Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The work discloses the use of CO2 polymer chemistry for the development of a sustainable metal anti-corrosion material. CO2-polyol, a poly(ether carbonate)diol from the telomerization of CO2 and propylene oxide catalyzed by zinc–cobalt double metal cyanide in the presence of a chain transfer agent, was used as a soft segment to prepare a waterborne cationic polyurethane dispersion (CPUD), which showed excellent hydrolysis and oxidation resistance owing to the coexistence of a hydrolysis-resistant ether unit and oxidation-resistant carbonate unit in CO2-polyol. Most importantly, to prepare a neutral CPUD dispersion compatible with an acidic conducting polyaniline, a delicately designed internal emulsifier was fabricated, in which 2,5,18,21-tetramethyl-9,14-dioxa-2,5,18,21-tetraazadocosane-7,16-diol (TDTD), combined with a sufficiently low steric hindrance tertiary amine, was used as the side chain extender (CE), with citric acid as a crosslinker. The internally crosslinked neutral CPUD was demonstrated to be compatible with a waterborne conducting polyaniline (cPANI) dispersion; the composite film obtained from the CPUD and cPANI dispersion showed a significant enhancement in barrier performance to protect against the penetration of corrosive molecules into the metal surface.

Graphical abstract: Cationic polyurethane from CO2-polyol as an effective barrier binder for polyaniline-based metal anti-corrosion materials

Page: ^ Top