Com	$S(OTf)_2 + (NR)_2C_2H_2$	Sulfur carbenoid, oxidation state unclear	528
Dipp_N,S,N_Dipp] ²⁺	$\left[\mathbf{B}(\mathbf{C}_6\mathbf{F}_5)_{4}\right]^-$	Other	$ [S(NDipp)_2C_2H_2]^{2+} ([OTf]^-)_2 + K^* [B(C_6F_5)_4]^- $	Sulfur carbenoid, salt metathesis, oxida- tion state unclear	528
cis/trans-	$[\mathbf{X}]^{-} = [\mathbf{SbCl}_6]^{-}, [\mathbf{BF}_4]^{-}$	Other	$[S_3Me_3]^{+}[X]^{-} + C_2H_2^{+}Bu_2$	Thiiranium ion	608
	$[\mathbf{X}]^- = [\mathbf{B}\mathbf{F}_4]^- [\mathbf{P}\mathbf{F}_6]^-$	Other	$[S_3Me_3]^{+}[X]^{-} + C_2^{-}Bu_2$	Thiirenium ion	608
$[MeSC_2^{t}Bu_3]^{+} \cdot CH_2Cl_2$	$[CHB_{11}Cl_{11}]^{-}$	OX	$\begin{array}{l} Me_2S_2+C_2{}^{t}Bu_2+XeF_2+\\ Me_3Si[CHB_{11}Cl_{11}] \end{array}$		82
^{(Bu} Bu βu	$\left[\mathbf{B}(\mathbf{C}_6\mathbf{F}_5)_4\right]^-$	OX	$\begin{array}{l} Ph_{2}S_{2}+C_{2}^{f}Bu_{2}+XeF_{2}+\\ [Me_{3}Si[Tol]]^{+}[B(C_{6}F_{3})_{4}]^{-}\end{array}$	Thiirenium ion	82
ے ۔ [MeSe-Se(Me)-SeMe] ⁺ ۲	[SbCl ₆] ⁻	Ox, Lewis	$\mathrm{Se}_{2}\mathrm{Me}_{2}+\mathrm{Sb}\mathrm{Cl}_{5}$	=[Se ₃ Me ₃] ⁺	607
¹ Bu →fBu Se Me	[SbCl ₆]-	Other	$[Se_3Me_3]^+[SbCl_6]^- + C_2^tBu_2$	Selenirenium ion	526
$[PhSeC_2Ad_2]^+ CH_2Cl_2$	[SbCl ₆] ⁻	Other	$[PhSe]^{+}[SbCl_{6}]^{-} + C_{2}Ad_{2}$		526
Dipp_N,See_N Dipp	[SnCl ₆] ²⁻	Ox, Lewis	$(NDipp)_2C_2H_2 + SnCl_2 + SeCl_4$	Selenium carbenoid	529
^t Bu ^t Bu	[SbF_6] ⁻	Other	$[PhTe]^{+}[SbF_6]^{-} + C_2^{\ t}Bu_2$	Tellurirenium ion	526
<pre></pre>	[PF6] ⁻	Other	$C_6H_3(CH_2NMe_2)_2SeMe + {}^{t}BuOCl + K^{\dagger}[PF_6]^{-}$		524

Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Access .	(cc) BY-NC

Table 11 (continued)

Cation	Anion	$class^{a}$	Synthesis	$\operatorname{Comment}^{b}$	Ref.
Ch = S, Se	[PF ₆] ⁻	ŌX	$(C_6H_3(CH_2)_2Ch)_2Se + [NO]^+[PF_6]^-$		609
DMAP Te DMAP	[OTY] ⁻	Other	$[(Dipp_2BIAN)Te]^{2+} ([OTf]^-)_2 + DMAP$	Ligand exchange	525
[ⁱ PrIM ^{Te} iPrIM ²⁺	[OIf] ⁻	Other	$[(Dipp_2BIAN)Te]^{2+} ([OTf]^-)_2 + 2^{i} PrIM$	Ligand exchange, anions coordinating	525
[^{<i>i</i>рнМ<i>i</i>,те, <i>i</i>рнМ] ²⁺}	[OIf] ⁻	Other	$[(Dipp_2BIAN)Te]^{2+}([OTf]^-)_2 + {}^iPrIM$	Ligand exchange, 4 equivalents of ⁱ PrIM	525
Dipp_N_Te_Dipp 2+	[OTf] ⁻	Hal	(Dipp2BIAN)Te12 + Ag ⁺ [OTf] ⁻	Tellurium carbenoid, Dipp ₂ BIAN = 1,4- (2,6-diisopropyl)phenyl- bis(arylimino)acenaphthene	525
Oxidation state +IV [SF ₃] ⁺ [SF ₃] ⁺ [SCl ₃] ⁺ [SCl ₃] ⁺	[BF4] ⁻ [GeF6] ²⁻ [ICl4] ⁻ [ICl4] ⁻	Lewis Lewis Ox, Lewis Ox, Lewis	$SF_4 + BF_3$ $SF_4 + GeF_4$ $S + Cl_2 + l_2$ $S + Cl_2 + l_2$ $S + Cl_2 + l_2$	Crystals through sublimation Second modification	610 611 612 613
[SCI ₃] ⁺ [SCI ₃] ⁺ [SCI ₃] ⁺	[UCl ₆] ⁻ [AlCl ₄] ⁻ [SbCl ₆] ⁻	Lewis Lewis Ox, Lewis	SOCl ₂ + UCl ₅ SCl ₄ + AlCl ₃ As ₄ S ₄ + SbCl ₅ in SO ₂		614 615 531
[SCl ₃] ⁺	[MoOCl4]	ŌX	$S + MOCI_4$	HTS (100 $^{\circ}$ C), large excess of ICl ₃ was added	616
$ \begin{split} & [\text{SBr}_{1,2}\text{Cl}_{1,8}]^{\dagger} \\ & [\text{SBr}_{3}]^{\dagger} \\ & [(\text{SX}_{2})_{2}\text{N}]^{\dagger} \ (\text{X} = \text{F}, \text{ Cl}) \end{split} $	[SbCI ₆] ⁻ [ASF ₆] ⁻ [ASF ₆] ⁻	Ox, Lewis Lewis Ox	$\begin{array}{l} S + Br_2 + SbCl_5 \mbox{ in } SO_2 \\ S + Br_2 + AsF_5 \mbox{ in } SO_2 \\ [S_2N]^+ [AsF_6]^- + X_2 \mbox{ in } SO_2 \end{array}$	Attempt to prepare $[SBr_3]^+[SbCl_6]^-$	531 617 and 618 619
$[SeF_3]^+$	$[NbF_6]^-$, $[Nb_2F_{11}]^-$, $[TaF_6]^-$	Lewis	$SeF_4 + NbF_5$	First structure with a $[ChX_3]^+$ cation $(Ch = S, Se, Te; X = F, Cl, Br, I)$	620
[SeCl ₃] ⁺ [SeCl ₃] ⁺ [SeCl ₃] ⁺ [Secl 1+	[AlCl_4] ⁻ [SbCl ₆] ⁻ [MoOCl_4] ⁻	Lewis Ox, Lewis Others	SeCl ₄ + AlCl ₃ in SO ₂ Cl ₂ As + Se + SbCl ₅ , or SeCl ₄ + SbCl ₅ in SO ₂ $[Se_4]^{2+}[MoOCl_4]^{2-}$ in SOCl ₂	Melt Decomposition at 150 $^\circ\text{C},$ $\beta\text{-modification}$	621 531 622
$[SeBr_3]^+$ $[SeBr_3]^+$ $[Se13]^+$	[AsF6] ⁻ [SDF6] ⁻	Ox, Lewis Ox, Lewis	$ \sum_{[Se_4]^{2^4} [SbF_6]^{-}]_2 + Br_2 + Br_2 + Br_2 + Br_2 + Br_5 + Br_2 + Br_5 + Br_2 + Br_5 + Br_2 +$	Small amount of AsF ₃ was added	624 624
[SeBr ₃] [SeI ₃] ⁺ [SeI ₃] ⁺	$\begin{bmatrix} AlBr_4 \end{bmatrix} \\ \begin{bmatrix} AsF_6 \end{bmatrix}^- \\ \begin{bmatrix} SbF_6 \end{bmatrix}^- \end{bmatrix}$	Lewis Ox, Lewis Ox, Lewis	SeBr ₄ + AlBr ₃ [Se ₄] ²⁺ ([SbF6] ⁻) ₂ + I ₂ in AsF ₃ Se + I ₂ + SbF ₅ in SO ₂	HTS (150 °C)	625 617 and 618
$[TeF_3]^+$ $[TeF_3]^+$	$[Sb_{2}F_{11}]^{-}$ $[SO_{4}]^{2-}$	Lewis Ox, Lewis	$TeF_4 + SbF_5$ Te + Br ₂ + AsF ₅ in SO ₂		626 531

Table 11 (continued)

I		œ		
Ref.	627 531 531 531 628 628 630 630 631 632	632 624 624 633 632 632 635 635 635 635 635 635 533 533 533 533	63 8 63 64 64 65 65 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 6	532 535 535
Comment ^b	Monoclinic Tecl3[AlCl4] (triclinic) Solvent decomposition HTS (180 °C) HTS (195 °C) HTS (150 °C), β-modification HTS (300 °C) α- and β-modification	HTS (160 °C) Decomposition above 250 °C HTS (150 °C) HTS (350 °C) Hemisolvate of [Te1 ₃] [†] [AsF ₆] ⁻ Good solubility Thermal decomposition at 150 °C Side products may be explosive!		
Synthesis	$\begin{array}{l} {\rm TeCl}_4 + {\rm AlCl}_3\\ {\rm S}_7 {\rm TeCl}_2 + {\rm AlCl}_3\\ {\rm TeCl}_2 + {\rm AlCl}_3\\ {\rm TeCl}_4 + {\rm AsF}_5\\ {\rm TeF}_4 + {\rm AbF}_3 \mbox{ in } {\rm CH}_2 {\rm Cl}_2\\ {\rm TeCl}_4 + {\rm AuCl}_3\\ {\rm TeCl}_4 + {\rm MoCl}_3\\ {\rm TeCl}_4 + {\rm MoCl}_4\\ {\rm TeCl}_4 + {\rm MoCl}_4\\ {\rm TeCl}_4 + {\rm MoCl}_4\\ {\rm TeCl}_4 + {\rm MoCl}_5\\ {\rm TeCl}_4 + {\rm MOCl}_3\\ {\rm TeCl}_4 + {\rm MOCl}_3\\ {\rm TeCl}_4 + {\rm MOCl}_5\\ {\rm TeCl}_5\\ {\rm TeCl}_5\\ {\rm TeCl}_5\\ {\rm TeCl}_5\\ {\rm TeC$	$\begin{array}{l} {\rm TeCl}_4 + {\rm WCl}_6 \\ {\rm TeCl}_4 + {\rm WCl}_6 \\ {\rm Te} + {\rm Br}_2 + {\rm AsF}_5 \text{ in SO}_2 \\ {\rm Te} + {\rm Au} + {\rm Br}_2 \\ {\rm [Te}_4]^{2^2} [{\rm Zr}_{23} {\rm Br}_{10}]^{2^-} \\ {\rm [Te}_4]^{2^2} [{\rm Zr}_{23} {\rm Br}_{10}]^{2^-} \\ {\rm Te} + {\rm I}_2 + {\rm AsF}_5 \text{ in SO}_2 \\ {\rm Te} + {\rm I}_2 + {\rm SbF}_5 \text{ in SO}_2 \\ {\rm Te} + {\rm I}_2 + {\rm AsH}_3 \\ {\rm Te} + {\rm M} + {\rm I}_2 \\ {\rm Te} + {\rm I}_2 + {\rm AsF}_5 \text{ in SO}_2 \\ {\rm Te} + {\rm I}_2 + {\rm AsF}_5 \text{ in SO}_2 \\ {\rm Te} + {\rm I}_2 + {\rm AsF}_5 \text{ in SO}_2 \\ {\rm Te} + {\rm I}_2 + {\rm AsF}_5 \text{ in SO}_2 \\ {\rm Te} {\rm IePh}_3^{-1} [{\rm Ho}({\rm OR}^{\rm P})_4]^{-} \\ [{\rm TePh}_5]^{-1} [{\rm TePh}_5]^{-1} [{\rm SO}_2 {\rm OFF}_5]^{-1} \\ {\rm TeC}_5 {\rm Ie}_4 + {\rm TMSOT} \\ {\rm TeL}_4 + {\rm Ag}^{*} [{\rm Sb}({\rm OTeF}_5)_6]^{-} \text{ in SO}_2 {\rm CIF} \\ \\ {\rm TeBr}_4 + {\rm Ag}^{*} [{\rm Sb}({\rm OTeF}_5)_6]^{-} \text{ in SO}_2 \\ \end{array}$	$(C_6H_3(CH_2ChPh)_2)TePh + [NO]^+[BF_4]^-$ $(C_6H_3(CH_2SPh)_2)TePh + {}^tBuOCl + O(Tf)_2$	$\begin{split} TePh_5Cl + Ag^{*}[OTf]^{-} + Li^{*}[B(G_6F_5)_4]^{-} \\ TePh_5Cl + Ag^{*}[ClO_4]^{-} \\ TePh_5Cl + Ag^{*}[OTf]^{-} + [B(Ar^{CF_3})_4]^{-} \end{split}$
$Class^{a}$	Lewis Lewis Lewis Lewis Lewis Lewis Lewis, Cewis Lewis	Lewis Ox, Lewis Ox, Lewis Other Lewis Ox, Lewis Ox, Lewis, Ox Cox, Lewis, Ox Ox, Lewis Ox, Lewis Other Other Ox, Lewis Ox Ox, Lewis	ŏ ŏ	Hal Hal Hal
Anion	$\begin{bmatrix} AlCl_4 \end{bmatrix}^- \\ \begin{bmatrix} AlCl_4 \end{bmatrix}^- \\ \begin{bmatrix} AlCl_4 \end{bmatrix}^- \\ \begin{bmatrix} AsF_6 \end{bmatrix}^- \\ \begin{bmatrix} SbF_6 \\ \end{bmatrix}^- \\ \begin{bmatrix} MoCl_4 \end{bmatrix}^- \\ \begin{bmatrix} MoCl_6 \end{bmatrix}^2 - \\ \end{bmatrix} \begin{bmatrix} MOLl_6 \end{bmatrix}^- \\ \begin{bmatrix} MoLl_6 \end{bmatrix}^- \\ \end{bmatrix} \begin{bmatrix} MOL_6 \end{bmatrix}^- \\ \end{bmatrix}$	$\begin{bmatrix} WCl_{6} \\ As F_{6} \\ [Au Br_{4}] \\ [Au Br_{4}] \\ [Xr_{2} Br_{9}] \\ [Ma F_{6}] \\ [Ms F_{6}] \\ [Sh F_{6}] \\ [Sh F_{6}] \\ [Ml_{4}] \\ [Sh F_{6}] \\ [Sh (OT eF_{5})_{6}] \\ \end{bmatrix}$	[BF4] ⁻ [OTT] ⁻	$ \begin{bmatrix} B(C_6F_5)_4 \end{bmatrix}^- \\ \begin{bmatrix} C[O_4]^- \\ \begin{bmatrix} B(Ar^{CF_3})_4 \end{bmatrix}^- \end{bmatrix} $
Cation	[TeCl3] ⁺ TeCl3_+ TeCl3_+ TeCl3_+ TeCl3_+ TeCl3_+ TeCl3_+ TeCl3_+	$ \begin{bmatrix} TeCl_{3}^{\dagger} \\ TeBr_{3}^{\dagger} \\ TeBr_{3}^{\dagger} \\ TeBr_{3}^{\dagger} \\ TeBr_{3}^{\dagger} \\ Tel_{3}^{\dagger} \\ Tel_{3$	Charlen Charle	Oxidation state +VI Ph. Te, Ph Ph. + Ph Ph. + Ph [TePh ₅] ⁺

Review Article

Table 11 (continued)

Cation	Anion	$Class^{a}$	Synthesis	Comment ^b	Ref.
Protonated cations					
+ Но Уу ОН	$[AsF_6]^-$	Prot	$OC(OTMS)_2 + HF/AsF_5$		537
	$[Ge_{3}F_{16}]^{4-}$	Prot	$Me_2SO + HF/GeF_4$		639
HO, S,	[SbF6] ⁻	Prot	$OTf_2 + HF/SbF_5$		536
+ HO-S HO-S HO	$[SbF_6]^-$	Prot	$SO_2(OTMS)_2 + HF/SbF_5$		538
^{<i>a</i>} Classification according to t not classified. ^{<i>b</i>} HTS = high t	^{<i>a</i>} Classification according to the introduction (Table 2): Com = complexation reaction, Lewis acid halogen bond heterolysis, Prot = protonation, Ox = oxidation, other = all other reactions not classified. ^{<i>b</i>} HTS = high temperature synthesis.	ction, Lewi	s = Lewis acid halogen bond heterolysis, Prot	= protonation, Ox = oxidation, other = all	her reactions

Table 12 Overview on all structurally characterized halogen cations

Cation	Anion	$Class^{a}$	Synthesis	Comment	Ref.
Homopolyatomic cations					
[Cl ₃] ⁺	$[AsF_6]^-$	Lewis	$[\mathrm{Cl}_2\mathrm{F}]^+[\mathrm{AsF}_6]^-$ + Cl_2 + AsF_5		42
$[Cl_3]^+$	$[X]^- = [SbF_6]^-, [Sb_2F_{11}]^-, [Sb_3F_{16}]^-$	Other	$[Cl_2O_2]^+[X]^-$ + Cl_2 in HF at RT		42
$[Br_2]^+$	$[S\dot{B}_3F_{16}]^-$	OX	$Br_2 + HSO_3F/SbF_5/3SO_3$		663
$[Br_3]^+$	$[ASF_6]^{-1}$	Other	[BrF ₂] ⁺ [AsF ₆] ⁻ decomposition	Store $[BrF_2]^+[AsF_6]^-$ for 20 years (!)	645
$[Br_5]^+$	$[MF_6]^-$ (M = As, Sb)	OX	$[\text{XeF}]^{\ddagger}[\text{MF}_6]^{-} + \text{Br}_2$		211
$[I_2]^+$	$[Sb_2F_{11}]^-$	OX	$I_2 + SbF_5$		15
[I ₃]+	$[AsF_6]^{-1}$	OX	$I_2 + AsF_5$		15
[I ₅]+	[AsF ₆] ⁻	OX	$I_2 + ASF_5$		664
$[1_{15}]^{3+}$	[SbF ₆] ⁻	OX	$I_2 + SbF_5$		15
Metal-nonmetal-cluster complexes	omplexes				
$[\operatorname{Ag}(\operatorname{Cl}_2)]^+$	$[Al(OR^{PF})_{4}]^{-}$	Com	$Ag^{+}[AI(OR^{PF})_{A}]^{-} + CI_{2}$	Only stable at low temperature	
$[Ag(Br_2)]^+$	$[Al(OR^{PF})_4]^{-1}$	Com	$Ag^{+}[Al(OR^{PF})_{4}]^{-} + Br_{2}^{-}$		
$\left[Ag_2(I_2)_x \right]^{2+} (x = 1, 4, 6)$	$[Al(OR^{PF})_4]^-$	Com	$Ag^+[Al(OR^{PF})_4]^- + I_2$		
$[\operatorname{Ag}(\operatorname{I}_2)]_n^{n+1}$	$[\mathrm{MF}_6]^-$ (M = Sb, As)	Com	$\mathrm{Ag}^{+}[\mathrm{MF}_{\mathrm{6}}]^{-} + \mathrm{I}_{2}$	First complex with halogen as donor	646
π*-π*-complexes					
[Cl4] ⁺	[IrF6]	OX	$Cl_2 + IrF_6$	Radical, homo-polyatomic cation	
$[Cl_2O_2]^+$	$[X]^- = [SbF_6]^-, [Sb_2F_{11}]^-$	Com	$\left[\mathbf{O}_{2} ight] ^{+}+\mathbf{Cl}_{2}$		42
$[I_4]^{2+}$	$[MF_6]^-$ (M = As, Sb), and $[Sb_3F_{14}]^-/[SbF_6]^-$	Com	$2[I_2]^+$	Also homopoly-atomic cation	
UXIGMUIII SLAUE +1 [[[(NCMe),] ⁺	[ASFe] ⁻	Other	[I ₃] ⁺ + MeCN	[I,3] ⁺ as I ⁺ donor	649 649

