Issue 2, 2025

Phyto-mediated synthesis of SnO2 nanoparticles using Croton malabaricus Bedd. for its antioxidant, antibacterial, hemocompatibility properties and photocatalytic activity

Abstract

The phyto-mediated production of SnO2 nanoparticles (Cm-SnO2 NPs) was effected using the stem wood 50% ethanolic extract of Croton malabaricus Bedd. as a reducing agent. The extract was subjected to phytochemical characterization. The Cm-SnO2 NPs were characterized using XRD, UV, FTIR, FE-SEM, EDX, AFM, and HR-TEM. HR-TEM and XRD measurements verified that the agglomerated, spherical nanoparticles had a crystallite size of 9.13 nm. The Cm-SnO2 NPs were checked for their antioxidant, antibacterial, antibiofilm, haemolytic, and thrombolytic properties, effects on Cicer arietinum, and photocatalytic degradation of sunset yellow dye. The plant extract contained phenols (438.98 ± 0.82 mg GAE per g DW), flavonoids (64.02 ± 0.34 mg QE per g DW), and terpenoids (76.42 ± 0.44 mg linalool per g of extract DW). The IC50 values for the DPPH and Fe chelating activities of Cm-SnO2 NPs were 17.47 ± 0.9 and 20.98 ± 0.5 μg mL−1, respectively. At 100 μg mL−1, the highest antibacterial activity (32 ± 0.26 mm) and antibiofilm activity (33.05 ± 0.6%) of Cm-SnO2 NPs were seen against K. pneumoniae. The nanoparticles were found to be least toxic toward RBC suspensions (IC50 = 0.732 mg mL−1) and to have significant clot lysis activity (62.04%). The Cm-SnO2 NPs showed a growth-stimulatory effect on the seeds of Cicer arietinum by increasing the germination percentage from 56.66% at 24 hours to 73.33% at 48 hours. The Cm-SnO2 NPs exhibited 60.47% photocatalytic degradation efficiency of sunset yellow dye under UV light conditions within 60 min. Thus, Cm-SnO2 NPs can be effective for biological purposes, dye degradation, and crop growth promotion, contributing to both health and environmental aspects.

Graphical abstract: Phyto-mediated synthesis of SnO2 nanoparticles using Croton malabaricus Bedd. for its antioxidant, antibacterial, hemocompatibility properties and photocatalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2024
Accepted
30 Nov 2024
First published
11 Dec 2024

New J. Chem., 2025,49, 536-552

Phyto-mediated synthesis of SnO2 nanoparticles using Croton malabaricus Bedd. for its antioxidant, antibacterial, hemocompatibility properties and photocatalytic activity

N. K. Sishu, M. K. R. Karunakaran, V. M. Hadkar, C. Mohanty, A. Sharmila, C. I. Selvaraj and N.M. G. Babu, New J. Chem., 2025, 49, 536 DOI: 10.1039/D4NJ03958K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements