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The problem of voltage controlled accumulation of ions in a narrow nanopore, which can

accommodate just one row of ions of an ionic liquid and is filled with ions when the

electrode is unpolarised, is mapped on an exactly solvable one-dimensional two state

Ising model. Analytical solution of this, presumably simplest, statistical mechanical

model reveals the dependence of the electrical capacitance on voltage, pore radius,

and temperature. The voltage dependence of capacitance has the character of a

smeared resonance, whose position and height is affected by a tiny change of the pore

radius. Consequently, even the slightest dispersion of pore radii in the whole electrode,

unavoidable in any real system, softens the voltage dependence.
Introduction

Electrochemistry has matured as a physical discipline from the studies of elec-
trical double layer and electrode kinetics at well dened electrodes. In the rst
half of the 20th century these were liquidmetals, such as Hg, with a pure, smooth,
self healing atomically at surface.1 Such metals were not of great interest for
practical applications, and the next big step forward, in the 1970s, was moving to
another class of well characterised electrodes – single crystal electrodes,
predominantly of noble metals, such as Pt, Ag, and Au.2 This is how ‘electro-
chemical surface science’was born3,4 and a number of elementary processes at the
electrode–electrolyte interface were understood.

On the other hand, because all the events in any industrially important elec-
trochemical processes normally take place at the electrode–electrolyte interface,
one generally tends to maximise the interfacial area. In electrochemical engi-
neering, since the middle of the previous century, the use of ‘volume lling’
surfaces, achievable for highly porous electrodes, was mainstream for batteries,
fuel cells, or supercapacitors.5–8 Later, the discovery of various forms of carbon
has opened new horizons for engineering nanoporous electrodes of well
controlled volume-lling structures, with the surface area many orders of
magnitude larger than the projection area.9,10 For instance, using such electrodes
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for supercapacitors, where the electrical energy is stored in a form of a charge
accumulated in electrical double layers, allows to scale up energy storage pro-
portionally to the hugely enhanced interfacial area.11,12

A standard way to increase the electrode–electrolyte interface is to decrease the
characteristic size of the pores, still accessible to the electrolyte, simultaneously
decreasing the thickness of pore walls – altogether increasing the porosity of the
electrodes. It was recently found, moreover, that the capacitance per true unit
surface area increases with pore size, down to the size below which ions can no
longer penetrate pores. The effect has been observed both for solvated ions in
organic solvents13 and solvent-free ionic liquids.14 Although the existence of this
effect has been recently questioned15 on the grounds of possible inaccuracies of
the determination of the true internal surface area,16 the common opinion is that,
although there may be some variance in the strength of this effect, qualitatively it
will remain valid, i.e. the experiments of ref. 13 and 14 demonstrate a real
phenomenon, but not an artifact [cf. also ref. 17 and 18].

Explanation of this effect was suggested in ref. 19 and 20 on the basis of the
following idea. The Coulomb interaction inside a nanoscale pore in an electro-
nically conducting material is exponentially screened, with the decay length
proportional to the pore width or radius. The exact laws are different for different
pore geometries, e.g. cylindrical or slit-like, but the qualitative consequences of
such enhanced screening are the same. Pair interaction energies for large ionic
liquid ions (or solvated inorganic ions) in a pore of a diameter that is only slightly
larger than the diameter of an ion (plus its solvation shell, if applicable) will be just
about a couple of kBT for the nearest neighbors. Interaction of the next nearest
neighbors will be less important, and negligible for narrow nanopores. Such
suppression of Coulomb interactions allows unbinding of cation–anion pairs
packing inside the pore of counterions of predominantly one sign, when polarising
the electrode. The ndings of ref. 19 based on a mean-eld theory and obtained for
slit pores have been veried by computer simulations20 performed in the same
geometry of the pores. In the simulations, some features of the capacitance–voltage
dependence appeared to be smoothened, but otherwise these simulations approved
the qualitative consequences of the enhanced screening in metallic nano-conne-
ment. Some of those ndings (effect of pore radius) have been recently conrmed
by more involved atomistic molecular dynamic simulations.21

The state of ions in the pore in which their Coulomb interactions are replaced
by Yukawa-like interactions22,23 with the decay range proportional to but a few
times smaller than the pore width was called a ‘superionic state’.19,20 The term
depicted the ability of ions of the same sign to stay close to each other due to the
interaction with polarisable metallic pore walls. Consequently, such a state allows
packing into a pore more ions of the same sign for a given voltage, enhancing
thereby the capacitance of the pore per unit surface area. With the increase of the
pore width, the Coulomb interactions become less screened and the capacitance
goes down, as in the experiments of ref. 14.

If one further increases the pore size, a second layer of counterions will be able
to sneak into the pore, and this will increase the capacitance. However, further
increasing the width of a slit or radius of a cylindrical pore before letting a third
layer/line to build up inside the pore will tend to decrease the capacitance. This is
because the screening of electrostatic interactions will, as explained above, get
weaker and the capacitance will start to go down again. And off these alternations
118 | Faraday Discuss., 2013, 164, 117–133 This journal is ª The Royal Society of Chemistry 2013
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go for a while, leading to decaying ‘oscillations’ of capacitance as a function of the
pore size, as was rst found in ref. 24–26.

The voltage dependence of the specic capacitance of nanoporous electrodes
is a separate important issue that was rst analyzed theoretically in ref. 19, 20 and
27. The results revealed a dramatic dependence of the capacitance–voltage curves
on the nanopore width. This effect was later shown to have important conse-
quences for the choice of the pore size for maximising energy storage.28

On the other hand, the power of the capacitor is determined by how fast we can
charge/discharge the pore. Energy capacity and the speed of charging are gener-
ally competing with each other.29 Energy storage scales up with the surface area.
The surface area increases with the length of the pores and with the decrease of
their radius, as one may then have more pores per projection surface area. But the
longer the pores, the more time it will take to transport the ions to fully charge
them. Energy storage devices are characterised by Ragone plots: the deliverable
power vs. the storable energy, and relative to batteries, modern supercapacitors lie
on this diagram towards higher power, but lower energy. In batteries, the rate-
limiting step is, in most cases, the elementary act of electrochemical reaction.
Because of that, they charge and discharge much slower than supercapacitors, in
which the reaction stage is absent and where the end task is gathering the
counterions at the corresponding electrode; in the case of a porous electrode,
inside that electrode. With that picture in mind, the baseline for the development
of supercapacitors is the increase of the energy storage per unit volume/weight of
the device at, however, minimal losses in the power delivery.

Leaving the kinetics of nanoporous electrodes for a separate study30,31 let
us concentrate on the electrical capacitance of porous electrodes, important
for the energy capacity.29,28 Earlier reported models and simulations19–21,24–28 were
instrumental for understanding the capacitance behavior of nanoporous elec-
trodes, but the studies based on them are numerical in implementation. Can one
work out some simple model that could lead to a transparent, analytical, tutorial
textbook-like formula, which would illuminate the main features of the capaci-
tance dependence on voltage and the pore-size dependence? Such a model is
possible for a particular case which has its own, although limited, relevance.
Namely, for the capacitance of ultra narrow quasi single-le pores, in which the
ions may be assumed to settle at or close to the main axis of a pore that can
accommodate just one row of ions, whose arrangement in the pore can be
considered as one dimensional, as sketched in Fig. 1. We present this model for
the case of a pure, solvent-free ionic liquid, which will be restricted even further,
subject to the assumptions formulated below.
The model
Basic assumptions

1. There is a propensity for cations and anions to occupy the pore in the electrode,
even when the latter is not polarised. When it becomes polarised, co-ions will tend
to be replaced by counterions.32

2. This propensity for ions to ll the pore is so strong that a non-polarised pore
is densely packed with ions, with no empty voids between them. This simpli-
cation may not generally be valid; the more general case is mathematically more
sophisticated and is to be studied.
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 164, 117–133 | 119
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Fig. 1 A ‘single-file’ pore in a (negatively) polarised electrode: (A) a schematic cross-section, (B) a one
dimensional lattice representation of distribution of ions. The pore is assumed to accommodate, roughly,
one line of ions, (d < 2a < 2d).
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3. Electrostatic interactions of ions in the pore are screened by the electronic
polarisation of pore walls, and only the interactions of the nearest neighbors must
be taken into account.

The study of this simple case results in a compact analytical formula for
capacitance, which has a number of lessening consequences. Before formulating
the model mathematically, we need to substantiate and discuss the last
assumption.
Interionic interaction potential

Electrostatic interaction between charges in a cylindrical pore inside a metal is a
classical problem of electrostatics, solved long ago (see e.g. a textbook33). For two
unit point charges U(R) sitting on an axis of a pore of radius a at a distance R from
each other, the interaction energy scaled to the thermal energy, kBT, is given by

UðRÞ
kBT

¼ �LB

R

8<
:1� 2

p

ðN
0

dx

I0ðxÞ2
sin

�ðR=aÞx�
x

9=
;: (1)

Here � corresponds to the interaction of ions of the same or opposite sign,
respectively. LB is the Bjerrum length; in Gaussian units used throughout the
paper, LB ¼ e2/3kBT, where e is the elementary charge and 3 the effective dielectric
constant inside the pore due to electronic polarisability of ions (if we assume the
latter to bez2, at room temperature LBz 28 nm). I0(x) is the modied cylindrical
Bessel function of zero order. Using residue theory, the integral in the r.h.s. was
calculated exactly to give the result in the form of a series,
120 | Faraday Discuss., 2013, 164, 117–133 This journal is ª The Royal Society of Chemistry 2013
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UðRÞ
kBT

¼ �2
LB

a

XN
m¼1

e�
kmR
a

km½J1ðkmÞ�2
: (2)

Here J1(km) is the rst order cylindrical Bessel function and km are zeros of Bessel
function of zero order, Jo(km) ¼ 0; hence k1 ¼ 2.4; J1(y1) ¼ 0.52; k2 ¼ 5.52, J1(y2) ¼
�0.34,.34 Notably, for R > a it is sufficient to keep only the rst term of the series,

UðRÞ
kBT

z
R. a

�3:08
LB

a
exp

�
� R

ða=2:4Þ
�
: (3)

Fig. 2 shows that this approximation works amazingly well. Thus, interaction
in a cylindrical pore withmetallic walls decays exponentially with the decay length
a/2.4.

It is also interesting to compare the interaction potentials in a cylindrical pore
and the one in a at gap (employed in the theory of charge accumulation in slit
pores19,20). Fig. 3 shows this comparison using the asymptotic laws, perfectly
sufficient for this study.

In both cases the screening is exponential, but in a cylindrical pore it is
stronger than in a slit pore, because in a cylindrical pore the interacting charges
are surrounded by metal ‘from all sides’.35 In a cylindrical pore, the decay range is
1/4.8 of the pore diameter, whereas in a slit pore it is 1/3.14 of the pore width.

Exponential screening in a nanogap or nanopore is a result of the innite set of
image charges that counterbalance the charges inside the nanopore. The
importance of this effect in the theory of adsorption at a at electrode has been
studied decades ago (for review see ref. 1); their role in the double layer theory at
Fig. 2 Interaction potential scaled to thermal energy: comparison between the exact eqn (1) (lines),
and its asymptotic form (dots), eqn (3). The graphs were plotted for two indicated pore radii, a, with the
absolute values determined by LB z 28 nm. For each of the two cases the results are shown down to
distances of the pore diameter, R ¼ 2a.