Review Article

Table 12 (continued)

Cation	Anion	Class ^a	Synthesis	Comment	Ref.
Oxidation state +III $[CIF_2]^+$ $[CIF_2]^+$ $[CIF_2]^+$ $[CIMe_2]^+$ $[BrF_2]^+$ $[BrF_2]^+$ $[BrC_6F_5)_2]^+$	[AsF ₆] ⁻ [SbF ₆] ⁻ [RuF ₆] ⁻ [CHB ₁₁ Cl ₁₁] ⁻ [SbF ₆] ⁻ [BF ₄] ⁻	Lewis Lewis Lewis Prot Lewis Lewis	$\begin{array}{l} ClF_3+AsF_5\\ ClF_3+SbF_5\\ ClF_3+SuF_5\\ ClF_3+RuF_5\\ H(CHB_{11}Cl_{11})+RCl \ (R=Me,\ Et)\\ BrF_3+SbF_5\\ BrF_3+(C_6F_5)_2BF \end{array}$	Protonation of RCl	666 667 668 655 669 670
	[OTf] [_]	Lewis	$C_{20}H_{28}+Br_2+MeOTf$	Stable bromonium ion C ₂₀ H ₂₈ = adamantyli-deneadamantane	656
$ \begin{bmatrix} \mathbf{ICl}_2 \end{bmatrix}^+ \\ \begin{bmatrix} \mathbf{IBr}_2 \end{bmatrix}^+ \\ \begin{bmatrix} \mathbf{IBr}_2 \end{bmatrix}^+ \\ \begin{bmatrix} \mathbf{I}_3 \mathbf{Cl}_2 \end{bmatrix}^+ \\ \begin{bmatrix} \mathbf{I}_3 \mathbf{Cl}_2 \end{bmatrix}^+ \\ \begin{bmatrix} \mathbf{I}_3 \mathbf{Br}_2 \end{bmatrix}^+ \\ \begin{bmatrix} \mathbf{I}(\mathbf{C_6F}_5) \mathbf{R} \end{bmatrix}^+ $	$ \begin{array}{c} \left[SbF_{6} \right]^{-} \\ \left[Sb_{2}F_{11} \right]^{-} \\ \left[SbCI_{6} \right]^{-} \\ \left[SbCI_{6} \right]^{-} \\ \left[X \right]^{-} = \left[SbCI_{6} \right]^{-}, \left[AlCI_{4} \right]^{-} \\ \left[SbCI_{6} \right]^{-} \end{array} \end{array} $	Lewis Lewis Lewis, other Lewis, other Lewis	$\begin{array}{l} I_2 Cl_6 + SbF_5 \\ IBr + SbF_5 \\ IBr + Cl_2 + SbF_5 \\ I_2 + SbCl_5 \\ I_2 + SbCl_5 \\ I_2 + SbCl_5 \\ I_2 + SbCl_5 \\ I(C_F_5)F_2 + RBF_2 R = C_6H_5, \ order \\ C_6H_4F, \ m-C_6H_4F, \ p-C_6H_4F, \ 2.4, 6-C_6H_4F, \ 2.4, 6-C_6$	Strong interactions with the anions	671 672 672 652-654 653 673
+	[OTf] ⁻	Lewis	$\mathrm{C_{20}H_{28}+I_{2}+Ag^{4}[OTf]^{-}}$	Stable iodonium ion $C_{20}H_{28} =$ adamantyli-deneadamantane	656
Oxidation state +V $[ClF_4]^+$ $[ClO_2]^+$ $[ClO_2]^+$ $[ClO_2]^+$ $[ClO_2]^+$ $[D_2]^+$ $[D_2]^+$ $[BrF_4]^+$ $[F_4]^+$ $[F_4]^+$ $[F_4]^+$ $[T_6F_5)_2F_2]^+$	$ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} X \end{bmatrix}^{-} = \begin{bmatrix} BP_{4} \end{bmatrix}^{-} \\ \begin{bmatrix} CIO_{4} \end{bmatrix}^{-} \\ \begin{bmatrix} CIO_{4} \end{bmatrix}^{-} \\ \begin{bmatrix} RuF_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} BF_{4} \end{bmatrix}^{-} \\ \end{bmatrix} $	Lewis Lewis Lewis Lewis Ox Lewis Ox Lewis Lewis Lewis	$\begin{array}{l} CIF_5 + SbF_5\\ CIO_2F + HF/SbF_5\\ CIO_2F + HF/SbF_5\\ CIO_2F + 2SbF_5\\ CIO_2F + BF_3, GeF_4\\ CIO_2 + O_3\\ CIO_2 + O_3\\ CIO_2 + 2RuF_5 CIF_3 + HF/RuO_4\\ BrF_5 + 2SbF_5\\ BrO_3F + SbF_5\\ BrO_3F + SbF_5\\ F_5 + 2HF/SbF_5\\ F_5 + 2HF/SbF_5\\ C_6F_5IF_4 + C_6F_5BF_2\\ \end{array}$	Also an oxidation product of [ClF ₂] ⁺ Cl ₂ O ₆ Reduction of Br ^{VII}	661 674 675 675 611 and 676 662 and 678 662 and 679 662 and 679 662 and 680
Oxnoation state +VII $[CIF_6]^+$ $[BrF_6]^+$ $[IF_6]^+$	$[Sb_2F_{11}]^-$ $[Sb_2F_{11}]^-$ $[Sb_2F_{11}]^-$	Ox, Lewis Ox, Lewis Lewis	$ClF_5 + F_2 + SbF_5$ BrF_5 + F_2 + SbF_5 IF_7 + SbF_5		660 660 660

Table 13 Cationic noble gas compounds with weakly coordinating anions

Cation	Anion	Class. ^a	Synthesis	Comment	Ref.
Homopolyatomic cations [Xe ₂] ⁺ [Xe ₄] ⁺	$\frac{[\mathrm{Sb}_4\mathrm{F}_{21}]^-}{[\mathrm{Sb}_x\mathrm{F}_{5x+1}]^-}$	Lewis Lewis	$[XeF]^+/Xe + SbF_5$ $[XeF]^+[Sb_2F_{11}]^-, SbF_5 + Xe$	First homopoly-atomic cation No X-ray	27 696
Metal-nonmetal-cluster complexes [AuXe ₄] ²⁺	$[Sb_2F_{11}]^-$	Lewis, Com	Au F_3 , Xe in HF/Sb F_5	First xenon metal complex, gold(n) 2 modifica-	695 and 697
$\begin{bmatrix} trans-AuXe_2 \end{bmatrix}^{2+} \\ [cis-AuXe_2]^{2+} \\ [trans-AuXe_2 F]^{3+} \\ [Au_2 Xe_3 F]^{3+} \\ [(F_3 As)AuXe]^{+} \\ [HgXe]^{2+} \end{bmatrix}$	$ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} + \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} \\ \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \begin{bmatrix} SbF_{6} \end{bmatrix}^{-} + \begin{bmatrix} Sb_{2}F_{11} \end{bmatrix}^{-} \\ \end{bmatrix} $	Com Com Com Com Com Com	HAuCl ₄ , XeF ₃ , Xe in HF/SbF ₅ [AuXe ₄] ²⁺ [(Sb ₂ F ₁₁] $_{2}$ -Xe at RT Au, XeF ₂ , Xe in HF/SbF ₅ Au, XeF ₂ , Xe in HF/SbF ₅ AuF ₃ , Xe, AsF ₃ in HF/SbF ₅ HgF ₂ , Xe in HF/SbF ₅	uons: tricume and tetragonal Gold(n) Gold(m) Gold(n)	695 695 695 698 698 698
Oxidation state +II [KtF] ⁺ [KtF] ⁺ [Kt ₂ F ₃] ⁺ , KtF ₂ , [Kt ₂ F ₃] ⁺ ·1/2KtF ₂ ,	$\begin{bmatrix} MF_6 \end{bmatrix}^- (M = As, Sb, Bi) \\ \begin{bmatrix} AuF_6 \end{bmatrix}^- \\ \begin{bmatrix} SbF_6 \end{bmatrix}^- \begin{bmatrix} AsF_6 \end{bmatrix}^- \end{bmatrix}$	Lewis Lewis Lewis	KrF ₂ + MF ₅ KrF ₂ + Au KrF ₂ + MF ₅	First krypton cation	699 682 699
[xeF] [xeF] [xeF] [xeF]	$[Sb_2F_{11}]^-$ $[RuF_6]^-$ $[ASF_6]^-$ $[N(SO_2F)_2]^-$	Lewis Lewis Lewis Lewis	XeF ₂ + 2SbF ₅ XeF ₂ + RuF ₅ XeF ₂ + ASF ₅ XeF ₂ + HN(SO ₂ F) ₂	First Xe–N bond, strong interaction with the	687 700 701 702
[XeF] ⁺ .HF [XeF] ⁺ [Xe ₂ F ₃] ⁺	$ \begin{array}{l} \left[Sb_2F_{1,1} \right]^- \\ \left[X \right]^- = \left[AsF_6 \right]^-, \left[SbF_6 \right]^-, \left[Sb_2F_{1,1} \right]^-, \\ \left[BiF_6 \right]^-, \left[Bi_2F_{1,1} \right]^- \\ \left[AsF_6 \right]^- \end{array} \right] $	Lewis Lewis Lewis	XeF ₂ + 2SbF ₅ XeF ₂ + AsF ₅ , SbF ₅ , BiF ₅ 2XeF ₂ + AsF ₅	Better structures for $[XeF]^{+}[X]^{-} = [MF_6]^{-}$, $[SbF_6]^{-}$, $[SbF_6]^{-}$, $[Sb_5F_{1,1}]^{-}$ Monoclinic structure	27 691 703 and 704
$\begin{array}{l} \left[\mathbf{X}\mathbf{e}_{2}\mathbf{F}_{3}\right]^{+} \\ \left[\mathbf{X}\mathbf{e}_{2}\mathbf{F}_{3}\right]^{+} \\ \left[\mathbf{X}\mathbf{e}_{1}(\mathbf{N}(\mathbf{SO}_{2}\mathbf{F})_{2})\right]^{+} \\ \left[\mathbf{X}\mathbf{e}_{1}(\mathbf{N}\mathbf{F}_{3})^{+}\right]^{+} \\ \left[\mathbf{X}\mathbf{e}_{1}(\mathbf{S}\mathbf{F}_{3})^{+}\right]^{+} \\ \left[\left(\mathbf{M}\mathbf{e}\mathbf{C}\mathbf{N} \right) \mathbf{X}\mathbf{e}_{2}\mathbf{e}_{1}\mathbf{F}_{3} \right]^{+} \end{array}$	$ \begin{bmatrix} AuF_6 \end{bmatrix}^- \\ \begin{bmatrix} MF_6 \end{bmatrix}^- \\ \begin{bmatrix} MF_6 \end{bmatrix}^- \\ \begin{bmatrix} MF_6 \end{bmatrix}^- \\ \begin{bmatrix} Sb_3F_{16} \end{bmatrix}^- \\ \begin{bmatrix} Ff_2 G_{0} \end{bmatrix}_2 BF_2 \end{bmatrix}^- \\ \begin{bmatrix} BX \end{bmatrix}^- \\ \begin{bmatrix} CF_2 \\ CN \end{bmatrix} \\ \begin{bmatrix} CF_1 \\ CN \end{bmatrix} $	Lewis Com Lewis Lewis Lewis, Com	$\begin{array}{l} XeF_{2}+AuF_{5} \\ [XeF]^{+} \mbox{ as starting material} \\ 3 \mbox{ step synthesis with As}F_{5} \mbox{ and } SbF_{5} \\ XeF_{2}+B(C_{6}F_{5})_{3} \\ XeF_{2}+C_{6}F_{5}BF_{2} \end{array}$	[Xe ₂ F ₃] ⁺ [AsF ₆] ⁻ trigonal structure First Xe–C bond Salt metatheses with [XeC ₆ F ₅] ⁺ [BF ₄] ⁻	686 705 693 707
$ \begin{array}{l} & [(C_eF_3 xe)_2 Cl]^+ \\ [XeOChF_5]^+ (Ch = Se, Te) \\ [XeOTeF_5]^+ :SO_2 ClF \\ [XeOT]^+ \\ [XeON(H)TeF_5]^+ \\ [(F_3 SN) XeFF]^+ \\ [(F_3 SN) XeNSF_4]^+ \\ [Xe_3 OF_3]^+ \end{array} $	$\begin{bmatrix} AsF_6 \\ AsF_6 \\ AsF_6 \\ Sb(OTeF_5)_6 \end{bmatrix}^- \\ \begin{bmatrix} AsF_6 \\ Sb_2F_{11} \end{bmatrix}^- \\ \begin{bmatrix} AsF_6 \\ AsF_6 \\ AsF_6 \\ AsF_6 \end{bmatrix}^- \\ \begin{bmatrix} AsF_6 \\ AsF_6 \end{bmatrix}^- \\ \begin{bmatrix} AsF_6 \\ AsF_6 \end{bmatrix}^- \\ \begin{bmatrix} AsF_6 \\ AsF_6 \end{bmatrix}^- \end{bmatrix}$	Other Lewis Other Other Lewis Com Other Other	$ \begin{array}{l} \left[\begin{array}{l} XeC_{6}F_{3}^{\dagger}^{\dagger}+TMSCl\\ FXeOChF_{5}+ASF_{5}\\ Xe(OTEF_{5})_{2}+Sb(OTEF_{3})_{3}\\ \left[XeF\right]^{\dagger}+\left[Cl\right]^{-}\\ \left[F_{5}TeNH_{3}\right]^{\dagger}\left[AsF_{6}\right]^{-}+XeF_{2}\\ F_{3}SN+\left[XeF\right]^{\dagger}\\ In \ solid \ state \ and \ HF/BrF_{5} \ solution\\ In \ solid \ state \ and \ HF/BrF_{5} \ solution\\ H_{2}O+XeF_{2}^{\dagger}\left[XeF\right]^{\dagger} \end{array} $	First Xe–Cl bond First Xe–O bond OTe F_5^- abstraction Ligand exchange First Xe–N(sp ³) bond First Xe–N(sp) bond Rearrangement of $[F_3SNXeF]^+[AsF_6]^-$ Hydrolysis to XeFOH followed by a reaction with $[Xe_2F_3]^+$	708 709 711 712 713 713 715 715
Oxidation state +IV $\begin{bmatrix} XeF_3 \end{bmatrix}^+ \\ \begin{bmatrix} XeF_3 \end{bmatrix}^+ \\ \begin{bmatrix} XeF_3 \end{bmatrix}^+ \\ \begin{bmatrix} XeF_3 \end{bmatrix}^+ \\ \end{bmatrix} $	$\begin{array}{c} [Sb_2F_{11}]^-\\ [BiF_6]^-\\ [Sb_2F_{11}]^-\\ [Sb_2F_{11}]^-\\ [Sb_2F_{11}]^-[SbF_6]\cdot 2[Sb_2F_{11}]^-[SbF_6]^-\\ \end{array}$	Lewis Lewis Lewis Lewis Lewis	XeF ₄ + 2SbF ₅ XeF ₄ + BiF ₅ XeF ₄ + SbF ₅ XeOF ₂ .xHF + HF/SbF ₅	Better structure	717 718 691 719

Review Article

Table 13 (continued)

Cation	Anion	Class. ^a	Synthesis	Comment	Ref.
Oxidation state +VI					
[XeF ₅] ⁺	$[PtF_6]^-$	Lewis	$XeF_6 + PtF_5$	First xenon cation structure	688 and 689
[XeF ₅] ⁺	$[ASF_6]^-$	Lewis	$XeF_6 + AsF_5$		704
[XeF ₅]+	$[SbF_6]^-$	ОX	$[\text{XeF}]^+[\text{SbF}_6]^- + F_2 \text{ in aHF}$		692
[XeF ₅] ⁺	$[Sb_2F_{11}]^-$	Other	[XeF ₅] [†] [SbF ₆] ⁻	Crystals from a O ₂ SbF ₆ /XeF ₅ SbF ₆ mixture	692
[XeF ₅] ⁺	[RuF ₆] ⁻	Lewis	$\mathbf{XeF_6} + \mathbf{RuF_5}$		700
[XeF ₅] ⁺	$[PdF_6]^{2-}$	Lewis	$2 \text{XeF}_6 + \text{PdF}_4$		720
[XeF ₅] ⁺	$[Ti_4F_{19}]^{3-}$	Lewis	$XeF_6 + TiF_4$	XeF_6 from XeF_2 , F_2 and UV radiation	721
[XeF ₅] ⁺	$[m-F(OsO_3F_2)_2]^{-}[OsO_3F_2]^{-}$	Lewis	$\operatorname{XeF}_{6} + (\operatorname{OsO}_{3}\operatorname{F}_{2})_{\infty}$		069
[XeF ₅] ⁺	[Cu(SbF ₆) ₃]	Other	$[XeF_5]^{\dagger}[SbF_6]^{-} + Cu^{\dagger}[SbF_6]^{-}$ in aHF	Anion exchange	43
[XeF ₅] ⁺	$[AgF_4]^-$	Lewis	ÅgF ₂ + KrF ₂ + XeF ₆ in aHF	ð	722
[XeF ₅] ⁺	$[AuF_4]^-$	Lewis	$XeF_6 + BrF_3 AuF_3$		722
$\left[\operatorname{XeF}_{5}\right]^{+}$ $\cdot \operatorname{XeF}_{2} \cdot \left[\operatorname{XeF}_{5}\right]^{+} \cdot \operatorname{2XeF}_{2} \left[\operatorname{XeF}_{5}\right]^{+} \cdot 1/$	$[AsF_6]^{-}[AsF_6]^{-}[AsF_6]^{-}$	Com	$\operatorname{XeF}_2 + [\operatorname{XeF}_5]^+ [\operatorname{AsF}_6]^-$		723
$2 \mathrm{XeF}_2$					
$[XeF_5]^+$ ·XeOF ₄	$[SbF_6]^-$	Lewis	$\text{XeF}_6 + [\text{H}_3\text{O}]^+ [\text{SbF}_6]^-$		694
[XeF ₅] ⁺ ·NO ₂ ⁺	$[SbF_6]^-$	Other	$[\text{XeF}_5]^+[\text{SbF}_6]^- + [\text{NO}_2]^+[\text{SbF}_6]^-$		43
$[Xe_2F_1]^+$	[AuF_6]-	Lewis	$2 \text{XeF}_6 + \text{AuF}_5$		724
$[Xe_2F_{11}]^+$	$[OsO_3F_2]^-$	Lewis	$\operatorname{XeF_6} + (\operatorname{OsO_3F_2})_\infty$		069
$[XeO_2F]^+[F(XeO_2F)_2]^+$	$\left[\mathrm{MF}_{6}\right]^{-}$ $\left(\mathrm{M}=\mathrm{As},~\mathrm{Sb}\right)\left[\mathrm{AsF}_{6}\right]^{-}$	Lewis	$XeO_2F_2 + MF_5$ (M = As, Sb)	α - and β -modification of $[XeO_2F]^+[SbF_6]^-$	694
a Classification according to the introduction (Table 2): Lewis =	oduction (Table 2): Lewis = Lewis a	ıcid halogen b	ond heterolysis, Com = complexation rea	Lewis acid halogen bond heterolysis, Com = complexation reaction, other = all other reactions not classified.	

Abbreviations

CN	Coordination number
DFT	Density functional theory
ε _r	Relative permittivity of a solvent (static dielectric
	constant)
FLP	Frustrated Lewis pairs
IL	Ionic liquid
n.a.	Not available
rPBC	Reactive p-block cations
WCA	Weakly coordinating anion
Ar ^{CF₃}	3,5-(CF ₃) ₂ C ₆ H ₃
Ar ^{Cl}	$3,5-Cl_2-C_6H_3$
9BBN	9-Bora[3.3.1]bicyclononane
bipy	1,2-Bipyridine
BOX	Bis(oxazoline)
CatBH	Catecholborane/1,3,2-benzodioxaborole
COD	1,5-Cyclooctadiene
Ср	C_5H_5
Cp′	C_5Me_4H
Cp*	C_5Me_5
Су	Cyclohexyl
DDP	2-(DIPP)amino-4-(Dipp)imino-2-pentene
Dipp	$2,6-^{i}Pr_{2}-C_{6}H_{3}$
DMAP	4-Dimethylaminopyridine
DMeOPrPE	1,2-(Bis(dimethoxypropyl)-phosphino)ethane
DMH	$1,1-Me_2N_2H_4$
Dmp	2,6-Dimethyl-phenyl
dmpe	1,2-Bis(dimethylphosphino)ethane
Do	Donor
DPE	1,2-Diphenylethane
dppe	1,2-Bis(diphenylphosphino)ethane
DTBMP	2,6-Di- <i>tert</i> -butyl-4-methylpyridine
dtbpy	4,4'-Di- <i>tert</i> -butyl-2,2'-bipyridyl
Et	Ethyl
Fc	Ferrocenyl
FP	CpFe(CO) ₂
FP'	$Cp'Fe(CO)_2$
FP*	$Cp*Fe(CO)_2$
hppH	1,3,4,6,7,8-Hexahydro-2 <i>H</i> -pyrimido-[1,2- <i>a</i>]-
	pyrimidine
IMe	1,3-Bis(methyl)imidazol-2-ylidene
IMes	1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene
ⁱ Pr	iso-Propyl
ⁱ Pr ₂ -ATI	N,N'-Diisopropylaminotroponiminate
IPr	1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene
I ^t Bu	1,3-Bis(<i>tert</i> -butyl)imidazol-2-ylidene 3,5-lutidine
	3,5-dimethylpyridine
Me	Methyl
Me ₄ -cyclam	<i>N,N',N'',N'''</i> -Tetramethyl-1,4,8,11-tetraazacyclo-
	tetradecane
Mes	$2,4,6-Me_3C_6H_2$
Me ₃ SiS ^p Tol	$1-SSiMe_3-4-Me-C_6H_4$
Me ₃ -tacn	<i>N,N',N"-</i> Trimethyl-1,4,7-triaza-cyclononane
nacnac	(NMesCMe) ₂ CH
NBD	2,5-Norbornadiene

Review Article

NPPh	2,5-Bis(2-pyridyl)-1-phenylphosphole
1-MIM	<i>N</i> -Methylimidazole
<i>m</i> -TP	<i>meta</i> -Terphenyl
OSSO	trans-1,2-Cyclooctanediyl-bridged[OSSO]-type
	bis(phenolate)
OR^{PF}	$-OC(CF_3)_3$
OR^{HT}	$-OC(CH_3)(CF_3)_2$
OR^{HF}	$-OC(H)(CF_3)_2$
OR ^{MeF}	$-OC(CH_3)(CF_3)_2$
Ph	$-C_6H_5$
Phen	1,10-Phenanthroline
4-Pic	4-Methylpyridine
Pip	Piperidyl
PMAF	Pentamethylazaferrocene
pmdta	<i>N,N,N',N',N''</i> -Pentamethyldiethylenetriamine
PNP	Bis(2- ⁱ Pr ₂ P4-Me-phenyl)amido
Ру	Pyridine
Pytsi	$C(SiMe_3)_2SiMe_2(2-C_5H_4N)$
<i>p</i> -Xyl	<i>para</i> -Xylene
R	Typical univalent organic residue
Salen	N,N'-Ethylenebis(2-hydroxyphenyl)imine
Salen ^{CF₃}	<i>N</i> , <i>N</i> ′-Ethylenebis(2-hydroxy-2-(CF ₃) ₂ -
	ethyl)imine
Salomphen	<i>N</i> , <i>N</i> ′-(4,5-Dimethyl)phenylene-bis(2-hydroxy-
	phenyl)imine
Salpen	N,N'-Propylenebis(2-hydroxyphenyl)imine
Sch	Tridentate Schiff base
SubPc	Subphthalocyanine
taen	1,4- ⁱ Pr ₂ -1,4,7-Triaza-cyclononane
^t Bu	<i>tert</i> -Butyl
Tf	-SO ₂ CF ₃
THF	Tetrahydrofuran
timtmb ^{tBu}	1,3,5-{Tris(3- <i>tert</i> -butylimidazol-2-
	ylideno)methyl}-2,4,6-trimethylbenzene
TMM	η^4 -C(CH ₂) ₃
Tol	Toluene
Tipp	$2,4,6^{-i}Pr_3-C_6H_2$
Х	Halogen

Acknowledgements

This work was supported by the Albert-Ludwigs-Universität Freiburg, the ERC in the grant UniChem, and by the DFG in the *Normalverfahren*.

References

- 1 D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, *Chem. Rev.*, 2000, **100**, 39.
- 2 G. C. Welch, R. R. San Juan, J. D. Masuda and D. W. Stephan, *Science*, 2006, **314**, 1124; D. W. Stephan, *Org. Biomol. Chem.*, 2008, **6**, 1535.
- 3 C. E. Anderson, H. Braunschweig and R. D. Dewhurst, *Organometallics*, 2008, 27, 6381.

- 4 D. Vidovic, G. A. Pierce and S. Aldridge, *Chem. Commun.*, 2009, 1157.
- 5 H. Braunschweig, R. D. Dewhurst and V. H. Gessner, *Chem. Soc. Rev.*, 2013, **42**, 3197.
- 6 G. A. Olah, Onium ions, Wiley, New York, 1998; C. A. Reed, Acc. Chem. Res., 1998, 31, 325.
- 7 M. R. Lichtenthaler, A. Higelin, A. Kraft, S. Hughes, A. Steffani, D. A. Plattner, J. M. Slattery and I. Krossing, *Organometallics*, 2013, **32**, 6725.
- 8 M. R. Lichtenthaler, S. Maurer, R. J. Mangan, F. Stahl, F. Mönkemeyer, J. Hamann and I. Krossing, *Chem. Eur. J.*, 2015, **21**, 471.
- 9 M. R. Lichtenthaler, S. Maurer, R. J. Mangan, F. Stahl, F. Mönkemeyer, J. Hamann and I. Krossing, *Chem. – Eur. J.*, 2015, **21**, 157.
- 10 Y. Sarazin and J.-F. Carpentier, Chem. Rev., 2015, 115, 3564.
- 11 T. A. Engesser and I. Krossing, *Coord. Chem. Rev.*, 2013, 257, 946.
- 12 S. Aldridge, C. Jones, T. Gans-Eichler, A. Stasch, D. L. Kays, N. D. Coombs and D. J. Willock, *Angew. Chem., Int. Ed.*, 2006, 45, 6118.
- 13 I. Krossing and I. Raabe, Angew. Chem., Int. Ed., 2004, 43, 2066.
- 14 J. Cullinane, A. Jolleys and F. S. Mair, *Dalton Trans.*, 2013, 42, 11971.
- 15 S. H. Strauss, Chem. Rev., 1993, 93, 927.
- 16 C. A. Reed, Acc. Chem. Res., 1998, 31, 133.
- 17 M. R. Lichtenthaler, F. Stahl, D. Kratzert, L. Heidinger, E. Schleicher, J. Hamann, D. Himmel, S. Weber and I. Krossing, *Nat. Commun.*, 2015, 6, 8288.
- 18 S. Körbe, P. J. Schreiber and J. Michl, *Chem. Rev.*, 2006, 106, 5208.
- 19 H. Schmidbaur and A. Schier, *Organometallics*, 2008, 27, 2361.
- 20 C. Knapp, in *Comprehensive Inorganic Chemistry II*, ed. J. R. Poeppelmeier, Elsevier, Amsterdam, 2013, pp. 651–679.
- 21 I. Krossing, in *Comprehensive Inorganic Chemistry II*, ed. J. R. Poeppelmeier, Elsevier, Amsterdam, 2013, pp. 681–705.
- 22 E. Y.-X. Chen and S. J. Lancaster, in *Comprehensive Inorganic Chemistry II*, ed. J. R. Poeppelmeier, Elsevier, Amsterdam, 2013, pp. 707–754.
- 23 P. Malinowski, A. Kraft, J. Schaefer and I. Krossing, 2015, invited review by *Angew. Chem.*, to be submitted within 2015.
- 24 K.-C. Kim, C. A. Reed, D. W. Elliott, L. J. Mueller, F. Tham, L. Lin and J. B. Lambert, *Science*, 2002, **297**, 825.
- 25 S. M. Ivanova, S. V. Ivanov, S. M. Miller, O. P. Anderson,
 K. A. Solntsev and S. H. Strauss, *Inorg. Chem.*, 1999,
 38, 3756; A. J. Lupinetti, M. D. Havighurst, S. M. Miller,
 O. P. Anderson and S. H. Strauss, *J. Am. Chem. Soc.*, 1999,
 121, 11920.
- 26 B. T. King and J. Michl, J. Am. Chem. Soc., 2000, 122, 10255.
- 27 T. Drews and K. Seppelt, Angew. Chem., Int. Ed., 1997, 36, 273.
- 28 T. S. Cameron, I. Dionne, I. Krossing and J. Passmore, *Solid State Sci.*, 2002, **4**, 1435.

- 29 T. Köchner, T. A. Engesser, H. Scherer, D. A. Plattner, A. Steffani and I. Krossing, *Angew. Chem., Int. Ed.*, 2012, 51, 6529.
- 30 J. M. Slattery, A. Higelin, T. Bayer and I. Krossing, *Angew. Chem., Int. Ed.*, 2010, **49**, 3228.
- 31 R. J. Wehmschulte, Angew. Chem., Int. Ed., 2010, 49, 4708.
- 32 C. Reus and M. Wagner, Nat. Chem., 2014, 6, 466.
- 33 Y. Shoji, N. Tanaka, K. Mikami, M. Uchiyama and T. Fukushima, *Nat. Chem.*, 2014, 6, 498.
- 34 J. B. Lambert, L. Lin, S. Keinan and T. Müller, J. Am. Chem. Soc., 2003, 125, 6022.
- 35 W. W. Wilson, A. Vij, V. Vij, E. Bernhardt and K. O. Christe, *Chem. Eur. J.*, 2003, **9**, 2840.
- 36 R. Anulewicz-Ostrowska, T. Kliś, D. Krajewski, B. Lewandowski and J. Serwatowski, *Tetrahedron Lett.*, 2003, 44, 7329.
- 37 D. Kratzert, J. J. Holstein and I. Krossing, J. Appl. Crystallogr., 2015, 48, 933.
- 38 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- 39 S. V. Ivanov, J. A. Davis, S. M. Miller, O. P. Anderson and S. H. Strauss, *Inorg. Chem.*, 2003, 42, 4489.
- 40 C. Bolli, J. Derendorf, C. Jenne, H. Scherer, C. P. Sindlinger and B. Wegener, *Chem. – Eur. J.*, 2014, **20**, 13783.
- 41 M. Wegener, F. Huber, C. Bolli, C. Jenne and S. F. Kirsch, *Chem. – Eur. J.*, 2015, **21**, 1328.
- 42 T. Drews, W. Koch and K. Seppelt, J. Am. Chem. Soc., 1999, 121, 4379.
- 43 Z. Mazej and E. Goreshnik, Eur. J. Inorg. Chem., 2015, 1453.
- 44 R. D. Bolskar, R. S. Mathur and C. A. Reed, J. Am. Chem. Soc., 1996, 118, 13093.
- 45 S. M. Ivanova, B. G. Nolan, Y. Kobayashi, S. M. Miller, O. P. Anderson and S. H. Strauss, *Chem. – Eur. J.*, 2001, 7, 503.
- 46 I. Krossing, Chem. Eur. J., 2001, 7, 490.
- 47 Z. Xie, T. Jelinek, R. Bau and C. A. Reed, *J. Am. Chem. Soc.*, 1994, **116**, 1907.
- 48 P. Jutzi, C. Müller, A. Stammler and H.-G. Stammler, Organometallics, 2000, **19**, 1442.
- 49 G. Santiso-Quiñones, A. Higelin, J. Schaefer, R. Brückner, C. Knapp and I. Krossing, *Chem. – Eur. J.*, 2009, 15, 6663.
- 50 J. Schaefer, A. Steffani, D. A. Plattner and I. Krossing, Angew. Chem., Int. Ed., 2012, 51, 6009.
- 51 A. G. Massey and A. J. Park, *J. Organomet. Chem.*, 1964, 2, 245.
- 52 A. E. Ashley, T. J. Herrington, G. G. Wildgoose, H. Zaher, A. L. Thompson, N. H. Rees, T. Krämer and D. O'Hare, J. Am. Chem. Soc., 2011, 133, 14727.
- 53 E. L. Kolychev, T. Bannenberg, M. Freytag, C. G. Daniliuc,
 P. G. Jones and M. Tamm, *Chem. Eur. J.*, 2012, 18, 16938.
- 54 T. Belgardt, J. Storre, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, *Inorg. Chem.*, 1995, 34, 3821.
- 55 L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht and I. Krossing, *Angew. Chem., Int. Ed.*, 2008, 47, 7659; L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht and I. Krossing, *Angew. Chem.*, 2008, 120, 7772;

A. Kraft, N. Trapp, D. Himmel, H. Böhrer, P. Schlüter, H. Scherer and I. Krossing, *Chem. – Eur. J.*, 2012, **18**, 9371.

- 56 C. Douvris, E. S. Stoyanov, F. S. Tham and C. A. Reed, Chem. Commun., 2007, 1145.
- 57 C.-W. Chiu and F. P. Gabbaï, *Organometallics*, 2008, 27, 1657.
- 58 H. Bohrer, N. Trapp, D. Himmel, M. Schleep and I. Krossing, *Dalton Trans.*, 2015, 44, 7489.
- 59 J. F. Kögel, T. Linder, F. G. Schröder, J. Sundermeyer, S. K. Goll, D. Himmel, I. Krossing, K. Kütt, J. Saame and I. Leito, *Chem. – Eur. J.*, 2015, 21, 5769.
- 60 F. Scholz, D. Himmel, L. Eisele, W. Unkrig and I. Krossing, Angew. Chem., Int. Ed., 2014, 53, 1689.
- 61 F. Scholz, D. Himmel, L. Eisele, W. Unkrig, A. Martens,
 P. Schlüter and I. Krossing, *Chem. Eur. J.*, 2015, 21, 7489.
- W. Beichel, J. M. U. Panzer, J. Hätty, X. Ye, D. Himmel and I. Krossing, *Angew. Chem., Int. Ed.*, 2014, 53, 6637;
 W. Beichel, J. M. U. Panzer, J. Hätty, X. Ye, D. Himmel and I. Krossing, *Angew. Chem.*, 2014, 126, 6755.
- 63 T. Welton, *Chem. Rev.*, 1999, **99**, 2071; T. Welton, *Ionic liquids in synthesis*, Wiley-VCH, Weinheim, 2nd edn, 2008;
 H. Weingärtner, *Angew. Chem., Int. Ed.*, 2008, **47**, 654.
- 64 U. Müller, A. Isaeva and M. Ruck, Z. Anorg. Allg. Chem., 2014, 640, 1564.
- 65 E. Ahmed, J. Breternitz, M. F. Groh, A. Isaeva and M. Ruck, *Eur. J. Inorg. Chem.*, 2014, 3037.
- 66 E. Ahmed and M. Ruck, Coord. Chem. Rev., 2011, 255, 2892.
- 67 M. F. Groh, J. Breternitz, E. Ahmed, A. Isaeva, A. Efimova,
 P. Schmidt and M. Ruck, *Z. Anorg. Allg. Chem.*, 2015,
 641, 388.
- 68 J. J. Weigand, M. Holthausen and R. Fröhlich, Angew. Chem., Int. Ed., 2009, 48, 295.
- 69 D. Himmel, S. K. Goll, I. Leito and I. Krossing, Angew. Chem., Int. Ed., 2010, 49, 6885; D. Himmel, S. K. Goll, I. Leito and I. Krossing, Angew. Chem., 2010, 122, 7037; D. Himmel, S. K. Goll, I. Leito and I. Krossing, Chem. – Eur. J., 2011, 17, 5808; D. Himmel, S. K. Goll, I. Leito and I. Krossing, Chem. – Eur. J., 2012, 18, 9333.
- 70 V. Radtke, D. Himmel, K. Pütz, S. K. Goll and I. Krossing, *Chem. – Eur. J.*, 2014, **20**, 4194.
- 71 D. Himmel, S. K. Goll, F. Scholz, V. Radtke, I. Leito and I. Krossing, *ChemPhysChem*, 2015, 16, 1428.
- 72 I. Krossing, J. Am. Chem. Soc., 2001, 123, 4603.
- 73 T. S. Cameron, R. J. Deeth, I. Dionne, H. Du, H. D. B. Jenkins, I. Krossing, J. Passmore and H. K. Roobottom, *Inorg. Chem.*, 2000, 39, 5614.
- 74 S. Muthaiah, D. C. H. Do, R. Ganguly and D. Vidovic, Organometallics, 2013, 32, 6718.
- 75 P. D. Bartlett, F. E. Condon and A. Schneider, J. Am. Chem. Soc., 1944, 66, 1531.
- 76 S. Duttwyler, Q.-Q. Do, A. Linden, K. K. Baldridge and J. S. Siegel, Angew. Chem., Int. Ed., 2008, 47, 1719.
- 77 J. Klosin, G. R. Roof, E. Y. X. Chen and K. A. Abboud, Organometallics, 2000, **19**, 4684.
- 78 T. Köchner, S. Riedel, A. J. Lehner, H. Scherer, I. Raabe,T. A. Engesser, F. W. Scholz, U. Gellrich, P. Eiden,

R. A. Paz-Schmidt, D. A. Plattner and I. Krossing, *Angew. Chem., Int. Ed.*, 2010, **49**, 8139.

- 79 M. Huber, A. Kurek, I. Krossing, R. Mülhaupt and H. Schnöckel, Z. Anorg. Allg. Chem., 2009, 635, 1787.
- 80 H. Arii, F. Nakadate, K. Mochida and T. Kawashima, *Organometallics*, 2011, **30**, 4471.
- 81 S. P. Hoffmann, T. Kato, F. S. Tham and C. A. Reed, *Chem. Commun.*, 2006, 767.
- 82 H. Poleschner and K. Seppelt, *Angew. Chem., Int. Ed.*, 2013, 52, 12838.
- 83 A. Haaland, Angew. Chem., Int. Ed., 1989, 28, 992;
 A. Haaland, Angew. Chem., 1989, 101, 1017.
- 84 D. Himmel, I. Krossing and A. Schnepf, *Angew. Chem., Int. Ed.*, 2014, 53, 370; H. Schmidbaur and A. Schier, *Angew. Chem., Int. Ed.*, 2013, 52, 176; H. Schmidbaur and A. Schier, *Angew. Chem.*, 2013, 125, 187.
- 85 R. Koppe and H. Schnoeckel, *Chem. Sci.*, 2015, 6, 1199;
 N. Holzmann, M. Hermann and G. Frenking, *Chem. Sci.*, 2015, 6, 4089; G. Frenking, *Angew. Chem., Int. Ed.*, 2014, 53, 6040; G. Frenking, *Angew. Chem.*, 2014, 126, 6152;
 D. Himmel, I. Krossing and A. Schnepf, *Angew. Chem.*, 2014, 126, 6159;
 D. Himmel, I. Krossing and A. Schnepf, *Angew. Chem.*, 2014, 126, 6159;
 D. Himmel, I. Krossing and A. Schnepf, *Angew. Chem.*, 1nt. Ed., 2014, 53, 6047.
- 86 F. Scholz, D. Himmel, F. W. Heinemann, P. von Ragué Schleyer, K. Meyer and I. Krossing, *Science*, 2013, 341, 62.
- 87 M. Kessler, C. Knapp and A. Zogaj, *Organometallics*, 2011, 30, 3786.
- 88 A. J. Downs and H.-J. Himmel, *The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities*, John Wiley & Sons, Ltd, 2011, pp. 1–74.
- 89 W. E. Piers, S. C. Bourke and K. D. Conroy, Angew. Chem., Int. Ed., 2005, 44, 5016.
- 90 M. Bochmann, Coord. Chem. Rev., 2009, 253, 2000.
- 91 J. D. Corbett, D. J. Prince and B. Garbisch, *Inorg. Chem.*, 1970, 9, 2731.
- 92 R. J. Gillespie and G. P. Pez, Inorg. Chem., 1969, 8, 1233.
- 93 K. Akhbari and A. Morsali, *Coord. Chem. Rev.*, 2010, **254**, 1977.
- 94 A. H. Cowley, Chem. Commun., 2004, 2369.
- 95 S. Dagorne and D. A. Atwood, Chem. Rev., 2008, 108, 4037.
- 96 D. Vidovic and S. Aldridge, Chem. Sci., 2011, 2, 601.
- 97 C. J. Allan and C. L. B. Macdonald, in *Comprehensive Inorganic Chemistry II*, ed. J. R. Poeppelmeier, Elsevier, Amsterdam, 2013, pp. 485–566.
- 98 U. Schneider and S. Kobayashi, Acc. Chem. Res., 2012, 45, 1331.
- 99 J. Barr, R. J. Gillespie, R. Kapoor and K. C. Malhotra, *Can. J. Chem.*, 1968, 46, 149.
- 100 H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1985, 24, 893.
- 101 J. Beck and G. Bock, Z. Anorg. Allg. Chem., 1994, 620, 1971.
- 102 D. A. Atwood, Coord. Chem. Rev., 1998, 176, 407.
- 103 A. Baumann and J. Beck, Z. Anorg. Allg. Chem., 2004, 630, 2078.
- 104 D. Vidovic, G. A. Pierce and S. Aldridge, *Chem. Commun.*, 2009, 1157.

- 105 H. Braunschweig, R. D. Dewhurst and A. Schneider, *Chem. Rev.*, 2010, **110**, 3924.
- 106 C. Jones and A. Stasch, The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, John Wiley & Sons, Ltd, 2011, pp. 285–341.
- 107 B. F. T. Cooper and C. L. B. Macdonald, The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, John Wiley & Sons, Ltd, 2011, pp. 342–401.
- 108 P. J. Brothers and C. E. Ruggiero, The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, John Wiley & Sons, Ltd, 2011, pp. 519–611.
- 109 T. S. De Vries, A. Prokofjevs and E. Vedejs, *Chem. Rev.*, 2012, **112**, 4246.
- S. González-Gallardo, T. Bollermann, R. A. Fischer and R. Murugavel, *Chem. Rev.*, 2012, **112**, 3136.
- 111 M. J. Ingleson, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2013, 109, 28.
- 112 P. Koelle and H. Noeth, Chem. Rev., 1985, 85, 399.
- 113 Y. Shoji, N. Tanaka, K. Mikami, M. Uchiyama and T. Fukushima, *Nat. Chem.*, 2014, **6**, 498.
- 114 S. Courtenay, J. Y. Mutus, R. W. Schurko and D. W. Stephan, Angew. Chem., Int. Ed., 2002, 41, 498.
- 115 T. Kato, F. S. Tham, P. D. W. Boyd and C. A. Reed, *Heteroat. Chem.*, 2006, **17**, 209.
- 116 A. Del Grosso, R. G. Pritchard, C. A. Muryn and M. J. Ingleson, Organometallics, 2010, 29, 241.
- 117 M. Gonsior and I. Krossing, Chem. Eur. J., 2004, 10, 5730.
- 118 R. J. Gillespie and J. B. Milne, *Inorg. Chem.*, 1966, 5, 1577.
- 119 B. Inés, M. Patil, J. Carreras, R. Goddard, W. Thiel and M. Alcarazo, *Angew. Chem., Int. Ed.*, 2011, **50**, 8400.
- 120 T. A. Shuttleworth, M. A. Huertos, I. Pernik, R. D. Young and A. S. Weller, *Dalton Trans.*, 2013, 42, 12917.
- 121 H. Braunschweig, K. Radacki and A. Schneider, *Chem. Commun.*, 2010, **46**, 6473.
- 122 H. Braunschweig, M. Kaupp, C. Lambert, D. Nowak, K. Radacki, S. Schinzel and K. Uttinger, *Inorg. Chem.*, 2008, 47, 7456.
- 123 S. Litters, E. Kaifer, M. Enders and H.-J. Himmel, *Nat. Chem.*, 2013, 5, 1029.
- 124 G. A. Pierce, D. Vidovic, D. L. Kays, N. D. Coombs, A. L. Thompson, E. D. Jemmis, S. De and S. Aldridge, *Organometallics*, 2009, 28, 2947.
- 125 H. Braunschweig, K. Radacki and K. Uttinger, *Organometallics*, 2008, **27**, 6005.
- 126 F. Fabrizi de Biani, T. Gmeinwieser, E. Herdtweck, F. Jäkle,F. Laschi, M. Wagner and P. Zanello, *Organometallics*, 1997, 16, 4776.
- 127 L. Ding, K. Ma, G. Durner, M. Bolte, F. Fabrizi de Biani,P. Zanello and M. Wagner, *J. Chem. Soc., Dalton Trans.*, 2002, 1566.
- 128 K.-C. Kim, C. A. Reed, G. S. Long and A. Sen, *J. Am. Chem. Soc.*, 2002, **124**, 7662.
- 129 J. D. Young, M. A. Khan and R. J. Wehmschulte, *Organometallics*, 2004, 23, 1965.

- 130 M. Kessler, C. Knapp, I. Krossing, M. R. Lichtenthaler, 2011, unpublished results.
- 131 S.-J. Lee, P. J. Shapiro and B. Twamley, *Organometallics*, 2006, **25**, 5582.
- 132 C. T. Burns, D. S. Stelck, P. J. Shapiro, A. Vij, K. Kunz, G. Kehr, T. Concolino and A. L. Rheingold, *Organometallics*, 1999, 18, 5432.
- 133 C. T. Burns, P. J. Shapiro, P. H. M. Budzelaar, R. Willett and A. Vij, *Organometallics*, 2000, **19**, 3361.
- 134 M. Gonsior, I. Krossing and E. Matern, *Chem. Eur. J.*, 2006, **12**, 1703.
- 135 J. D. Masuda and D. W. Stephan, Dalton Trans., 2006, 2089.
- 136 C. E. Radzewich, I. A. Guzei and R. F. Jordan, J. Am. Chem. Soc., 1999, 121, 8673.
- 137 O. Stanga, C. L. Lund, H. Liang, J. W. Quail and J. Müller, Organometallics, 2005, 24, 6120.
- 138 P. J. A. Saez, S. H. Oakley, M. P. Coles and P. B. Hitchcock, *Chem. Commun.*, 2007, 816.
- 139 S. Dagorne, S. Bellemin-Laponnaz and R. Welter, *Organometallics*, 2004, 23, 3053.
- 140 A. V. Korolev, F. Delpech, S. Dagorne, I. A. Guzei and R. F. Jordan, *Organometallics*, 2001, **20**, 3367.
- 141 A. V. Korolev, E. Ihara, I. A. Guzei, V. G. Young and R. F. Jordan, *J. Am. Chem. Soc.*, 2001, **123**, 8291.
- 142 J. Lewiński, P. Horeglad, M. Dranka and I. Justyniak, *Inorg. Chem.*, 2004, **43**, 5789.
- 143 M. S. Hill and P. B. Hitchcock, Organometallics, 2002, 21, 3258.
- 144 O. Wrobel, F. Schaper and H. H. Brintzinger, *Organometallics*, 2004, 23, 900.
- 145 A. Stasch, H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, Inorg. Chem., 2005, 44, 5854.
- 146 D. A. Atwood and M. J. Harvey, *Chem. Rev.*, 2001, 101, 37.
- 147 S. Dagorne, M. Bouyahyi, J. Vergnaud and J.-F. Carpentier, *Organometallics*, 2010, **29**, 1865.
- 148 D. A. Atwood, J. A. Jegier and D. Rutherford, *J. Am. Chem. Soc.*, 1995, **117**, 6779.
- 149 D. A. Atwood, J. A. Jegier and D. Rutherford, *Inorg. Chem.*, 1996, **35**, 63.
- 150 M.-A. Muñoz-Hernandez, S. Parkin, B. Yearwood, P. Wei and D. Atwood, J. Chem. Crystallogr., 2000, **30**, 215–218.
- 151 M.-A. Munoz-Hernandez, M. L. McKee, T. S. Keizer, B. C. Yearwood and D. A. Atwood, *J. Chem. Soc., Dalton Trans.*, 2002, 410.
- 152 S. Dagorne, F. Le Bideau, R. Welter, S. Bellemin-Laponnaz and A. Maisse-Franois, *Chem. – Eur. J.*, 2007, **13**, 3202.
- 153 A. V. Korolev, I. A. Guzei and R. F. Jordan, *J. Am. Chem. Soc.*, 1999, **121**, 11605.
- 154 O. Wrobel, F. Schaper, U. Wieser, H. Gregorius and H. H. Brintzinger, *Organometallics*, 2003, **22**, 1320.
- 155 N. Nakata, Y. Saito and A. Ishii, *Organometallics*, 2014, 33, 1840.
- 156 S. Dagorne, I. A. Guzei, M. P. Coles and R. F. Jordan, *J. Am. Chem. Soc.*, 2000, **122**, 274.
- 157 T. Cadenbach, C. Gemel, T. Bollermann and R. A. Fischer, Inorg. Chem., 2009, 48, 5021.

- 158 R. J. Wehmschulte, J. M. Steele, J. D. Young and M. A. Khan, *J. Am. Chem. Soc.*, 2003, **125**, 1470.
- 159 B. Buchin, C. Gemel, T. Cadenbach, R. Schmid and R. A. Fischer, *Angew. Chem., Int. Ed.*, 2006, 45, 1074.
- 160 C. L. B. Macdonald, J. D. Gorden, A. Voigt and A. H. Cowley, J. Am. Chem. Soc., 2000, 122, 11725.
- 161 A. Higelin, S. Keller, C. Göhringer, C. Jones and I. Krossing, Angew. Chem., Int. Ed., 2013, 52, 4941.
- 162 A. Higelin, U. Sachs, S. Keller and I. Krossing, *Chem. Eur. J.*, 2012, **18**, 10029.
- 163 A. Budanow, T. Sinke, J. Tillmann, M. Bolte, M. Wagner and H.-W. Lerner, *Organometallics*, 2012, **31**, 7298.
- 164 M. R. Lichtenthaler, F. Stahl, D. Kratzert, B. Benkmil, H. A. Wegner and I. Krossing, *Eur. J. Inorg. Chem.*, 2014, 4335.
- 165 S. Dagorne, S. Bellemin-Laponnaz, A. Maisse-Francois, M.-N. Rager, L. Juge and R. Welter, *Eur. J. Inorg. Chem.*, 2005, 4206.
- 166 C. Lichtenberg, T. P. Spaniol and J. Okuda, *Inorg. Chem.*, 2012, **51**, 2254.
- 167 G. Linti and A. Seifert, Z. Anorg. Allg. Chem., 2008, 634, 1312.
- 168 A. Higelin, C. Haber, S. Meier and I. Krossing, *Dalton Trans.*, 2012, 41, 12011.
- 169 N. R. Bunn, S. Aldridge, D. L. Coombs, A. Rossin, D. J. Willock, C. Jones and L.-L. Ooi, *Chem. Commun.*, 2004, 1732.
- 170 N. D. Coombs, N. R. Bunn, D. L. Kays, J. K. Day, L.-L. Ooi and S. Aldridge, *Inorg. Chim. Acta*, 2006, **359**, 3693.
- 171 K. Ueno, T. Watanabe and H. Ogino, *Appl. Organomet. Chem.*, 2003, **17**, 403.
- 172 N. Bartlett and D. H. Lohmann, J. Chem. Soc., 1962, 5253.
- 173 R. J. Gillespie and J. B. Milne, Inorg. Chem., 1966, 5, 1236.
- 174 A. Kempter, C. Gemel, N. J. Hardman and R. A. Fischer, Inorg. Chem., 2006, 45, 3133.
- 175 A. Kempter, C. Gemel, T. Cadenbach and R. A. Fischer, Inorg. Chem., 2007, 46, 9481.
- 176 M. Fleischmann, S. Welsch, H. Krauss, M. Schmidt, M. Bodensteiner, E. V. Peresypkina, M. Sierka, C. Groeger and M. Scheer, *Chem. – Eur. J.*, 2014, 20, 3759.
- 177 T. Cadenbach, C. Gemel, T. Bollermann, I. Fernandez, G. Frenking and R. A. Fischer, *Chem. Eur. J.*, 2008, 14, 10789.
- 178 M. Halbherr, T. Bollermann, C. Gemel and R. A. Fischer, Angew. Chem., Int. Ed., 2010, 49, 1878.
- 179 S. Aldridge, Angew. Chem., Int. Ed., 2006, 45, 8097.
- 180 B. Buchin, C. Gemel, T. Cadenbach, I. Fernández, G. Frenking and R. A. Fischer, *Angew. Chem., Int. Ed.*, 2006, **45**, 5207.
- 181 T. Cadenbach, C. Gemel, D. Zacher and R. A. Fischer, *Angew. Chem., Int. Ed.*, 2008, 47, 3438.
- 182 C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor and B. D. Ellis, *Chem. Commun.*, 2004, 250.
- 183 C. G. Andrews and C. L. B. Macdonald, *J. Organomet. Chem.*, 2005, **690**, 5090.
- 184 A. H. Cowley, C. L. B. Macdonald, J. S. Silverman, J. D. Gorden and A. Voigt, *Chem. Commun.*, 2001, 175.

- 185 J. N. Jones, C. L. B. Macdonald, J. D. Gorden and A. H. Cowley, *J. Organomet. Chem.*, 2003, 666, 3.
- 186 S. Welsch, M. Bodensteiner, M. Dušek, M. Sierka and M. Scheer, *Chem. – Eur. J.*, 2010, **16**, 13041.
- 187 H. B. Mansaray, C. Y. Tang, D. Vidovic, A. L. Thompson and S. Aldridge, *Inorg. Chem.*, 2012, **51**, 13017.
- 188 T. Jurca, J. Lummiss, T. J. Burchell, S. I. Gorelsky and D. S. Richeson, J. Am. Chem. Soc., 2009, 131, 4608.
- 189 J. Beck, C. J. Brendel, L. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski and S. Ulvenlund, *Chem. Ber.*, 1996, **129**, 1219.
- 190 F. Delpech, I. A. Guzei and R. F. Jordan, *Organometallics*, 2002, **21**, 1167.
- 191 I. Peckermann, D. Robert, U. Englert, T. P. Spaniol and J. Okuda, *Organometallics*, 2008, 27, 4817.
- 192 C. G. Andrews and C. L. B. Macdonald, *Angew. Chem., Int. Ed.*, 2005, **44**, 7453.
- 193 B. F. T. Cooper and C. L. B. Macdonald, New J. Chem., 2010, 34, 1551.
- 194 B. F. T. Cooper and C. L. B. Macdonald, *J. Organomet. Chem.*, 2008, **693**, 1707.
- 195 N. R. Bunn, S. Aldridge, D. L. Kays, N. D. Coombs, A. Rossin, D. J. Willock, J. K. Day, C. Jones and L.-L. Ooi, *Organometallics*, 2005, 24, 5891.
- 196 R. C. Burns, R. J. Gillespie and W.-C. Luk, *Inorg. Chem.*, 1978, **17**, 3596.
- 197 D. Alberti and K.-R. Pörschke, Organometallics, 2004, 23, 1459.
- 198 P. K. Hurlburt, O. P. Anderson and S. H. Strauss, *Can. J. Chem.*, 1992, **70**, 726.
- 199 T. J. Barbarich, S. M. Miller, O. P. Anderson and S. H. Strauss, *J. Mol. Catal. A: Chem.*, 1998, **128**, 289.
- 200 M. Gonsior, I. Krossing and N. Mitzel, *Z. Anorg. Allg. Chem.*, 2002, **628**, 1821.
- 201 R. S. Mathur, T. Drovetskaya and C. A. Reed, *Acta Crystallogr.*, 1997, C53, 881.
- 202 M. D. Noirot, O. P. Anderson and S. H. Strauss, *Inorg. Chem.*, 1987, 26, 2216.
- 203 Y. Sarazin, D. L. Hughes, N. Kaltsoyannis, J. A. Wright and M. Bochmann, J. Am. Chem. Soc., 2007, 129, 881.
- 204 Y. Sarazin, N. Kaltsoyannis, J. A. Wright and M. Bochmann, Organometallics, 2007, 26, 1811.
- 205 H. Nakai, Y. Tang, P. Gantzel and K. Meyer, *Chem. Commun.*, 2003, 24.
- 206 T. Jurca, I. Korobkov, S. I. Gorelsky and D. S. Richeson, *Inorg. Chem.*, 2013, **52**, 5749.
- 207 S. Welsch, L. J. Gregoriades, M. Sierka, M. Zabel, A. V. Virovets and M. Scheer, *Angew. Chem., Int. Ed.*, 2007, **46**, 9323.
- 208 O. Back, B. Donnadieu, P. Parameswaran, G. Frenking and G. Bertrand, *Nat. Chem.*, 2010, 2, 369.
- 209 N. K. Szymczak, F. Han and D. R. Tyler, *Dalton Trans.*, 2004, 3941.
- 210 C.-T. Shen, Y.-H. Liu, S.-M. Peng and C.-W. Chiu, Angew. Chem., Int. Ed., 2013, 52, 13293; C.-T. Shen, Y.-H. Liu, S.-M. Peng and C.-W. Chiu, Angew. Chem., 2013, 125, 13535.
- 211 H. Hartl, J. Nowicki and R. Minkwitz, *Angew. Chem., Int. Ed.*, 1991, **30**, 328.

- 212 B. Bentivegna, C. I. Mariani, J. R. Smith, S. Ma, A. L. Rheingold and T. J. Brunker, *Organometallics*, 2014, 33, 2820.
- 213 S. Dagorne, I. Janowska, R. Welter, J. Zakrzewski and G. Jaouen, *Organometallics*, 2004, 23, 4706.
- 214 S. Dagorne, C. R. Chim., 2006, 9, 1143.
- 215 F. Cosledan, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 1999, 705.
- 216 J. D. Masuda, D. M. Walsh, P. Wei and D. W. Stephan, Organometallics, 2004, 23, 1819.
- 217 M. Haddad, M. Laghzaoui, R. Welter and S. Dagorne, Organometallics, 2009, 28, 4584.
- 218 S. Welsch, C. Lescop, R. Reau and M. Scheer, *Dalton Trans.*, 2009, 2683.
- 219 D. L. Reger, J. E. Collins, R. Layland and R. D. Adams, *Inorg. Chem.*, 1996, 35, 1372.
- 220 D. L. Coombs, S. Aldridge, C. Jones and D. J. Willock, *J. Am. Chem. Soc.*, 2003, **125**, 6356; H. Braunschweig and D. Rais, *Heteroat. Chem.*, 2005, **16**, 566.
- 221 J. Niemeyer, D. A. Addy, I. Riddlestone, M. Kelly, A. L. Thompson, D. Vidovic and S. Aldridge, *Angew. Chem., Int. Ed.*, 2011, 50, 8908; J. Niemeyer, D. A. Addy, I. Riddlestone, M. Kelly, A. L. Thompson, D. Vidovic and S. Aldridge, *Angew. Chem.*, 2011, 123, 9070.
- 222 H. Braunschweig, K. Kraft, T. Kupfer, K. Radacki and F. Seeler, *Angew. Chem., Int. Ed.*, 2008, 47, 4931.
- 223 J. Chen, R. A. Lalancette and F. Jakle, *Chem. Commun.*, 2013, **49**, 4893.
- D. L. Kays, J. K. Day, L.-L. Ooi and S. Aldridge, *Angew. Chem., Int. Ed.*, 2005, 44, 7457; D. L. Kays, A. Rossin, J. K. Day, L.-L. Ooi and S. Aldridge, *Dalton Trans.*, 2006, 399.
- 225 D. L. Kays, J. K. Day, S. Aldridge, R. W. Harrington and W. Clegg, Angew. Chem., Int. Ed., 2006, 45, 3513.
- 226 P. Bissinger, H. Braunschweig, A. Damme, R. D. Dewhurst, K. Kraft, T. Kramer and K. Radacki, *Chem. Eur. J.*, 2013, 19, 13402.
- 227 E. Firinci, J. I. Bates, I. M. Riddlestone, N. Phillips and S. Aldridge, *Chem. Commun.*, 2013, 49, 1509.
- 228 G. A. Pierce, S. Aldridge, C. Jones, T. Gans-Eichler, A. Stasch,
 N. D. Coombs and D. J. Willock, *Angew. Chem., Int. Ed.*,
 2007, 46, 2043.
- H. Braunschweig, K. Radacki, D. Rais and D. Scheschkewitz, Angew. Chem., Int. Ed., 2005, 44, 5651; H. Braunschweig,
 K. Radacki, D. Rais and D. Scheschkewitz, Angew. Chem., 2005, 117, 5796.
- 230 N. Arnold, H. Braunschweig, P. Brenner, J. O. C. Jimenez-Halla, T. Kupfer and K. Radacki, *Organometallics*, 2012, 31, 1897.
- 231 H. Braunschweig, K. Radacki and K. Uttinger, *Chem. Eur. J.*, 2008, **14**, 7858.
- 232 K. D. Hesp, F. O. Kannemann, M. A. Rankin, R. McDonald, M. J. Ferguson and M. Stradiotto, *Inorg. Chem.*, 2011, 50, 2431.
- 233 N. D. Coombs, W. Clegg, A. L. Thompson, D. J. Willock and S. Aldridge, J. Am. Chem. Soc., 2008, 130, 5449.
- 234 N. D. Coombs, D. Vidovic, J. K. Day, A. L. Thompson, D. D. Le Pevelen, A. Stasch, W. Clegg, L. Russo, L. Male,

M. B. Hursthouse, D. J. Willock and S. Aldridge, *J. Am. Chem. Soc.*, 2008, **130**, 16111.

- 235 J. Beck and K.-J. Schlitt, Chem. Ber., 1995, 128, 763.
- 236 A. Hershaft and J. D. Corbett, Inorg. Chem., 1963, 2, 979.
- 237 A. Prokofjevs and E. Vedejs, *J. Am. Chem. Soc.*, 2011, **133**, 20056.
- 238 S. Dagorne, L. Lavanant, R. Welter, C. Chassenieux, P. Haquette and G. Jaouen, *Organometallics*, 2003, **22**, 3732.
- 239 E. Ihara, V. G. Young and R. F. Jordan, *J. Am. Chem. Soc.*, 1998, **120**, 8277.
- 240 C. Cui, G. R. Giesbrecht, J. A. R. Schmidt and J. Arnold, *Inorg. Chim. Acta*, 2003, **351**, 404.
- 241 M. S. Hill and D. A. Atwood, Eur. J. Inorg. Chem., 1998, 67.
- 242 H. Braunschweig, K. Radacki and A. Schneider, Angew. Chem., Int. Ed., 2010, 49, 5993.
- 243 T. Bollermann, A. Puls, C. Gemel, T. Cadenbach and R. A. Fischer, *Dalton Trans.*, 2009, 1372.
- 244 K. Freitag, H. Banh, C. Gemel, P. Jerabek, R. W. Seidel, G. Frenking and R. A. Fischer, *Inorg. Chem.*, 2015, 54, 352.
- 245 T. Cadenbach, T. Bollermann, C. Gemel and R. A. Fischer, *Dalton Trans.*, 2009, 322.
- 246 G. G. Henderson, J. Chem. Soc., Trans., 1887, 51, 224.
- 247 A. Baeyer and V. Villiger, Ber. Dtsch. Chem. Ges., 1902, 35, 1189.
- 248 A. H. Gomes de Mesquita, C. H. MacGillavry and K. Eriks, *Acta Crystallogr.*, 1965, **18**, 437.
- 249 J. Krauße, G. Heublein, G. Rudakoff, P. Leibnitz and G. Reck, *J. Crystallogr. Spectrosc. Res.*, 1991, 21, 45; I. Krossing, H. Brands, R. Feuerhake and S. Koenig, *J. Fluorine Chem.*, 2001, 112, 83; J. Zhou, S. J. Lancaster, D. A. Walker, S. Beck, M. Thornton-Pett and M. Bochmann, *J. Am. Chem. Soc.*, 2001, 123, 223.
- 250 M. Sundaralingam and L. H. Jensen, J. Am. Chem. Soc., 1963, 85, 3302.
- 251 J. B. Lambert, L. Kania and S. Zhang, *Chem. Rev.*, 1995, **95**, 1191.
- 252 T. Müller, Cations of Group 14 Organometallics, Elsevier, 2005, vol. 53, pp. 155–215.
- 253 J. Parr, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2005, 101, 74.
- 254 H. F. T. Klare and M. Oestreich, *Dalton Trans.*, 2010, **39**, 9176.
- 255 C. A. Reed, Acc. Chem. Res., 2010, 43, 121.
- 256 M. Asay, C. Jones and M. Driess, Chem. Rev., 2011, 111, 354.
- 257 C. Marschner and J. Hlina, *Comprehensive Inorganic Chemistry II*, Elsevier, 2013, pp. 83–117.
- 258 V. S. V. S. N. Swamy, S. Pal, S. Khan and S. S. Sen, *Dalton Trans.*, 2015, **44**, 12903.
- 259 C. A. Reed, Science, 2000, 289, 101.
- 260 M. Riccò, D. Pontiroli, M. Mazzani, F. Gianferrari, M. Pagliari,
 A. Goffredi, M. Brunelli, G. Zandomeneghi, B. H. Meier and
 T. Shiroka, *J. Am. Chem. Soc.*, 2010, 132, 2064.
- 261 K.-C. Kim, F. Hauke, A. Hirsch, P. D. W. Boyd, E. Carter, R. S. Armstrong, P. A. Lay and C. A. Reed, *J. Am. Chem. Soc.*, 2003, **125**, 4024.
- 262 P. von Ragué Schleyer, W. E. Watts, R. C. Fort, M. B. Comisarow and G. A. Olah, *J. Am. Chem. Soc.*, 1964, **86**, 5679; M. Saunders,

P. von Ragué Schleyer and G. A. Olah, J. Am. Chem. Soc., 1964, 86, 5680.

- 263 L. K. Montgomery, M. P. Grendze and J. C. Huffman, J. Am. Chem. Soc., 1987, 109, 4749; T. Laube, J. Am. Chem. Soc., 1989, 111, 9224; T. Laube, Angew. Chem., Int. Ed. Engl., 1987, 26, 560; T. Laube, Angew. Chem., Int. Ed. Engl., 1986, 25, 349.
- 264 S. Hollenstein and T. Laube, J. Am. Chem. Soc., 1993, 115, 7240.
- 265 T. Kato and C. A. Reed, Angew. Chem., Int. Ed., 2004, 43, 2908.
- 266 F. Scholz, D. Himmel, H. Scherer and I. Krossing, *Chem. – Eur. J.*, 2013, **19**, 109.
- 267 E. S. Stoyanov, I. V. Stoyanova, F. S. Tham and C. A. Reed, *Angew. Chem., Int. Ed.*, 2012, **51**, 9149.
- 268 K. O. Christe, X. Zhang, R. Bau, J. Hegge, G. A. Olah, G. K. S. Prakash and J. A. Sheehy, *J. Am. Chem. Soc.*, 2000, 122, 481.
- 269 I. Krossing, A. Bihlmeier, I. Raabe and N. Trapp, *Angew. Chem., Int. Ed.*, 2003, **42**, 1531.
- 270 H. P. A. Mercier, M. D. Moran, G. J. Schrobilgen, C. Steinberg and R. J. Suontamo, *J. Am. Chem. Soc.*, 2004, 126, 5533.
- 271 A. J. Lehner, N. Trapp, H. Scherer and I. Krossing, *Dalton Trans.*, 2011, **40**, 1448.
- 272 R. Minkwitz and F. Neikes, *Eur. J. Inorg. Chem.*, 2000, 2283.
- 273 T. Laube, J. Am. Chem. Soc., 2004, 126, 10904.
- 274 I. Raabe, C. Röhr and I. Krossing, *Dalton Trans.*, 2007, 5376.
- 275 T. Müller, M. Juhasz and C. A. Reed, *Angew. Chem., Int. Ed.*, 2004, **43**, 1543.
- 276 A. Klaer, W. Saak, D. Haase and T. Müller, *J. Am. Chem. Soc.*, 2008, **130**, 14956.
- 277 N. C. Baenziger and A. D. Nelson, J. Am. Chem. Soc., 1968, 90, 6602.
- 278 H. Shorafa, D. Mollenhauer, B. Paulus and K. Seppelt, Angew. Chem., Int. Ed., 2009, 48, 5845.
- 279 M. J. Molski, D. Mollenhauer, S. Gohr, B. Paulus, M. A. Khanfar, H. Shorafa, S. H. Strauss and K. Seppelt, *Chem. Eur. J.*, 2012, 18, 6644.
- 280 M. J. Molski, M. A. Khanfar, H. Shorafa and K. Seppelt, *Eur. J. Org. Chem.*, 2013, 3131.
- 281 F. Marchetti, C. Pinzino, S. Zacchini and G. Pampaloni, Angew. Chem., Int. Ed., 2010, 49, 5268.
- 282 X. Chen, X. Wang, Y. Sui, Y. Li, J. Ma, J. Zuo and X. Wang, Angew. Chem., Int. Ed., 2012, 51, 11878.
- 283 R. A. Moss, S. Shen, K. Krogh-Jespersen, J. A. Potenza,
 H. J. Schugar and R. C. Munjal, *J. Am. Chem. Soc.*, 1986, 108, 134.
- 284 S. K. Chadda, R. F. Childs, R. Faggiani and C. J. L. Lock, J. Am. Chem. Soc., 1986, 108, 1694.
- 285 J. B. Lambert, L. Lin and V. Rassolov, *Angew. Chem., Int. Ed.*, 2002, 41, 1429; M. Otto, D. Scheschkewitz, T. Kato, M. M. Midland, J. B. Lambert and G. Bertrand, *Angew. Chem., Int. Ed.*, 2002, 41, 2275.

- 286 S. Duttwyler, Y. Zhang, A. Linden, C. A. Reed, K. K. Baldridge and J. S. Siegel, *Angew. Chem., Int. Ed.*, 2009, **48**, 3787.
- 287 T. Kato, E. Stoyanov, J. Geier, H. Grützmacher and C. A. Reed, *J. Am. Chem. Soc.*, 2004, **126**, 12451.
- 288 C. Bolli, J. Derendorf, M. Keßler, C. Knapp, H. Scherer, C. Schulz and J. Warneke, *Angew. Chem., Int. Ed.*, 2010, 49, 3536.
- 289 J. B. Lambert, S. Zhang, C. L. Stern and J. C. Huffman, *Science*, 1993, **260**, 1917.
- 290 A. Schäfer, M. Reißmann, S. Jung, A. Schäfer, W. Saak, E. Brendler and T. Müller, *Organometallics*, 2013, **32**, 4713.
- 291 M. Reißmann, PhD dissertation, University of Oldenburg, 2014.
- 292 A. Sekiguchi, T. Matsuno and M. Ichinohe, *J. Am. Chem. Soc.*, 2000, **122**, 11250.
- 293 M. Ichinohe, M. Igarashi, K. Sanuki and A. Sekiguchi, *J. Am. Chem. Soc.*, 2005, **127**, 9978.
- 294 S. Inoue, J. D. Epping, E. Irran and M. Driess, *J. Am. Chem. Soc.*, 2011, **133**, 8514.
- 295 M. Driess, S. Yao, M. Brym and C. van Wüllen, Angew. Chem., Int. Ed., 2006, 45, 6730.
- 296 K. Hensen, T. Zengerly, P. Pickel and G. Klebe, *Angew. Chem.*, *Int. Ed.*, 1983, **22**, 725.
- 297 Z. Xie, D. J. Liston, T. Jelínek, V. Mitro, R. Bau and C. A. Reed, *J. Chem. Soc., Chem. Commun.*, 1993, 384.
- 298 M. Ichinohe, H. Fukui and A. Sekiguchi, Chem. Lett., 2000, 600.
- 299 C. Gerdes, W. Saak, D. Haase and T. Müller, J. Am. Chem. Soc., 2013, 135, 10353.
- 300 M. J. MacLachlan, S. C. Bourke, A. J. Lough and I. Manners, J. Am. Chem. Soc., 2000, 122, 2126.
- 301 Z. Xie, R. Bau and C. A. Reed, J. Chem. Soc., Chem. Commun., 1994, 2519.
- 302 A. P. M. Robertson, J. N. Friedmann, H. A. Jenkins and N. Burford, *Chem. Commun.*, 2014, 50, 7979.
- 303 P. Romanato, S. Duttwyler, A. Linden, K. K. Baldridge and J. S. Siegel, *J. Am. Chem. Soc.*, 2010, **132**, 7828.
- 304 M. F. Ibad, P. Langer, A. Schulz and A. Villinger, J. Am. Chem. Soc., 2011, 133, 21016.
- 305 J. B. Lambert and S. Zhang, J. Chem. Soc., Chem. Commun., 1993, 383; M. Nava and C. A. Reed, Organometallics, 2011, 30, 4798.
- 306 S. J. Connelly, W. Kaminsky and D. M. Heinekey, *Organometallics*, 2013, **32**, 7478.
- 307 M. Lehmann, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2009, 48, 7444.
- 308 A. Schulz, J. Thomas and A. Villinger, *Chem. Commun.*, 2010, **46**, 3696.
- 309 A. Schulz and A. Villinger, Chem. Eur. J., 2010, 16, 7276.
- K. O. Christe, W. W. Wilson, D. A. Dixon, S. I. Khan, R. Bau,
 T. Metzenthin and R. Lu, *J. Am. Chem. Soc.*, 1993, 115, 1836.
- 311 R. Panisch, M. Bolte and T. Müller, J. Am. Chem. Soc., 2006, 128, 9676.
- 312 R. Panisch, M. Bolte and T. Müller, *Organometallics*, 2007, 26, 3524.
- 313 N. Choi, P. D. Lickiss, M. McPartlin, P. C. Masangane and G. L. Veneziani, *Chem. Commun.*, 2005, 6023.

- 314 A. Schäfer, M. Reißmann, A. Schäfer, M. Schmidtmann and T. Müller, *Chem. – Eur. J.*, 2014, **20**, 9381.
- 315 A. Sekiguchi, Y. Murakami, N. Fukaya and Y. Kabe, *Chem. Lett.*, 2004, **33**, 530.
- 316 K. Müther, R. Fröhlich, C. Mück-Lichtenfeld, S. Grimme and M. Oestreich, J. Am. Chem. Soc., 2011, 133, 12442.
- 317 A. Bockholt, P. Jutzi, A. Mix, B. Neumann, A. Stammler and H.-G. Stammler, *Z. Anorg. Allg. Chem.*, 2009, **635**, 1326.
- 318 Y. Xiong, S. Yao, S. Inoue, E. Irran and M. Driess, *Angew. Chem., Int. Ed.*, 2012, **51**, 10074.
- 319 H.-X. Yeong, H.-W. Xi, Y. Li, K. H. Lim and C.-W. So, *Chem. Eur. J.*, 2013, **19**, 11786.
- 320 Y. Xiong, S. Yao, S. Inoue, J. D. Epping and M. Driess, *Angew. Chem., Int. Ed.*, 2013, **52**, 7147.
- 321 A. C. Filippou, Y. N. Lebedev, O. Chernov, M. Straßmann and G. Schnakenburg, Angew. Chem., Int. Ed., 2013, 52, 6974.
- 322 P. Jutzi, Science, 2004, 305, 849.
- 323 P. Jutzi, A. Mix, B. Neumann, B. Rummel and H.-G. Stammler, *Chem. Commun.*, 2006, 3519.
- 324 K. Leszczynska, A. Mix, R. J. F. Berger, B. Rummel,
 B. Neumann, H.-G. Stammler and P. Jutzi, *Angew. Chem., Int. Ed.*, 2011, 50, 6843.
- 325 C. A. Reed, Z. Xie, R. Bau and A. Benesi, *Science*, 1993, 262, 402.
- 326 T. Küppers, E. Bernhardt, R. Eujen, H. Willner and C. W. Lehmann, *Angew. Chem., Int. Ed.*, 2007, **46**, 6346.
- 327 M. Rohde, L. O. Müller, D. Himmel, H. Scherer and I. Krossing, *Chem. Eur. J.*, 2014, **20**, 1218.
- 328 Z. Xie, R. Bau, A. Benesi and C. A. Reed, *Organometallics*, 1995, 14, 3933.
- 329 Z. Xie, J. Manning, R. W. Reed, R. Mathur, P. D. W. Boyd, A. Benesi and C. A. Reed, *J. Am. Chem. Soc.*, 1996, **118**, 2922.
- 330 A. Budanow, M. Bolte, M. Wagner and H.-W. Lerner, *Eur. J. Inorg. Chem.*, 2015, 2524.
- 331 S. C. Bourke, M. J. MacLachlan, A. J. Lough and I. Manners, *Chem. – Eur. J.*, 2005, **11**, 1989.
- 332 A. Sekiguchi, Y. Ishida, Y. Kabe and M. Ichinohe, *J. Am. Chem. Soc.*, 2002, **124**, 8776.
- 333 I. Zharov, B. T. King, Z. Havlas, A. Pardi and J. Michl, J. Am. Chem. Soc., 2000, 122, 10253.
- 334 A. Sekiguchi, T. Fukawa, V. Y. Lee, M. Nakamoto and M. Ichinohe, *Angew. Chem., Int. Ed.*, 2003, 42, 1143.
- 335 A. Sekiguchi, T. Fukawa, V. Y. Lee and M. Nakamoto, *J. Am. Chem. Soc.*, 2003, **125**, 9250.
- 336 C. Schenk, C. Drost and A. Schnepf, *Dalton Trans.*, 2009, 773.
- 337 A. Schäfer, W. Saak, D. Haase and T. Müller, J. Am. Chem. Soc., 2011, 133, 14562.
- 338 J. H. Wright, G. W. Mueck, F. S. Tham and C. A. Reed, *Organometallics*, 2010, **29**, 4066.
- 339 A. Sekiguchi, Science, 1997, 275, 60.
- 340 M. Ichinohe, N. Fukaya and A. Sekiguchi, *Chem. Lett.*, 1998, 1045.
- 341 A. Sekiguchi, N. Fukaya, M. Ichinohe and Y. Ishida, *Eur. J. Inorg. Chem.*, 2000, 1155.

