Synthesis and characterization of trialkoxysilane-capped poly(methyl methacrylate)–titania hybrid optical thin films

(Note: The full text of this document is currently only available in the PDF Version )

Wen-Chang Chen, Shu-Jen Lee, Long-Hua Lee and Jen-Lien Lin


Abstract

A series of trialkoxysilane-capped PMMA–titania hybrid optical thin films has been prepared by an in situ sol–gel process combined with spin coating and multi-step baking. The used acrylic monomers were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). Titanium(IV) n-butoxide was used for the preparation of the titania network. FTIR results indicate successful bonding between the organic and inorganic moieties. A DSC study suggests a good dispersion of the PMMA segment in the titania network while an AFM study suggests that the prepared hybrid thin films have superior smoothness in comparison to the parent titania thin film. The dispersion of the refractive index and extinction coefficient in the wavelength range 190–900 nm was studied. Variation of the titania content not only tunes the refractive index but also the position of absorption maximum. Off-resonant refractive indices of the prepared hybrid thin films were in the range 1.505–1.553, which linearly increased with the titania content. Furthermore, the hybrid polymer films have abbe numbers (ν) all >30. The shift of the absorption maximum of the prepared hybrid thin films can be correlated with the titania content. The prepared hybrid films show very high optical transparency in the visible region. These results suggest that such hybrid films have potential applications for optical devices.


References

  1. J. Wen and G. L. Wilkes, Chem. Mater., 1996, 8, 1667 CrossRef CAS.
  2. K. G. Sharp, Adv. Mater., 1998, 10, 1243 CrossRef CAS.
  3. G. Philipp and H. Schmidt, J. Non-Cryst. Solids, 1984, 63, 283 CrossRef CAS.
  4. B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak and J. E. McGrath, Macromolecules, 1991, 24, 3449 CrossRef CAS.
  5. P. Papadimitrakopoulos, P. Wisniecki and D. Bhagwagar, Chem. Mater., 1997, 9, 2928 CrossRef CAS.
  6. M. Yoshida and P. N. Prasad, Chem. Mater., 1996, 8, 235 CrossRef CAS.
  7. A. Ershad-Langroudi, C. Mai, G. Vigier and R. Vassoille, J. Appl. Polym. Sci., 1997, 65, 2387 CrossRef CAS.
  8. H. Jiang and A. K. Kakkar, Adv. Mater., 1998, 10, 1093 CrossRef CAS.
  9. J. Biteau, F. Chaput, K. Lahlil, J. P. Boilot, G. M. Tsivgoulis, J. M. Lehn, B. Darracq, C. Marois and Y. Levy, Chem. Mater., 1998, 10, 1945 CrossRef CAS.
  10. G. Cartenuto, Y. S. Her and E. Matijevic, Ind. Eng. Chem. Res., 1996, 35, 2929 CrossRef CAS.
  11. B. Wang and G. L. Wilkes, J. Polym. Sci. Polym. Chem., 1991, 29, 905 Search PubMed.
  12. Z. H. Huang and K. Y. Qiu, Polymer, 1997, 38, 521 CrossRef CAS.
  13. J. Zhang, S. Luo and L. Gui, J. Mater. Sci., 1997, 32, 1469 CrossRef CAS.
  14. B. Samuneva, V. Kozhukharov, Ch. Trapalis and R. Kranold, J. Mater. Sci., 1993, 28, 2353 CAS.
  15. V. Kozhukharov, Ch. Trapalis and B. Samuneva, J. Mater. Sci., 1993, 28, 1283 CAS.
  16. A. Leaustic, F. Babonneau and J. Livage, Chem. Mater., 1989, 1, 240 CrossRef CAS.
  17. B. K. Coltrain, C. J. T. Landry, J. M. O'Reilly, A. M. Chamberlain, G. A. Rakes, J. S. Sedita, L. W. Kelts, M. R. Landry and V. K. Long, Chem. Mater., 1993, 5, 1445 CrossRef CAS.
  18. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 1987, 91, 4305 CrossRef CAS.
  19. H. Yoneyama, S. Haga and S. Yamanaka, J. Phys. Chem., 1987, 93, 4833.
Click here to see how this site uses Cookies. View our privacy policy here.