This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 164, 117–133 | 121
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Fig. 3 Comparison of the interaction potentials in a cylindrical pore of radius a and a slit pore of

half-width a. The plots calculated using eqn (3) for cylindrical and
UðRÞ
kBT

x 2
LBffiffiffiffiffiffi
aR

p exp
n
� R
2a=p

o
for slit

pore19 geometry.
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at interfaces has recently been emphasised and explored in ref. 36 and 37. Note
that the effect of image charges in gap geometry is much stronger than at a at
interface. Indeed, a charge located at distance a near a at interface, creates one
mirror image of opposite sign in the metal at point �a; the charge and its image
create together a potential which at long distances R > a takes the form of an

effective dipole-type potential e
2a2

3R3 instead of the Coulomb potential e
1
3R
. It is the

multiple set of image charges that emerge in the metal in a pore geometry that
provide a much stronger, exponential screening.

Effects of the eld penetration into the massive metal plates, which we did not
touch above, has been intensively studied in the past both at the interface and in
the at gap geometry (see e.g. ref. 1 and 38–40). Unless 3 [ 1, all these effects
effectively extend distance a, but otherwise they will lead to very nontrivial
consequences.38,41,42 In our problem, 3z 2 and such consequences will be of no or
minor importance.

Mapping the problem on a 1-dimensional Ising model

Considering the dense packing of cations and anions of the same size, we may
assume the 1d lattice constant to be equal to their diameter. Had they been of
different size, the lattice constant would be voltage dependent. For instance, in a
typical case of ionic liquids with cations larger than anions, when the pore is
occupied predominantly by cations, the lattice constant will be larger than when
the pore is packedwith anions.We will not consider this complication in this study.

The idea of the model is sketched in Fig. 4. It uses the lexicon of spin models,
standard in statistical mechanics.43 When the site i of the 1d lattice is occupied by
122 | Faraday Discuss., 2013, 164, 117–133 This journal is ª The Royal Society of Chemistry 2013
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a cation it is assigned the value of ‘spin’ Si ¼ 1, when it is an anion, Si ¼ �1 (as
mentioned in the introduction of the model, the sites are assumed to be always
occupied by either cations or anions).

The Hamiltonian of the system (in the units of kBT) can be written in terms of a
one-dimensional Ising model with nearest neighbour interaction between ‘spins’ in the
presence of an external ‘eld’41

H

kBT
¼

X
i

na
2
ðSiSiþ1 þ SiSi�1Þ þ uSi

o
; (4)

where the coupling constant characterising interactions of the neighbouring
‘spins’

a ¼ |U(d)|/kBT (5)

with d, the ion diameter, taken the lattice constant.
Subject to eqn (3) U(2d) z U(d)exp{�2.4 d/a}. Since in the case we are

considering in ourmodel, d < 2a < 2d, i.e. the pore can accommodate ions but only
one row of ions, the assumption of the nearest neighbour interactions is well
justied.

The rst item under the sum in eqn (4) favors cations and anions to neighbour
each other. The last term, u, is the electrostatic potential drop between the elec-
trode and the bulk of electrolyte, again taken in the units of kBT/e (at room
temperature kBT/e z 25.6 mV). The value of u is constant across and along the
pore. This term favours occupation of the sites in the pore by counterions and
expulsion of co-ions from the pore.

Recall that in the theory of magnetism, a (oen denoted there by letter J) is
the so called spin-coupling parameter, which characterises interactions of
real magnetic spins of atoms; a > 0 favours antiferromagnetic order, whereas
a < 0 corresponds to ferromagnetic order; u characterises the interaction of spins
with the external magnetic eld.43 In our problem a > 0, because the anion–cation
Fig. 4 1d spin description of the occupation of a cylindrical pore. Each site of a 1d lattice is occupied
either by a cation (the state with spin +1) or anion (the state with spin �1). Voltage is controlled relative
to the exterior of the pore. Nonzero polarisation of the electrode favors one of the spin-states over the
other for each site. In this sketch the electrode is negatively polarised and spin +1 states are more
favourable. The temperature tends to smear up this trend favoring equal distribution of spin +1 and spin
�1 states.

This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 164, 117–133 | 123
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pairs of neighbours are favoured (analogy with anti-ferromagnetism); a nonzero
voltage u competes with that trend, at very large voltage the pore will contain only
ions of one sign – the counterions. Note that in our problem u is the voltage, not
electric eld.

If the ions have different propensity to settle in an unpolarised pore due to
specic interaction with the walls depending on the sort of ions, u must be
replaced by

u 0 ~u ¼ u � w (6)

where �w is half of the difference between the free energy of transfer of a cation
and of an anion from the bulk into the interior of the pore, scaled to kBT. w >
0 would mean preferential adsorption of cations.

The value of w will be affected by the difference in the size of cations and
anions, but it may be nonzero even if they are of the same size, but of different
chemical nature. Consideration of ions of different size will require a more
sophisticated model, because the size of the ions enters the model only through
the voltage-independent lattice constant. The simplest extension of the model
will be making the lattice constant voltage-dependent, as the distance of closest
approach between cations, between anions, and between cations and anions
may be different. The corresponding extension of the model will be considered
elsewhere. Here, we will still adopt correction (6) reminding ourselves that the
value of w may be, generally, nonzero, even for the simplest case considered
below.

Exact solution
General equations of the model. The expression for differential capacitance

The 1d Ising model with nearest neighbour interactions in an external eld has a
simple exact solution described in textbooks. Namely, the statistically averaged
value of ‘spin’ is given by,44

hSii ¼ � sinhðu� wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sinhðu� wÞ�2 þ e4a

q (7)

The derivative

cðuÞ ¼ dhSii
du

¼ � e�2acoshðu� wÞn
1þ e�4a½sinhðu� wÞ�2

o3=2
(8)

characterises the response function. Whereas in magnetism c is propor-
tional to magnetic susceptibility, in our system this derivative characterises
the response to the electrode polarisation. This response function deter-
mines the voltage-dependent differential capacitance. Given per its unit
surface area it is called specic differential capacitance, and it is related to
c(u) as45

CðuÞ ¼ � 3LB

2pad
cðuÞ: (9)
124 | Faraday Discuss., 2013, 164, 117–133 This journal is ª The Royal Society of Chemistry 2013
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Following eqn (3) and (5), the coupling constant can be approximated by

ax3:08
LB

a
e�2:4d=a: (10)

Linear/low voltage response

As a particular case of the above expression for capacitance, one can obtain its
value close to the voltage when the row of ions in the pore is electroneutral as a
whole:

CðuÞju¼whC ¼ 3LB

2pad
e�2ax

3LB

2pad
exp

�
� 6:16

LB

a
e�2:4d=a

�
: (11)

When w s 0, but the electrode is not polarised

CðuÞju¼0 ¼ C
coshðwÞn

1þ e�4a½sinhðwÞ�2
o3=2

: (12)

The two expressions coincide when there is no preferential adsorption of ions
into the pore (w ¼ 0).
Understanding absolute values (scaling factor estimates)

If all the lengths in the dimensional pre-factor
3LB
2pad

in eqn (9) or (11) are taken in

nm, in order to get the capacitance in mF/cm2 onemustmultiply the result by 11.11.
To get a feeling about an order of magnitude of this prefactor, let us take 3¼ 2,

LB¼ 28 nm, a¼ 0.35 nm, and d¼ 0.7 nm.We then obtain 36.4 nm�1 or 404.37 mF/
cm2. This example corresponds to a ¼ 2.04, and the exponential term e�2a will
contribute a factor 0.0169 reducing the capacitance to 6.82 mF/cm2, but a slight
increase of a will make this value much smaller.

It is interesting to compare CðcylindricalÞ
0 ¼ CðuÞ

���
u¼w¼0

¼ ð3LB=2padÞe�2a with the

linear response specic compact layer capacitance of a at electrode, in Helmholtz
approximation,1 C(at)

0 ¼ 3/(2pd). Their ratio, C(cylindrical)
0 /C(at)

0 ¼ [LB/a]e
�2a, for the

above set of parameters comprises 1.4. For larger pore radii, a will increase, and the
ratio will rapidly become much smaller than 1.

Thus the nanopore capacitance is extremely sensitive to the interionic inter-
action parameter, affected by the radius of the pore and screening properties of
the pore walls if the latter are not ideally metallic.1On the contrary, the limit of the
classical Helmholtz model is valid for the case of a highly concentrated electro-
lyte, which corresponds to ‘zero’ Gouy length;1 there, everything is screened
(electric eld is zero beyond the compact layer), and ion–ion interactions do not
enter the expression for the capacitance.
Results and discussion
Pore size effect and the voltage dependence

The shape of the function c(u) is determined by the coupling parameter a, the
whole function being symmetric about the point u ¼ w. In the illustration below
we show the case of w ¼ 0, but if different, the zero point on the abscissa would
correspond to u ¼ w.
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 164, 117–133 | 125
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Following eqn (3) and (5), for d ¼ 0.7 nm, and a ¼ 0.35 nm, a ¼ 2.04; with the
pore radius increasing just by 0.2 nm the coupling constant increases more than
twice, to a ¼ 4.622. The larger the value of a, the higher the voltages required to
charge the pore. The graphs in Fig. 2 illustrate this. We see that when the pore
diameter is just a little larger than the diameter of an ion, the capacitance
becomes almost negligible for small voltages. The reason for this is clear: it
requires some voltage to start accepting the charge into the pore.

Non-monotonic capacitance–voltage dependence lies in two competing
trends dominating in different voltage domains. With initial increase of the
voltage, one unbinds cation–anion pairs, progressively facilitating charge accu-
mulation, and the capacitance increases. However, at further voltage increase
the majority of co-ions will get expelled outside of the pore and be replaced by
counterions. Indeed, in eqn (7), at u / �N, hSii / H1, and, following eqn (8)
and (9), the response function c(u) and capacitance C(u) vanish fexp(�2|u|), i.e.
approaching saturation, further charging becomes increasingly difficult. The two
regimes are separated by the maxima of capacitance, which lie close to umax z w
� (2a + ½ln 2); at this voltage hSiizH1=

ffiffiffi
2

p
, i.e. z50% of the maximal charge is

already accumulated in the pore.
Recall again that in Fig. 2 we have shown the case w¼ 0. Had it been different,

the curves would have been shied by the value ofw (i.e. to the right whenw > 0, or
to the le when w < 0).

Temperature dependence

Temperature appears in the capacitance expression (eqn (8) and (9)) in several
places: the values of voltage, u is scaled to the, so called, ‘thermal voltage’ kBT/e
(25.6 mV at room temperature), whereas the energy of interionic interaction, a,
and the free energy of preferential adsorption, w, are both scaled to thermal
energy kBT. To make things even more complicated, the temperature depen-
dence is also inherent in the free energy of preferential adsorption through the
entropic term. If, however, we neglect the latter (which is admissible for the case
of strong specic adsorption of both cations and anions, the keystone of the two
state model), the resulting trends appear to be simple (cf. Fig. 6). With the
temperature increase the capacitance peaks become lower and broaden; the
capacitance at low polarisation increases, because the structures that the voltage
needs to break down in order to charge the pore get soer. The overall effect
is noticeable but is not and cannot be large, because in the nanopore the
pertinent ‘energies’ are larger than kBT. The saturation regimes (the wings) are
unaffected.

