A polypyrrole-coated GCE sensor for sensitive detection of 5-fluorouracil via molecular imprinting†
Abstract
Cytotoxic drug 5-fluorouracil (5-FU) is a fluorine derivative of uracil; it is one of the most significant medications used to treat cancers of the stomach, breast, colon, pancreas, and cervical regions. Here, a reliable, rapid, highly sensitive and selective method is proposed for determining 5-FU in real samples. In this study, a molecularly imprinted polymer (MIP) based electrochemical sensor is designed for the sensitive and selective determination of 5-FU. The MIP was developed by the electropolymerization of a pyrrole thin film around template molecules (5-FU) on a glassy carbon electrode (GCE). The sensor was characterized after each stage of fabrication using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The MIP sensor exhibited a wide linear range for determining 5-FU from 2–42 μM. The developed sensor achieved a limit of detection (LOD) and limit of quantification (LOQ) of 0.605 μM and 1.834 μM, respectively. The applicability of the proposed sensor was examined for 5-FU determination in real samples. The MIP sensor exhibited excellent selectivity, repeatability, stability, and commercialization potential for 5-FU detection. Furthermore, the proposed method offers significant advantages over existing electrochemical techniques for 5-FU detection. This method provides single-step preparation alongside simple template molecule removal by cyclic voltammetry scans and does not need any extracting solvents.