- 342 I. Lange, J. Krahl, P. G. Jones and A. Blaschette, *J. Organomet. Chem.*, 1994, **474**, 97.
- 343 N. Kordts, C. Borner, R. Panisch, W. Saak and T. Müller, *Organometallics*, 2014, **33**, 1492.
- 344 S. Khan, G. Gopakumar, W. Thiel and M. Alcarazo, *Angew. Chem., Int. Ed.*, 2013, **52**, 5644.
- 345 M. Wagner, T. Zöller, W. Hiller, M. H. Prosenc and K. Jurkschat, *Chem. Eur. J.*, 2013, **19**, 9463.
- 346 T. Müller, C. Bauch, M. Ostermeier, M. Bolte and N. Auner, *J. Am. Chem. Soc.*, 2003, **125**, 2158.
- 347 Y. Ishida, A. Sekiguchi and Y. Kabe, J. Am. Chem. Soc., 2003, 125, 11468.
- 348 T. Müller, C. Bauch, M. Bolte and N. Auner, *Chem. Eur. J.*, 2003, **9**, 1746.
- 349 Y. Xiong, T. Szilvási, S. Yao, G. Tan and M. Driess, J. Am. Chem. Soc., 2014, **136**, 11300.
- 350 E. Hough, D. G. Nicholson and A. K. Vasudevan, J. Chem. Soc., Dalton Trans., 1989, 2155.
- 351 R. D. Rogers and A. H. Bond, Inorg. Chim. Acta, 1992, 192, 163.
- 352 R. Bandyopadhyay, B. F. Cooper, A. J. Rossini, R. W. Schurko and C. L. Macdonald, *J. Organomet. Chem.*, 2010, **695**, 1012.
- 353 C. Beattie, P. Farina, W. Levason and G. Reid, *Dalton Trans.*, 2013, **42**, 15183.
- 354 P. A. Rupar, V. N. Staroverov, P. J. Ragogna and K. M. Baines, J. Am. Chem. Soc., 2007, 129, 15138.
- 355 P. A. Rupar, V. N. Staroverov and K. M. Baines, *Science*, 2008, **322**, 1360.
- 356 J. C. Avery, M. A. Hanson, R. H. Herber, K. J. Bladek, P. A. Rupar, I. Nowik, Y. Huang and K. M. Baines, *Inorg. Chem.*, 2012, 51, 7306.
- 357 P. A. Rupar, R. Bandyopadhyay, B. Cooper, M. R. Stinchcombe, P. J. Ragogna, C. Macdonald and K. M. Baines, *Angew. Chem.*, *Int. Ed.*, 2009, 48, 5155.
- 358 F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, *Angew. Chem., Int. Ed.*, 2009, **48**, 5152.
- 359 F. Cheng, J. M. Dyke, F. Ferrante, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, *Dalton Trans.*, 2010, 39, 847.
- 360 A. P. Singh, H. W. Roesky, E. Carl, D. Stalke, J.-P. Demers and A. Lange, J. Am. Chem. Soc., 2012, 134, 4998.
- 361 M. Bouška, L. Dostál, A. Růžička and R. Jambor, Organometallics, 2013, 32, 1995.
- 362 T. Jurca, L. K. Hiscock, I. Korobkov, C. N. Rowley and D. S. Richeson, *Dalton Trans.*, 2014, 43, 690.
- 363 Y. Xiong, S. Yao, S. Inoue, A. Berkefeld and M. Driess, *Chem. Commun.*, 2012, 48, 12198.
- 364 Y. Xiong, S. Yao, G. Tan, S. Inoue and M. Driess, J. Am. Chem. Soc., 2013, 135, 5004.
- 365 A. Schäfer, W. Saak, D. Haase and T. Müller, *Chem. Eur. J.*, 2009, **15**, 3945.
- 366 J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin,
 S. Keller, R. Pöttgen, I. Krossing and C. Jones, *Angew. Chem., Int. Ed.*, 2012, 51, 9557.
- 367 M. J. Taylor, A. J. Saunders, M. P. Coles and J. R. Fulton, Organometallics, 2011, **30**, 1334.
- 368 H. Arii, M. Matsuo, F. Nakadate, K. Mochida and T. Kawashima, *Dalton Trans.*, 2012, **41**, 11195.

- 369 M. Stender, A. D. Phillips and P. P. Power, *Inorg. Chem.*, 2001, 40, 5314.
- 370 S. Hino, M. Brynda, A. D. Phillips and P. P. Power, *Angew. Chem., Int. Ed.*, 2004, **43**, 2655.
- 371 A. Schäfer, F. Winter, W. Saak, D. Haase, R. Pöttgen and T. Müller, *Chem. – Eur. J.*, 2011, **17**, 10979.
- 372 T. Probst, O. Steigelmann, J. Riede and H. Schmidbaur, Angew. Chem., Int. Ed., 1990, 29, 1397.
- 373 P. Jutzi, F. Kohl and C. Krüger, Angew. Chem., Int. Ed. Engl., 1979, 18, 59.
- 374 P. Jutzi, U. Holtmann, H. Bögge and A. Müller, J. Chem. Soc., Chem. Commun., 1988, 305.
- 375 J. N. Jones, J. A. Moore, A. H. Cowley and C. L. B. Macdonald, Dalton Trans., 2005, 3846.
- 376 J. G. Winter, P. Portius, G. Kociok-Köhn, R. Steck and A. C. Filippou, *Organometallics*, 1998, **17**, 4176.
- 377 J. Rouzaud, M. Joudat, A. Castel, F. Delpech, P. Rivière, H. Gornitzka, J. Manriquez and I. Chavez, *J. Organomet. Chem.*, 2002, 651, 44.
- 378 A. H. Cowley, C. L. B. Macdonald, J. S. Silverman, J. D. Gorden and A. Voigt, *Chem. Commun.*, 2001, 175.
- 379 A. C. Filippou, A. I. Philippopoulos and G. Schnakenburg, Organometallics, 2003, 22, 3339.
- 380 A. C. Filippou, A. I. Philippopoulos, P. Portius and G. Schnakenburg, Organometallics, 2004, 23, 4503.
- 381 Y. Cabon, H. Kleijn, M. A. Siegler, A. L. Spek, R. J. M. Klein Gebbink and B.-J. Deelman, *Dalton Trans.*, 2010, 39, 2423.
- 382 R. Dostálová, L. Dostál, A. Růžička and R. Jambor, Organometallics, 2011, 30, 2405.
- 383 M. Wagner, M. Henn, C. Dietz, M. Schürmann, M. H. Prosenc and K. Jurkschat, Organometallics, 2013, 32, 2406.
- 384 S. Krabbe, M. Wagner, C. Löw, C. Dietz, M. Schürmann, A. Hoffmann, S. Herres-Pawlis, M. Lutter and K. Jurkschat, *Organometallics*, 2014, 33, 4433.
- 385 H. Braunschweig, M. A. Celik, R. D. Dewhurst, M. Heid, F. Hupp and S. S. Sen, *Chem. Sci.*, 2015, 6, 425.
- 386 D. Stasko and C. A. Reed, J. Am. Chem. Soc., 2002, 124, 1148.
- 387 C. A. Reed, K.-C. Kim, E. S. Stoyanov, D. Stasko, F. S. Tham, L. J. Mueller and P. D. W. Boyd, *J. Am. Chem. Soc.*, 2003, **125**, 1796.
- 388 C. A. Reed, N. L. P. Fackler, K.-C. Kim, D. Stasko, D. R. Evans, P. D. W. Boyd and C. E. F. Rickard, *J. Am. Chem. Soc.*, 1999, 121, 6314.
- 389 I. Objartel, H. Ott and D. Stalke, Z. Anorg. Allg. Chem., 2008, 634, 2373.
- 390 N. Burford, P. J. Ragogna, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc., 2003, 125, 14404.
- 391 J. J. Weigand and N. Burford, *Comprehensive Inorganic Chemistry II*, Elsevier, 2013, pp. 119–149.
- 392 C. A. Dyker and N. Burford, Chem. Asian J., 2008, 3, 28.
- 393 A. P. M. Robertson, P. A. Gray and N. Burford, *Angew. Chem., Int. Ed.*, 2014, **53**, 6050.
- 394 I. Krossing, M. Driess and H. Nöth, *Molecular Clusters of* the Main Group Elements, Wiley-VCH, 2004, p. 223.
- 395 K.-O. Feldmann and J. J. Weigand, *Angew. Chem., Int. Ed.*, 2012, **51**, 6566.

- 396 H. J. Breunig and C. I. Rat, *Comprehensive Inorganic Chemistry II*, Elsevier, 2013, pp. 151–178.
- 397 M. H. Holthausen and J. J. Weigand, *Chem. Soc. Rev.*, 2014, 43, 6639.
- 398 M. Ruck and F. Locherer, *Coord. Chem. Rev.*, 2015, 297–298, 208.
- 399 M. Ruck and F. Locherer, Coord. Chem. Rev., 2015, 285, 1.
- 400 K. O. Christe, W. W. Wilson, J. A. Sheehy and J. A. Boatz, Angew. Chem., Int. Ed., 1999, 38, 2004.
- 401 A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy and K. O. Christe, *J. Am. Chem. Soc.*, 2001, **123**, 6308.
- 402 M. Lindsjö, A. Fischer and L. Kloo, *Angew. Chem., Int. Ed.*, 2004, **43**, 2540.
- 403 E. Ahmed, D. Köhler and M. Ruck, Z. Anorg. Allg. Chem., 2009, 635, 297.
- 404 A. Decken, G. B. Nikiforov and J. Passmore, *Polyhedron*, 2005, 24, 2994.
- 405 C. Schwarzmaier, M. Sierka and M. Scheer, *Angew. Chem., Int. Ed.*, 2013, **52**, 858.
- 406 R. Glaser and C. J. Horan, Can. J. Chem., 1996, 74, 1200.
- 407 E. Niecke, M. Nieger and F. Reichert, Angew. Chem., Int. Ed., 1988, 27, 1715.
- 408 M. Kuprat, A. Schulz and A. Villinger, *Angew. Chem., Int. Ed.*, 2013, **52**, 7126.
- 409 E. Ahmed, A. Isaeva, A. Fiedler, M. Haft and M. Ruck, *Chem. Eur. J.*, 2011, **17**, 6847.
- 410 A. Eich, S. Schlüter, G. Schnakenburg and J. Beck, *Z. Anorg. Allg. Chem.*, 2013, **639**, 375.
- 411 K.-O. Feldmann, T. Wiegand, J. Ren, H. Eckert, J. Breternitz, M. F. Groh, U. Müller, M. Ruck, B. Maryasin, C. Ochsenfeld, O. Schön, K. Karaghiosoff and J. J. Weigand, *Chem. – Eur. J.*, 2015, **21**, 9577.
- 412 K.-O. Feldmann, T. Wiegand, J. Ren, H. Eckert, J. Breternitz, M. F. Groh, U. Müller, M. Ruck, B. Maryasin, C. Ochsenfeld, O. Schön, K. Karaghiosoff and J. J. Weigand, *Chem. – Eur. J.*, 2015, 21, 9697.
- 413 J. Beck, S. Schlüter and N. Zotov, Z. Anorg. Allg. Chem., 2004, 630, 2512.
- 414 J. Beck, M. Dolg and S. Schlüter, Angew. Chem., Int. Ed., 2001, 40, 2287.
- 415 N. Burford, T. M. Parks, B. W. Royan, B. Borecka, T. S. Cameron, J. F. Richardson, E. J. Gabe and R. Hynes, *J. Am. Chem. Soc.*, 1992, **114**, 8147.
- 416 R. Kinjo, B. Donnadieu and G. Bertrand, *Angew. Chem., Int. Ed.*, 2010, **49**, 5930.
- 417 M. Y. Abraham, Y. Wang, Y. Xie, R. J. Gilliard, P. Wei, B. J. Vaccaro, M. K. Johnson, H. F. Schaefer, P. von Ragué Schleyer and G. H. Robinson, *J. Am. Chem. Soc.*, 2013, 135, 2486.
- 418 X. Pan, X. Chen, T. Li, Y. Li and X. Wang, *J. Am. Chem. Soc.*, 2013, **135**, 3414.
- 419 X. Pan, Y. Su, X. Chen, Y. Zhao, Y. Li, J. Zuo and X. Wang, J. Am. Chem. Soc., 2013, 135, 5561.
- 420 Y. Su, X. Zheng, X. Wang, X. Zhang, Y. Sui and X. Wang, J. Am. Chem. Soc., 2014, 136, 6251.
- 421 A. Schmidpeter, S. Lochschmidt and W. S. Sheldrick, Angew. Chem., Int. Ed., 1985, 24, 226.

- 422 R. J. Barnham, R. M. K. Deng, K. B. Dillon, A. E. Goeta, J. A. K. Howard and H. Puschmann, *Heteroat. Chem.*, 2001, 12, 501.
- 423 G. Reeske and A. H. Cowley, Chem. Commun., 2006, 1784.
- 424 J. M. Slattery and S. Hussein, Dalton Trans., 2012, 41, 1808.
- 425 A. P. M. Robertson, N. Burford, R. McDonald and M. J. Ferguson, *Angew. Chem., Int. Ed.*, 2014, **53**, 3480.
- 426 A. D. Hendsbee, N. A. Giffin, Y. Zhang, C. C. Pye and J. D. Masuda, *Angew. Chem., Int. Ed.*, 2012, **51**, 10836.
- 427 M. H. Holthausen, M. Mehta and D. W. Stephan, Angew. Chem., Int. Ed. Engl., 2014, 53, 6538.
- 428 R. Minkwitz and S. Schneider, *Angew. Chem., Int. Ed.*, 1999, **38**, 210.
- 429 B. Wahl and M. Ruck, Z. Anorg. Allg. Chem., 2008, 634, 2873.
- 430 M. Ruck, Z. Anorg. Allg. Chem., 1998, 624, 521.
- 431 B. Krebs, M. Mummert and C. Brendel, *J. Less-Common Met.*, 1986, **116**, 159.
- 432 M. Ruck and F. Steden, Z. Anorg. Allg. Chem., 2007, 633, 1556.
- 433 B. Krebs, M. Hucke and C. J. Brendel, *Angew. Chem., Int. Ed. Engl.*, 1982, 21, 1108.
- 434 J. Beck and T. Hilbert, Eur. J. Inorg. Chem., 2004, 2019.
- 435 A. Hershaft and J. D. Corbett, J. Chem. Phys., 1962, 36, 551.
- 436 R. M. Friedman and J. D. Corbett, Inorg. Chem., 1973, 12, 1134.
- 437 B. Wahl and M. Ruck, Z. Anorg. Allg. Chem., 2010, 636, 337.
- 438 G. Santiso-Quinones, A. Reisinger, J. Slattery and I. Krossing, *Chem. Commun.*, 2007, 5046.
- 439 L. C. Forfar, T. J. Clark, M. Green, S. M. Mansell, C. A. Russell, R. A. Sanguramath and J. M. Slattery, *Chem. Commun.*, 2012, 48, 1970.
- 440 I. de los Rios, J.-R. Hamon, P. Hamon, C. Lapinte, L. Toupet, A. Romerosa and M. Peruzzini, *Angew. Chem., Int. Ed.*, 2001, 40, 3910.
- 441 M. Caporali, M. Di Vaira, M. Peruzzini, S. Seniori Costantini, P. Stoppioni and F. Zanobini, *Eur. J. Inorg. Chem.*, 2010, 152.
- 442 P. Barbaro, M. Di Vaira, M. Peruzzini, S. Seniori Costantini and P. Stoppioni, *Chem. – Eur. J.*, 2007, **13**, 6682.
- 443 C. Schwarzmaier, A. Y. Timoshkin and M. Scheer, *Angew. Chem., Int. Ed.*, 2013, **52**, 7600.
- 444 A. Adolf, M. Gonsior and I. Krossing, J. Am. Chem. Soc., 2002, **124**, 7111.
- 445 M. Cygler, M. Przybylska and R. M. Elofson, *Can. J. Chem.*, 1982, **60**, 2852.
- 446 A. Kütt, F. Werner, I. Kaljurand, I. Leito and I. A. Koppel, *ChemPlusChem*, 2013, **78**, 932.
- 447 B. S. McGilligan, J. Arnold, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, *J. Chem. Soc., Dalton Trans.*, 1990, 2465.
- 448 W. Baumann, D. Michalik, F. Reiß, A. Schulz and A. Villinger, *Angew. Chem., Int. Ed.*, 2014, **53**, 3250.
- 449 C. Hering, M. Hertrich, A. Schulz and A. Villinger, *Inorg. Chem.*, 2014, **53**, 3880.
- 450 Y. K. Loh, C. Gurnani, R. Ganguly and D. Vidović, *Inorg. Chem.*, 2015, **54**, 3087.
- 451 N. Burford, T. S. Cameron, P. J. Ragogna, E. Ocando-Mavarez, M. Gee, R. McDonald and R. E. Wasylishen, *J. Am. Chem. Soc.*, 2001, **123**, 7947.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.

- 452 J. J. Weigand, S. D. Riegel, N. Burford and A. Decken, *J. Am. Chem. Soc.*, 2007, **129**, 7969.
- 453 M. Gonsior, I. Krossing, L. Müller, I. Raabe, M. Jansen and L. van Wüllen, *Chem. – Eur. J.*, 2002, **8**, 4475.
- 454 S. Pohl, Z. Anorg. Allg. Chem., 1983, 498, 20.
- 455 N. Burford, C. A. Dyker and A. Decken, *Angew. Chem., Int. Ed.*, 2005, **44**, 2364.
- 456 A. Schmidpeter, S. Lochschmidt, K. Karaghiosoff and W. S. Sheldrick, J. Chem. Soc., Chem. Commun., 1985, 1447.
- 457 I. Krossing, J. Chem. Soc., Chem. Commun., 2002, 500.
- 458 E. Conrad, N. Burford, R. McDonald and M. J. Ferguson, Inorg. Chem., 2008, 47, 2952.
- 459 C. A. Dyker, N. Burford, M. D. Lumsden and A. Decken, J. Am. Chem. Soc., 2006, **128**, 9632.
- 460 J. Bresien, K. Faust, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2015, 54, 6926.
- 461 E. Conrad, N. Burford, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc., 2009, 131, 17000.
- 462 I. Krossing and I. Raabe, Angew. Chem., Int. Ed., 2001, 40, 4406.
- 463 M. H. Holthausen, K.-O. Feldmann, S. Schulz, A. Hepp and J. J. Weigand, *Inorg. Chem.*, 2012, 51, 3374.
- 464 M. H. Holthausen, A. Hepp and J. J. Weigand, *Chem. Eur. J.*, 2013, **19**, 9895.
- 465 M. H. Holthausen and J. J. Weigand, Z. Anorg. Allg. Chem., 2012, 638, 1103.
- 466 M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford and J. J. Weigand, *Angew. Chem., Int. Ed.*, 2012, 51, 2964.
- 467 M. Donath, M. Bodensteiner and J. J. Weigand, *Chem. Eur. J.*, 2014, **20**, 17306.
- 468 N. Burford, J. C. Landry, M. J. Ferguson and R. McDonald, *Inorg. Chem.*, 2005, 44, 5897.
- 469 B. H. Christian, R. J. Gillespie and J. F. Sawyer, *Inorg. Chem.*, 1981, 20, 3410.
- 470 J. Beck, S. Schlüter and N. Zotov, Z. Anorg. Allg. Chem., 2005, 631, 2450.
- 471 J. Beck, M. Hengstmann and S. Schlüter, *Z. Kristallogr.*, 2005, **220**, 147.
- 472 M. Ruck, V. Dubenskyy and T. Söhnel, *Angew. Chem., Int. Ed.*, 2003, **42**, 2978.
- 473 D. Michalik, A. Schulz, A. Villinger and N. Weding, *Angew. Chem., Int. Ed.*, 2008, 47, 6465.
- 474 A. Schulz and A. Villinger, *Inorg. Chem.*, 2009, 48, 7359.
- 475 M. Lehmann, A. Schulz and A. Villinger, *Angew. Chem., Int. Ed.*, 2012, **51**, 8087.
- 476 A. Brückner, A. Hinz, J. B. Priebe, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2015, 54, 7426.
- 477 O. Back, M. A. Celik, G. Frenking, M. Melaimi, B. Donnadieu and G. Bertrand, *J. Am. Chem. Soc.*, 2010, **132**, 10262.
- 478 N. Burford, P. Losier, P. K. Bakshi and T. S. Cameron, J. Chem. Soc., Dalton Trans., 1993, 201.
- 479 N. Burford, P. Losier, C. Macdonald, V. Kyrimis, P. K. Bakshi and T. S. Cameron, *Inorg. Chem.*, 1994, 33, 1434.

- 480 C. Hering, A. Schulz and A. Villinger, *Angew. Chem., Int. Ed.*, 2012, **51**, 6241.
- 481 C. Hering, A. Schulz and A. Villinger, *Inorg. Chem.*, 2013, 52, 5214.
- 482 A. Kraft, J. Beck and I. Krossing, Chem. Eur. J., 2011, 17, 12975.
- 483 E. Conrad, N. Burford, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc., 2009, 131, 5066.
- 484 E. Conrad, N. Burford, R. McDonald and M. J. Ferguson, *Chem. Commun.*, 2010, **46**, 4598.
- 485 W. Baumann, A. Schulz and A. Villinger, *Angew. Chem., Int. Ed.*, 2008, **47**, 9530.
- 486 D. Gudat, A. Haghverdi, H. Hupfer and M. Nieger, *Chem. – Eur. J.*, 2000, **6**, 3414.
- 487 M. K. Denk, S. Gupta and A. J. Lough, *Eur. J. Inorg. Chem.*, 1999, 41.
- 488 C. J. Carmalt and V. Lomeli, Chem. Commun., 1997, 2095.
- 489 H. A. Spinney, I. Korobkov and D. S. Richeson, *Chem. Commun.*, 2007, 1647.
- 490 N. Burford, T. M. Parks, B. W. Royan, J. F. Richardson and P. S. White, *Can. J. Chem.*, 1992, **70**, 703.
- 491 N. Burford, C. L. Macdonald, T. M. Parks, G. Wu, B. Borecka, W. Kwiatkowski and T. S. Cameron, *Can. J. Chem.*, 1996, 74, 2209.
- 492 D. Gudat, T. Gans-Eichler and M. Nieger, *Chem. Commun.*, 2004, 2434.
- 493 K. O. Christe, M. D. Lind, N. Thorup, D. R. Russell, J. Fawcett and R. Bau, *Inorg. Chem.*, 1988, 27, 2450.
- 494 G. S. H. Chen and J. Passmore, *J. Chem. Soc., Dalton Trans.*, 1979, 1251.
- 495 C. Aubauer, M. Kaupp, T. M. Klapotke, H. Noth, H. Piotrowski,
 W. Schnick, J. Senker and M. Suter, *J. Chem. Soc., Dalton Trans.*, 2001, 1880.
- 496 J. Shamir, S. Luski, A. Bino, S. Cohen and D. Gibson, *Inorg. Chem.*, 1985, 24, 2301.
- 497 S. Pohl, Z. Anorg. Allg. Chem., 1983, 498, 15.
- 498 R. Minkwitz, J. Nowicki and H. Borrmann, *Z. Anorg. Allg. Chem.*, 1991, **596**, 93.
- 499 M. Gerken, P. Kolb, A. Wegner, H. P. A. Mercier, H. Borrmann, D. A. Dixon and G. J. Schrobilgen, *Inorg. Chem.*, 2000, **39**, 2813.
- 500 M. Gonsior and I. Krossing, Dalton Trans., 2005, 1203.
- 501 H. B. Miller, H. W. Baird, C. L. Bramlett and W. K. Templeton, J. Chem. Soc., Chem. Commun., 1972, 262.
- 502 W. J. Casteel, P. Kolb, N. LeBlond, H. P. A. Mercier and G. J. Schrobilgen, *Inorg. Chem.*, 1996, 35, 929.
- 503 S. Brownridge, I. Krossing, J. Passmore, H. Jenkins and H. K. Roobottom, *Coord. Chem. Rev.*, 2000, **197**, 397.
- 504 I. Krossing, Top. Curr. Chem., 2003, 230, 135.
- 505 W. S. Sheldrick, *Molecular Clusters of the Main Group Elements*, Wiley-VCH, 2004, p. 230.
- 506 A. V. Zakharov, I. D. Sadekov and V. I. Minkin, *Russ. Chem. Rev.*, 2006, 75, 207.
- 507 P. F. Kelly and R. King, *Comprehensive Inorganic Chemistry II*, Elsevier, 2013, pp. 179–196.
- 508 R. S. Laitinen and R. Oilunkaniemi, *Comprehensive* Inorganic Chemistry II, Elsevier, 2013, pp. 197–231.

- 509 K. V. Shuvaev, J. Passmore, *Recent Developments in Main Group Chemistry*, 2013, vol. 257, p. 1067.
- 510 N. Bartlett and D. H. Lohmann, *Proc. Chem. Soc.*, 1962, 115.
- 511 W. Hujo and S. Grimme, *J. Chem. Theory Comput.*, 2013, 9, 308.
- 512 G. Santiso-Quiñones, R. Brückner, C. Knapp, I. Dionne, J. Passmore and I. Krossing, *Angew. Chem., Int. Ed.*, 2009, 48, 1133.
- 513 D. Aris, J. Beck, A. Decken, I. Dionne, I. Krossing, J. Passmore, E. Rivard, F. Steden and X. Wang, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2004, **179**, 859.
- 514 A. Apblett, A. J. Banister, D. Biron, A. G. Kendrick, J. Passmore, M. Schriver and M. Stojanac, *Inorg. Chem.*, 1986, 25, 4451.
- 515 W. V. F. Brooks, T. S. Cameron, S. Parsons, J. Passmore and M. J. Schriver, *Inorg. Chem.*, 1994, 33, 6230.
- 516 E. G. Awere, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1993, 299.
- 517 A. Apblett, T. Chivers and J. F. Fait, *J. Chem. Soc., Chem. Commun.*, 1989, 1596.
- 518 A. Apblett, T. Chivers and J. F. Fait, *Inorg. Chem.*, 1990, **29**, 1643.
- 519 H.-G. Stammler and J. Weiß, *Z. Naturforsch.*, 1989, **44b**, 1483.
- 520 J. Passmore, G. Sutherland, T. Whidden and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 289.
- 521 W. A. Shantha Nandana, J. Passmore, P. S. White and C.-M. Wong, J. Chem. Soc., Chem. Commun., 1982, 1098.
- 522 P. D. Boyle, S. Parsons, J. Passmore and D. J. Wood, J. Chem. Soc., Chem. Commun., 1993, 199.
- 523 T. S. Cameron, A. Decken, F. Grein, C. Knapp, J. Passmore, J. M. Rautiainen, K. V. Shuvaev, R. C. Thompson and D. J. Wood, *Inorg. Chem.*, 2010, 49, 7861.
- 524 H. Fujihara, H. Mima and N. Furukawa, J. Am. Chem. Soc., 1995, **117**, 10153.
- 525 J. L. Dutton, H. M. Tuononen and P. J. Ragogna, Angew. Chem., Int. Ed., 2009, 48, 4409.
- 526 H. Poleschner and K. Seppelt, *Angew. Chem., Int. Ed.*, 2008, 47, 6461.
- 527 T. Chivers and J. Konu, Angew. Chem., Int. Ed., 2009, 48, 3025.
- 528 C. D. Martin, M. C. Jennings, M. J. Ferguson and P. J. Ragogna, *Angew. Chem., Int. Ed.*, 2009, **48**, 2210.
- 529 J. L. Dutton, H. M. Tuononen, M. C. Jennings and P. J. Ragogna, *J. Am. Chem. Soc.*, 2006, **128**, 12624.
- 530 H. Gerding and H. Houtgraaf, *Recl. Trav. Chim. Pays-Bas*, 1954, 73, 759.
- 531 B. H. Christian, M. J. Collins, R. J. Gillespie and J. F. Sawyer, *Inorg. Chem.*, 1986, **25**, 777.
- 532 M. Minoura, T. Mukuda, T. Sagami and K.-y. Akiba, *J. Am. Chem. Soc.*, 1999, **121**, 10852.
- 533 D. Naumann, W. Tyrra, R. Herrmann, I. Pantenburg and M. S. Wickleder, Z. Anorg. Allg. Chem., 2002, 628, 833.
- 534 J. P. Johnson, G. K. MacLean, J. Passmore and P. S. White, *Can. J. Chem.*, 1989, **67**, 1687.
- 535 M. Minoura, T. Mukuda, T. Sagami and K.-Y. Akiba, *Heteroat. Chem.*, 2001, **12**, 380.

- 536 T. Soltner, N. R. Goetz and A. Kornath, *Eur. J. Inorg. Chem.*, 2011, 3076.
- 537 R. Minkwitz and S. Schneider, *Angew. Chem., Int. Ed.*, 1999, 38, 714.
- 538 R. Minkwitz, R. Seelbinder and R. Schöbel, *Angew. Chem., Int. Ed.*, 2002, **41**, 111.
- 539 J. A. Ibers, J. Chem. Phys., 1966, 44, 1748.
- 540 J. Passmore, G. Sutherland and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 330.
- 541 J. Passmore, G. Sutherland and P. S. White, *Inorg. Chem.*, 1982, **21**, 2717.
- 542 R. Faggiani, R. J. Gillespie, J. F. Sawyer and J. E. Vekris, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1989, 45, 1847.
- 543 T. S. Cameron, I. Dionne, H. D. B. Jenkins, S. Parsons, J. Passmore and H. K. Roobottom, *Inorg. Chem.*, 2000, 39, 2042.
- 544 C. G. Davies, R. J. Gillespie, J. J. Park and J. Passmore, *Inorg. Chem.*, 1971, **10**, 2781.
- 545 R. C. Burns, R. J. Gillespie and J. F. Sawyer, *Inorg. Chem.*, 1980, **19**, 1423.
- 546 G. Cardinal, R. J. Gillespie, J. F. Sawyer and J. E. Vekris, *J. Chem. Soc., Dalton Trans.*, 1982, 765.
- 547 R. Minkwitz, H. Borrmann and J. Nowicki, *Z. Naturforsch.*, 1991, **46b**, 629.
- 548 J. Beck, Z. Anorg. Allg. Chem., 1995, 621, 131.
- 549 J. Beck, M. Kellner and M. Kreuzinger, Z. Anorg. Allg. Chem., 2002, 628, 2656.
- 550 J. D. Corbett, R. K. McMullan and D. J. Prince, *Inorg. Chem.*, 1971, **10**, 1749; B. Buchin, C. Gemel, T. Cadenbach, R. Schmid and R. A. Fischer, *Angew. Chem.*, 2006, **118**, 1091.
- 551 M. J. Collins, R. J. Gillespie and J. F. Sawyer, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1988, 44, 405.
- 552 R. C. Burns, W.-L. Chan, R. J. Gillespie, W.-C. Luk, J. F. Sawyer and D. R. Slim, *Inorg. Chem.*, 1980, **19**, 1432.
- 553 M. J. Collins, R. J. Gillespie, J. F. Sawyer and G. J. Schrobilgen, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1986, 42, 13.
- 554 J. Beck and S. J. Eck, Z. Anorg. Allg. Chem., 2010, 636, 1910.
- 555 J. Beck and J. Wetterau, Inorg. Chem., 1995, 34, 6202.
- 556 J. Beck and A. Fischer, Z. Anorg. Allg. Chem., 1997, 623, 780.
- 557 T. W. Couch, D. A. Lokken and J. D. Corbett, *Inorg. Chem.*, 1972, **11**, 357.
- 558 J. Beck, Z. Naturforsch., 1990, 45b, 413.
- 559 J. Beck, Z. Naturforsch., 1994, 49b, 1159.
- 560 J. Beck, Chem. Ber., 1991, 124, 677.
- 561 J. Beck and G. Bock, Z. Naturforsch., 1996, 51b, 119.
- 562 J. Beck, M. Kasper and A. Stankowski, *Chem. Ber.*, 1997, 130, 1189.
- 563 M. J. Collins, R. J. Gillespie, J. W. Kolis and J. F. Sawyer, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1987, 43, 2033.
- 564 J. Beck, Z. Naturforsch., 1990, 45b, 1610.
- 565 J. Beck, A. Fischer and A. Stankowski, *Z. Anorg. Allg. Chem.*, 2002, **628**, 2542.
- 566 J. Beck, Chem. Ber., 1995, 128, 23.
- 567 J. Beck and G. Bock, Z. Anorg. Allg. Chem., 1996, 622, 823.

- 568 R. J. Gillespie, W. Luk and D. R. Slim, *J. Chem. Soc., Chem. Commun.*, 1976, 791; R. C. Burns, R. J. Gillespie, W.-C. Luk and D. R. Slim, *Inorg. Chem.*, 1979, **18**, 3086.
- 569 G. W. Drake, G. L. Schimek and J. W. Kolis, *Inorg. Chem.*, 1996, 35, 1740.
- 570 J. Beck, Angew. Chem., Int. Ed., 1991, 30, 1128.
- 571 J. Beck, Z. Anorg. Allg. Chem., 1993, 619, 237.
- 572 J. Beck, Angew. Chem., Int. Ed., 1990, 29, 293.
- 573 J. Beck and K. Müller-Buschbaum, Z. Anorg. Allg. Chem., 1997, 623, 409.
- 574 J. Beck and A. Stankowski, Z. Naturforsch., 2001, 56b, 453.
- 575 J. Beck and A. Fischer, Z. Anorg. Allg. Chem., 2002, 628, 369.
- 576 D. Freudenmann and C. Feldmann, Z. Anorg. Allg. Chem., 2011, 637, 1481.
- 577 J. Beck and G. Bock, Angew. Chem., Int. Ed., 1995, 34, 2559.
- 578 G. Santiso-Quiñones, A. Higelin, J. Schaefer, R. Brückner, C. Knapp and I. Krossing, *Chem. – Eur. J.*, 2009, **15**, 6663.
- 579 T. S. Cameron, A. Decken, I. Dionne, M. Fang, I. Krossing and J. Passmore, *Chem. – Eur. J.*, 2002, **8**, 3386.
- 580 D. Aris, J. Beck, A. Decken, I. Dionne, J. Schmedt auf der Günne, W. Hoffbauer, T. Köchner, I. Krossing, J. Passmore, E. Rivard, F. Steden and X. Wang, *Dalton Trans.*, 2011, 40, 5865.
- 581 T. Köchner, N. Trapp, T. A. Engesser, A. J. Lehner, C. Röhr, S. Riedel, C. Knapp, H. Scherer and I. Krossing, *Angew. Chem., Int. Ed.*, 2011, 50, 11253.
- 582 U. Thewalt, K. Berhalter and P. Müller, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1982, **38**, 1280.
- 583 R. J. Gillespie, D. R. Slim and J. D. Tyrer, *J. Chem. Soc., Chem. Commun.*, 1977, 253.
- 584 R. J. Gillespie, J. F. Sawyer, D. R. Slim and J. D. Tyrer, *Inorg. Chem.*, 1982, 21, 1296.
- 585 P. Bakshi, P. D. Boyle, T. S. Cameron, J. Passmore, G. Schatte and G. W. Sutherland, *Inorg. Chem.*, 1994, **33**, 3849.
- 586 S. Parsons, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1993, 1499.
- 587 R. Faggiani, R. J. Gillespie and J. E. Vekris, J. Chem. Soc., Chem. Commun., 1988, 902.
- 588 R. J. Gillespie, W. Luk, E. Maharajh and D. R. Slim, *Inorg. Chem.*, 1977, **16**, 892.
- 589 R. Faggiani, R. J. Gillespie and J. W. Kolis, J. Chem. Soc., Chem. Commun., 1987, 592.
- 590 W. A. Shantha Nandana, J. Passmore, P. S. White and C. M. Wong, *Inorg. Chem.*, 1989, 28, 3320; J. Passmore, P. S. White and C.-M. Wong, *J. Chem. Soc., Chem. Commun.*, 1985, 1178.
- 591 J. Beck, J. Richter, M. A. Pell and J. A. Ibers, *Z. Anorg. Allg. Chem.*, 1996, **622**, 473.
- 592 J. Beck and T. Schlörb, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1997, **124**, 305.
- 593 M. J. Collins, R. J. Gillespie and J. F. Sawyer, *Inorg. Chem.*, 1987, **26**, 1476.
- 594 P. Boldrini, I. D. Brown, R. J. Gillespie, P. R. Ireland, W. Luk, D. R. Slim and J. E. Vekris, *Inorg. Chem.*, 1976, **15**, 765.
- 595 S. Herler, P. Mayer, H. Nöth, A. Schulz, M. Suter and M. Vogt, Angew. Chem., Int. Ed., 2001, 40, 3173.