The effect of pore radii distribution

The sharp maxima in Fig. 5 and 6 refer to a single pore capacitance. But even
the slightest dispersion of pore radii has a dramatic effect on the capacitance plots,
due to the resonance character of a single pore capacitance–voltage dependence.
Fig. 7 and 8 show that for any physically meaningful dispersion of pore radii, the
values of the capacitance in the maxima reduce from anomalously large to more
‘reasonable’ values, i.e. closer to the observable ones. The second message is that
the wings decrease much less steeply, and the overall capacitance–voltage depen-
dence becomes less ‘dramatic’.
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Pore size and temperature effects on the linear response capacitance

It is remarkable that in a single le pore, the capacitance close to u ¼ w (or u ¼
0 when w¼ 0) appears to be very small, unless the interionic interactions are very
strongly screened. The effect of the pore size that eqn (11) predicts (Fig. 9) is
qualitatively similar to that experimentally observed,14 but at pore radius only
slightly larger than the ion radius, the single le capacitance practically vanishes.
To the best of our knowledge, such small values of specic capacitance have
never been reported. This is different in the case of slit pores,19,20 where non-
polarised pores delivered substantial capacitance. Thus this can mean that in
Fig. 5 Ising model results for the specific voltage-dependent differential capacitance of a single pore
per its unit surface area, calculated via eqn (8)–(10). The effect of the diameter of the pore, shown for ion
diameter 0.7 nm (upper panel) and 1 nm (lower panel); the effective dielectric constant of the pore
interior, 3 ¼ 2. Remarkably, the capacitance vanishes very quickly with voltage because of the saturation
of charge density in a single file geometry.
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Fig. 6 Temperature effect on the voltage dependence of the specific differential capacitance of a single
pore: calculated via eqn (8)–(10), shown for ion diameter 1 nmand pore diameter 1.2 nm. As in Fig. 5, 3¼ 2.

Fig. 7 Specific differential capacitance of a narrow cylindrical pore at dense packing of ions, just about
to accommodate one row of ions on its axis, weighted over narrow Gaussian pore size distributions. Ion
diameter d ¼ 0.7 nm, pore diameter 2a ¼ 0.72 nm; curves correspond to the indicated pore-radii
dispersion; 3¼ 2. Already for minor pore-radii dispersion, the saturation regions move to higher voltages,
and the capacitance curve displays moderate values.
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experiments reported so far, we may not deal with single-le pores. An alternative
explanation may be that there is a preferential adsorption of one sort of ions at a
nonpolarised electrode, and the values of u ¼ 0 do not actually correspond to the
dip between the peaks. Last, but not least, if the pore contains not only ions, but
128 | Faraday Discuss., 2013, 164, 117–133 This journal is ª The Royal Society of Chemistry 2013
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Fig. 8 The same as in Fig. 7 but shown for a larger average diameter of pores, 2a¼ 1.4 nm (for the same
size of ions, d ¼ 0.7 nm), a larger spread of indicated pore-radii dispersion, and slightly larger voltage
range. Broadening of pore-radii distribution does not make the linear response capacitance smaller,
unlike the examples shown in Fig. 7. There, the range of smaller pores simply cannot accommodate ions,
as taken into account in the calculation, and that decreased the capacitance. The role of the latter effect
is minor in the curves of this figure.

Fig. 9 Differential ‘linear response’ capacitance of a nanopore as a function of pore radius at different
temperatures. Curves are calculated for the packing of ions of 0.7 nm diameter. The inset is the
capacitance temperature dependence shown for the pore diameter equal to ion diameter. Other
parameters are as in Fig. 2.
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empty voids, the two state Ising model will not be applicable, whereas its
extension to the three state model may give a different result. All these options
remain to be studied.
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The temperature dependence of the linear response capacitance is also worth
noting. Outlining explicitly the temperature dependence in eqn (10), we get

CðuÞju¼wx
3L

ðrÞ
B

2pad

Tr

T
exp

(
� 6:2

L
ðrÞ
B

a
e�2:4d=a Tr

T

)
(13)

where T and Tr (¼300) are, respectively, running and room temperatures, L(r)B is
the Bjerrum length at T ¼ Tr; for 3 ¼ 2, L(r)B x 28 nm. The inset in Fig. 9 shows
such dependence. Due to competing trends in the pre-exponential and expo-
nential factors, it linearly grows with temperature in the relevant interval of
temperatures.
Concluding remarks

Ultraporous electrodes with single-le pores may themselves not be practical for
supercapacitors because of large ohmic power losses accompanying the charging–
discharging process, as swapping co-ions with counterions in a single le may
have substantial kinetic hindrance. For the same reason, accurate measurements
of the equilibrium differential capacitance in such ultra narrow pores are difficult,
and the author is not aware of any data on the voltage dependence reported so far.
Still, theoretical results may be useful for understanding what, in principle, ultra
nanoporous electrodes could deliver for energy storage.

Formulation of the model presented above was inspired by ref. 47. The latter
suggested mapping of the electrical double layer problem in ionic liquids at a
semi-innite at electrode onto a 1d-three state spin model in an external eld
with long range Coulomb interactions, for which the authors have obtained a
sophisticated exact solution. The model of the present paper and its solution is
much simpler, because in the metallic pore electrostatic interactions are expo-
nentially screened, i.e. are short range, but most importantly the 1d spin-analogy
is literal here.

The resulting ‘toy’model of single-le charge storage allows the rationalisation
of several interesting features. It shows the interplay between the voltage,
temperature and the electrostatic interactions between electrolyte ions inside the
nanopore, screened by free electrons of the electrode. The existence of an exact
analytical solution for this model reported in this paper, describes all these
dependences in the most simple terms. It may trigger new experimental elec-
troanalytical studies of nanotemplated electrodes with ionic liquids, in order to
verify the predicted trends. In designing such experiments one should keep in
mind the two main limitations of the model:

(i) The description of the electrode as an ‘ideal metal’ may be fairly good for
many metallic electrodes, but it can be questioned for carbon materials. Recent
investigation46 has shown that the reduction of screening will be noticeable with
the corresponding effect on a, and subsequently on the capacitance. A similar
effect is produced by a slight increase of the radius of the pore, except the latter
also increases the denominator in eqn (8), thus affecting not only c(u) through the
coupling constant a, but also the pre-factor. Hence the main effect of such
renement will be the shi of the maxima to higher voltages. Accounting for a
modied screening pattern can be easily implemented through correcting the
input value of a.
130 | Faraday Discuss., 2013, 164, 117–133 This journal is ª The Royal Society of Chemistry 2013

https://doi.org/10.1039/c3fd00026e


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 1

8 
no

ve
m

br
e 

20
13

. D
ow

nl
oa

de
d 

by
 F

ai
l O

pe
n 

on
 2

3/
07

/2
02

5 
09

:1
7:

34
. 

View Article Online
(ii) We assumed that pores of a nonpolarised electrode are stuffed with ions
(the stuffing is neutral, if there is no preferential adsorption of ions of one sign).
We assumed furthermore that both sorts of ions are strongly adsorbed in a pore of
a nonpolarised electrode. For the latter to be true there must be a strong energetic
drive to compensate for the losses of entropy incurred when squeezing the ion
into a narrow nanopore. Thus no empty space in the pore was allowed. This made
it possible to reduce the description to a two state model: each site of the lattice
can be in ‘spin-up’ (occupied by cation) or ‘spin-down’ (occupied by anion) states.
To take into account a balance between cations, anions, and empty voids, one
must develop a theory beyond the two state model, namely a three state model in
which the ‘spin’ can also acquire the value 0 to account for the possibility of empty
sites in the lattice, call them voids.47 Such theory is more complicated and leads to
a more cumbersome set of equations, providing more sophisticated capacitance
curves, which will be reported elsewhere. The above considered ‘tutorial’ case is,
however, not only valuable because it is simpler; it may as well correspond to
physical reality, in the limit of strong adsorption of ions.

With all these reservations spelled out, it still made sense to present this
model, as simple as it is, as a starting point for future theoretical and experi-
mental developments.
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