- 596 M. J. Collins, R. J. Gillespie, J. F. Sawyer and G. J. Schrobilgen, *Inorg. Chem.*, 1986, **25**, 2053.
- 597 E. G. Awere, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans., 1992, 1267; E. G. Awere, J. Passmore, P. S. White and T. Klapotke, J. Chem. Soc., Chem. Commun., 1989, 1415.
- 598 P. Boldrini, I. D. Brown, M. J. Collins, R. J. Gillespie, E. Maharajh, D. R. Slim and J. F. Sawyer, *Inorg. Chem.*, 1985, 24, 4302.
- 599 R. J. Gillespie, P. R. Ireland and J. E. Vekris, *Can. J. Chem.*, 1975, **53**, 3147.
- 600 R. J. Gillespie, J. P. Kent and J. F. Sawyer, *Inorg. Chem.*, 1981, **20**, 3784.
- 601 R. J. Gillespie, J. P. Kent and J. F. Sawyer, *Inorg. Chem.*, 1981, 20, 4053.
- 602 B. Mueller, H. Poleschner and K. Seppelt, *Dalton Trans.*, 2008, 4424.
- 603 A. Wakamiya, T. Nishinaga and K. Komatsu, *J. Am. Chem. Soc.*, 2002, **124**, 15038.
- 604 B. Mueller, T. T. Takaluoma, R. S. Laitinen and K. Seppelt, *Eur. J. Inorg. Chem.*, 2011, 4970.
- 605 S. Zhang, X. Wang, Y. Sui and X. Wang, *J. Am. Chem. Soc.*, 2014, **136**, 14666.
- 606 O. Mallow, M. A. Khanfar, M. Malischewski, P. Finke, M. Hesse, E. Lork, T. Augenstein, F. Breher, J. R. Harmer, N. V. Vasilieva, A. Zibarev, A. S. Bogomyakov, K. Seppelt and J. Beckmann, *Chem. Sci.*, 2015, 6, 497.
- 607 R. Laitinen, R. Steudel and R. Weiss, J. Chem. Soc., Dalton Trans., 1986, 1095.
- 608 R. Destro, V. Lucchini, G. Modena and L. Pasquato, *J. Org. Chem.*, 2000, **65**, 3367.
- 609 H. Fujihara, H. Mima, T. Erata and N. Furukawa, J. Am. Chem. Soc., 1992, **114**, 3117.
- 610 D. D. Gibler, C. J. Adams, M. Fischer, A. Zalkin and N. Bartlett, *Inorg. Chem.*, 1972, **11**, 2325.
- 611 T. E. Mallouk, G. L. Rosenthal, G. Mueller, R. Brusasco and N. Bartlett, *Inorg. Chem.*, 1984, 23, 3167.
- 612 A. J. Edwards, J. Chem. Soc., Dalton Trans., 1978, 1723.
- 613 A. Finch, P. N. Gates, T. H. Page, K. B. Dillon and T. C. Waddington, *J. Chem. Soc., Dalton Trans.*, 1980, 2401.
- 614 W. Sawodny, K. Rediess and U. Thewalt, Z. Anorg. Allg. Chem., 1983, **499**, 81.
- 615 S. I. Trojanow, L. Kolditz and A. Radde, *Z. Chem.*, 1983, 23, 136.
- 616 J. Beck and M. Hengstmann, Z. Naturforsch., 1996, 51b, 1415.
- 617 J. P. Johnson, M. Murchie, J. Passmore, M. Tajik, P. S. White and C.-M. Wong, *Can. J. Chem.*, 1988, **66**, 2671.
- 618 J. P. Johnson, M. Murchie, J. Passmore, M. Tajik, P. S. White and C.-M. Wong, *Can. J. Chem.*, 1987, 65, 2744.
- 619 W. V. F. Brooks, G. K. MacLean, J. Passmore, P. S. White and C.-M. Wong, J. Chem. Soc., Dalton Trans., 1983, 1961.
- 620 A. J. Edwards and G. R. Jones, *J. Chem. Soc. A*, 1970, 1491;
 A. J. Edwards and G. R. Jones, *J. Chem. Soc. A*, 1970, 1891;
 A. J. Edwards and G. R. Jones, *Chem. Commun.*, 1968, 346.
- 621 B. A. Stork-Blaisse and C. Romers, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1971, 27, 386.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.

- 622 A. Baumann and J. Beck, Z. Anorg. Allg. Chem., 1998, 624, 1725.
- 623 P. G. Jones, R. Schelbach and E. Schwarzmann, *Acta Crystallogr.,* Sect. C: Cryst. Struct. Commun., 1987, 43, 607.
- 624 J. Passmore, E. K. Richardson, T. K. Whidden and P. S. White, *Can. J. Chem.*, 1980, **58**, 851.
- 625 J. Beck and A. Fischer, Z. Anorg. Allg. Chem., 1995, 621, 1042.
- 626 A. J. Edwards and P. Taylor, *J. Chem. Soc., Dalton Trans.*, 1973, 2150.
- 627 B. Krebs, B. Buss and D. Altena, *Z. Anorg. Allg. Chem.*, 1971, **386**, 257.
- 628 P. G. Jones, D. Jentsch and E. Schwarzmann, *Z. Naturforsch.*, 1986, **41b**, 1483.
- 629 J. Beck, Z. Naturforsch., 1991, 46b, 183.
- 630 J. Beck, P. Biedenkopf and K. Müller-Buschbaum, *Z. Naturforsch.*, 1996, **51b**, 727.
- 631 J. Beck, Z. Naturforsch., 1996, 51b, 1127.
- 632 J. Beck and T. Schlörb, Z. Kristallogr., 1999, 214, 780.
- 633 C. Freire-Erdbrügger, D. Jentsch, P. G. Jones and E. Schwarzmann, *Z. Naturforsch.*, 1987, **42b**, 1553.
- 634 J. Passmore, G. Sutherland and P. S. White, *Can. J. Chem.*, 1981, **59**, 2876.
- 635 E. Schulz Lang, U. Abram, J. Strähle and E. M. Vazquez Lopez, Z. Anorg. Allg. Chem., 1998, 624, 999.
- 636 J. Beck and F. Steden, Z. Naturforsch., 2003, 58b, 711.
- 637 T. A. Engesser, P. Hrobárik, N. Trapp, P. Eiden, H. Scherer, M. Kaupp and I. Krossing, *ChemPlusChem*, 2012, 77, 643.
- 638 A. B. Bergholdt, K. Kobayashi, E. Horn, O. Takahashi, S. Sato, N. Furukawa, M. Yokoyama and K. Yamaguchi, *J. Am. Chem. Soc.*, 1998, **120**, 1230.
- 639 M. Hopfinger, K. Lux and A. Kornath, *ChemPlusChem*, 2012, 77, 476.
- 640 H.-J. Frohn, M. E. Hirschberg, A. Wenda and V. V. Bardin, *J. Fluorine Chem.*, 2008, **129**, 459.
- 641 R. P. Tuckett, A. R. Dale, D. M. Jaffey, P. S. Jarrett and T. Kelly, *Mol. Phys.*, 1983, 49, 475; T. L. Porter, *J. Chem. Phys.*, 1968, 48, 2071.
- 642 T. Schlöder and S. Riedel, RSC Adv., 2012, 2, 876.
- 643 R. P. Singh and J. M. Shreeve, Acc. Chem. Res., 2004, 37, 31.
- 644 S. Seidel and K. Seppelt, Angew. Chem., Int. Ed., 2000, 39, 3923.
- 645 K. O. Christe, R. Bau and D. Zhao, Z. Anorg. Allg. Chem., 1991, **593**, 46.
- 646 T. S. Cameron, J. Passmore and X. Wang, *Angew. Chem.*, *Int. Ed.*, 2004, **43**, 1995.
- 647 A. Y. Rogachev and R. Hoffmann, J. Am. Chem. Soc., 2013, 135, 3262; F. A. Cotton, E. V. Dikarev and M. A. Petrukhina, Angew. Chem., Int. Ed., 2000, 39, 2362.
- 648 P. Malinowski, D. Himmel and I. Krossing, 2015, to be submitted.
- 649 M.-J. Crawford, M. Göbel, K. Karaghiosoff, T. M. Klapötke and J. M. Welch, *Inorg. Chem.*, 2009, **48**, 9983.
- 650 F. J. Fañanás, M. Alvarez-Pérez and F. Rodríguez, *Chem. Eur. J.*, 2005, **11**, 5938.

- R. J. Gillespie and M. J. Morton, *Inorg. Chem.*, 1970, 9, 811;
 M. Schmeißer, W. Ludovici, D. Naumann, P. Sartori and E. Scharf, *Chem. Ber.*, 1968, 101, 4214.
- 652 N. Thorup and J. Shamir, *Inorg. Nucl. Chem. Lett.*, 1981, 17, 193.
- 653 S. Pohl and W. Saak, Z. Naturforsch., 1981, 36b, 83.
- 654 T. Birchall and R. D. Myers, Inorg. Chem., 1982, 21, 213.
- 655 E. S. Stoyanov, I. V. Stoyanova, F. S. Tham and C. A. Reed, J. Am. Chem. Soc., 2010, 132, 4062.
- 656 R. S. Brown, R. W. Nagorski, A. J. Bennet, R. E. D. McClung,
 G. H. M. Aarts, M. Klobukowski, R. McDonald and
 B. D. Santarsiero, *J. Am. Chem. Soc.*, 1994, **116**, 2448.
- 657 H.-J. Frohn, A. Wenda and U. Flörke, *Z. Anorg. Allg. Chem.*, 2008, **634**, 764.
- 658 K. O. Christe, E. C. Curtis and C. J. Schack, *Inorg. Chem.*, 1972, **11**, 2212; C. J. Schack, C. B. Lindahl, D. Pilipovich and K. O. Christe, *Inorg. Chem.*, 1972, **11**, 2201.
- 659 M. Adelhelm and E. Jacob, Angew. Chem., Int. Ed., 1977, 16, 461.
- 660 J. F. Lehmann, G. J. Schrobilgen, K. O. Christe, A. Kornath and R. J. Suontamo, *Inorg. Chem.*, 2004, **43**, 6905.
- 661 K. O. Christe, X. Zhang, J. A. Sheehy and R. Bau, J. Am. Chem. Soc., 2001, 123, 6338.
- 662 A. Vij, F. S. Tham, V. Vij, W. W. Wilson and K. O. Christe, *Inorg. Chem.*, 2002, **41**, 6397.
- A. J. Edwards, G. R. Jones and R. J. C. Sills, *Chem. Commun.*, 1968, 1527; A. J. Edwards and G. R. Jones, *J. Chem. Soc. A*, 1971, 2318.
- 664 A. Apblett, F. Grein, J. P. Johnson, J. Passmore and P. S. White, *Inorg. Chem.*, 1986, 25, 422.
- 665 R. J. Gillespie, R. Kapoor, R. Faggiani, C. J. L. Lock, M. Murchie and J. Passmore, J. Chem. Soc., Chem. Commun., 1983, 8; R. Faggiani, R. J. Gillespie, R. Kapoor, C. J. L. Lock and J. E. Vekris, Inorg. Chem., 1988, 27, 4350.
- 666 H. Lynton and J. Passmore, Can. J. Chem., 1971, 49, 2539.
- 667 A. J. Edwards and R. J. C. Sills, J. Chem. Soc. A, 1970, 2697.
- 668 R. Bougon, W. V. Cicha, M. Lance, L. Meublat, M. Nierlich and J. Vigner, *Inorg. Chem.*, 1991, **30**, 102.
- 669 A. J. Edwards and G. R. Jones, *Chem. Commun.*, 1967, 1304; A. J. Edwards and G. R. Jones, *J. Chem. Soc. A*, 1969, 1467.
- 670 H.-J. Frohn, M. Giesen and D. Welting, *Eur. J. Solid State Inorg. Chem.*, 1996, **33**, 841.
- 671 T. Birchall and R. D. Myers, Inorg. Chem., 1981, 20, 2207.
- 672 T. Birchall and R. D. Myers, Inorg. Chem., 1983, 22, 1751.
- 673 F. Bailly, P. Barthen, H.-J. Frohn and M. Köckerling, Z. Anorg. Allg. Chem., 2000, 626, 2419.
- 674 J. F. Lehmann, S. Riedel and G. J. Schrobilgen, *Inorg. Chem.*, 2008, 47, 8343.
- 675 A. J. Edwards and R. J. C. Sills, *J. Chem. Soc., Dalton Trans.*, 1974, 1726.
- 676 T. E. Mallouk, B. Desbat and N. Bartlett, *Inorg. Chem.*, 1984, 23, 3160.
- 677 K. M. Tobias and M. Jansen, Angew. Chem., Int. Ed., 1986, 25, 993.
- 678 M. D. Lind and K. O. Christe, Inorg. Chem., 1972, 11, 608.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 27 novembre 2015. Downloaded on 21/07/2025 01:18:39.

- 679 H. W. Baird and H. F. Giles, Acta Crystallogr., 1969, A25, 115.
- 680 A. J. Edwards and P. Taylor, *J. Chem. Soc., Dalton Trans.*, 1975, 2174.
- 681 L. Graham, O. Graudejus, N. K. Jha and N. Bartlett, *Coord. Chem. Rev.*, 2000, **197**, 321.
- 682 J. F. Lehmann and G. J. Schrobilgen, *J. Fluorine Chem.*, 2003, **119**, 109.
- 683 R. J. Gillespie and G. J. Schrobilgen, *Inorg. Chem.*, 1974, 13, 765.
- 684 K. O. Christe, W. W. Wilson and E. C. Curtis, *Inorg. Chem.*, 1983, 22, 3056.
- 685 R. J. Gillespie and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1974, 90; R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 1974, 13, 1230.
- 686 J. H. Holloway and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1975, 623.
- 687 V. M. McRae, R. D. Peacock and D. R. Russell, *J. Chem. Soc. D*, 1969, 62.
- 688 N. Bartlett, F. Einstein, D. F. Stewart and J. Trotter, *J. Chem. Soc. A*, 1967, 1190.
- 689 N. Bartlett, F. Einstein, D. F. Stewart and J. Trotter, *Chem. Commun.*, 1966, 550.
- 690 M. J. Hughes, H. P. A. Mercier and G. J. Schrobilgen, *Inorg. Chem.*, 2010, **49**, 3501.
- 691 H. S. A. Elliott, J. F. Lehmann, H. P. A. Mercier, H. D. B. Jenkins and G. J. Schrobilgen, *Inorg. Chem.*, 2010, **49**, 8504.
- 692 Z. Mazej and E. A. Goreshnik, J. Fluorine Chem., 2015, 175, 47.
- 693 H. J. Frohn, S. Jakobs and G. Henkel, Angew. Chem., Int. Ed., 1989, 28, 1506.
- 694 B. E. Pointner, R. J. Suontamo and G. J. Schrobilgen, *Inorg. Chem.*, 2006, **45**, 1517.
- 695 T. Drews, S. Seidel and K. Seppelt, *Angew. Chem., Int. Ed.*, 2002, **41**, 454.
- 696 S. Seidel, K. Seppelt, C. van Wüllen and X. Y. Sun, *Angew. Chem., Int. Ed.*, 2007, **46**, 6717.
- 697 S. Seidel and K. Seppelt, Science, 2000, 290, 117.
- 698 I.-C. Hwang, S. Seidel and K. Seppelt, *Angew. Chem., Int. Ed.*, 2003, **42**, 4392.
- 699 J. F. Lehmann, D. A. Dixon and G. J. Schrobilgen, *Inorg. Chem.*, 2001, **40**, 3002.
- 700 N. Bartlett, M. Gennis, D. D. Gibler, B. K. Morrell and A. Zalkin, *Inorg. Chem.*, 1973, **12**, 1717.
- 701 A. Zalkin, D. L. Ward, R. N. Biagioni, D. H. Templeton and N. Bartlett, *Inorg. Chem.*, 1978, 17, 1318.
- 702 J. F. Sawyer, G. J. Schrobilgen and S. J. Sutherland, *Inorg. Chem.*, 1982, 21, 4064.

- 703 F. O. Sladky, P. A. Bulliner, N. Bartlett, B. G. DeBoer and A. Zalkin, *Chem. Commun.*, 1968, 1048.
- 704 N. Bartlett, B. G. DeBoer, F. J. Hollander, F. O. Sladky, D. H. Templeton and A. Zalkin, *Inorg. Chem.*, 1974, 13, 780.
- 705 B. A. Fir, M. Gerken, B. E. Pointner, H. P. A. Mercier, D. A. Dixon and G. J. Schrobilgen, *J. Fluorine Chem.*, 2000, 105, 159.
- 706 R. Faggiani, D. K. Kennepohl, C. J. L. Lock and G. J. Schrobilgen, *Inorg. Chem.*, 1986, **25**, 563.
- 707 K. Koppe, H.-J. Frohn, H. P. A. Mercier and G. J. Schrobilgen, *Inorg. Chem.*, 2008, **47**, 3205.
- 708 H.-J. Frohn, T. Schroer and G. Henkel, *Angew. Chem., Int. Ed.*, 1999, **38**, 2554.
- 709 B. A. Fir, H. P. A. Mercier, J. C. P. Sanders, D. A. Dixon and G. J. Schrobilgen, *J. Fluorine Chem.*, 2001, **110**, 89.
- 710 H. P. A. Mercier, M. D. Moran, J. C. P. Sanders, G. J. Schrobilgen and R. J. Suontamo, *Inorg. Chem.*, 2005, 44, 49.
- 711 S. Seidel and K. Seppelt, Angew. Chem., Int. Ed., 2001, 40, 4225.
- 712 B. Fir, J. M. Whalen, H. P. A. Mercier, D. A. Dixon and G. J. Schrobilgen, *Inorg. Chem.*, 2006, 45, 1978.
- 713 G. L. Smith, H. P. A. Mercier and G. J. Schrobilgen, *Inorg. Chem.*, 2007, 46, 1369.
- 714 G. L. Smith, H. P. A. Mercier and G. J. Schrobilgen, J. Am. Chem. Soc., 2009, 131, 7272.
- 715 G. L. Smith and G. J. Schrobilgen, *Inorg. Chem.*, 2009, 48, 7714.
- 716 M. Gerken, M. D. Moran, H. P. A. Mercier, B. E. Pointner,
 G. J. Schrobilgen, B. Hoge, K. O. Christe and J. A. Boatz, *J. Am. Chem. Soc.*, 2009, **131**, 13474.
- 717 D. E. McKee, A. Zalkin and N. Bartlett, *Inorg. Chem.*, 1973, 12, 1713.
- 718 R. J. Gillespie, D. Martin, G. J. Schrobilgen and D. R. Slim, J. Chem. Soc., Dalton Trans., 1977, 2234.
- 719 D. S. Brock, H. P. A. Mercier and G. J. Schrobilgen, *J. Am. Chem. Soc.*, 2013, **135**, 5089.
- 720 K. Leary, D. H. Templeton, A. Zalkin and N. Bartlett, *Inorg. Chem.*, 1973, **12**, 1726.
- 721 Z. Mazej and E. Goreshnik, *Eur. J. Inorg. Chem.*, 2009, 4503.
- 722 K. Lutar, A. Jesih, I. Leban, B. Zemva and N. Bartlett, *Inorg. Chem.*, 1989, 28, 3467.
- 723 B. Zemva, A. Jesih, D. H. Templeton, A. Zalkin,
 A. K. Cheetham and N. Bartlett, *J. Am. Chem. Soc.*, 1987, 109, 7420.
- 724 K. Leary, A. Zalkin and N. Bartlett, *Inorg. Chem.*, 1974, 13, 775.