Thermal transformation of a kaolinite–poly(acrylamide) intercalation compound

(Note: The full text of this document is currently only available in the PDF Version )

Yoshihiko Komori, Yoshiyuki Sugahara and Kazuyuki Kuroda


Abstract

The thermal transformation of a kaolinite–poly(acrylamide) (PAAm) intercalation compound has been investigated. Acrylamide molecules were intercalated between the layers of kaolinite and were subsequently polymerized by heat treatment at 300[thin space (1/6-em)]°C for 1 h. The kaolinite–PAAm intercalation compound was heated in the range 460–620[thin space (1/6-em)]°C under a nitrogen atmosphere. XRD analysis revealed that carbonaceous materials remained between the layers in this temperature range. The 29Si and 27Al NMR spectra of the kaolinite–PAAm compounds heated above 500[thin space (1/6-em)]°C showed that the structural change of aluminosilicate layers was relatively suppressed compared with that of kaolinite itself, indicating that the carbonaceous materials hindered the transformation of aluminosilicate layers. This new finding provides a method for controlling the skeletal transformation of inorganic layered materials upon thermal treatment.


References

  1. S. W. Bailey, in Crystal Structures of Clay Minerals and their X-Ray Identification: Structures of Layer Silicates, ed. G. W. Brindley and G. Brown, Mineralogical Society, London, 1980, pp. 1–39 Search PubMed.
  2. G. B. Brindley and M. Nakahira, J. Am. Ceram. Soc., 1959, 42, 311 CAS.
  3. L. Tscheischwili, W. Büssem and W. Weyl, Ber. Dtsch. Keram. Ges., 1939, 20, 249 Search PubMed.
  4. R. Pumpuch, Pr. Mineral., 1965, 6, 53 Search PubMed.
  5. S. Iwai, M. Tagai and T. Shimizu, Acta Crystallogr., Sect. B, 1971, 27, 248 CrossRef CAS.
  6. K. J. D. MacKenzie, I. W. M. Brown, R. H. Meinhold and M. E. Bowden, J. Am. Ceram. Soc., 1985, 68, 293 CAS.
  7. R. H. Meinhold, K. J. D. MacKenzie and I. W. M. Brown, J. Mater. Sci. Lett., 1985, 4, 163 CAS.
  8. S. Komarneni, C. A. Fyfe and G. J. Kennedy, Clay Miner., 1985, 20, 327 Search PubMed.
  9. T. Watanabe, H. Shimizu, K. Nagasawa, A. Masuda and H. Saito, Clay Miner., 1987, 22, 37 Search PubMed.
  10. J. Sanz, A. Madani, J. M. Serratosa, J. M. Moya and S. Aza, J. Am. Ceram. Soc., 1988, 71, C-418 CAS.
  11. J. F. Lambert, W. S. Millman and J. J. Fripiat, J. Am. Chem. Soc., 1989, 111, 3517 CrossRef CAS.
  12. R. C. T. Slade and T. W. Davies, Colloid Surf., 1989, 36, 119 CrossRef CAS.
  13. J. Rocha and J. Klinowski, Phys. Chem. Miner., 1990, 17, 179 CAS.
  14. J. Rocha and J. Klinowski, Angew. Chem., Int. Ed. Engl., 1990, 29, 553 CrossRef.
  15. R. H. Meinhold, R. C. T. Slade and T. W. Davies, Appl. Magn. Reson., 1993, 4, 141 CAS.
  16. D. Massiot, P. Dion, J. F. Alcover and F. Bergaya, J. Am. Ceram. Soc., 1995, 78, 2940 CAS.
  17. F. Bergaya, P. Dion, J.-F. Alcover, C. Clinard and D. Tchoubar, J. Mater. Sci., 1996, 31, 5069 CAS.
  18. J. Rocha, J. M. Adams and J. Klinowski, J. Solid State Chem., 1990, 89, 260 CAS.
  19. B. K. G. Theng, The Chemistry of Clay–Organic Reactions, Adam Hilger, London, 1974 Search PubMed.
  20. Y. Sugahara, S. Satokawa, K. Kuroda and C. Kato, Clays Clay Miner., 1988, 36, 343 CAS.
  21. Y. Sugahara, S. Satokawa, K. Kuroda and C. Kato, Clays Clay Miner., 1990, 38, 137 CAS.
  22. Y. Sugahara, T. Sugiyama, T. Nagayama, K. Kuroda and C. Kato, J. Ceram. Soc. Jpn., 1992, 100, 413 CAS.
  23. Y. Komori, Y. Sugahara and K. Kuroda, Chem. Mater., 1999, 11, 3 CrossRef CAS.
  24. J. J. Tunney and C. Detellier, Chem. Mater., 1996, 8, 927 CrossRef CAS.
  25. J. M. Adams and G. Waltl, Clays Clay Miner., 1980, 28, 130 CAS.
  26. P. Sidheswaran, P. Ganguli and A. N. Bhat, Thermochim. Acta, 1987, 118, 295 CrossRef CAS.
  27. C. H. Horte, C. Becker, G. Kranz, E. Schiller and J. Wiegmann, J. Therm. Anal., 1988, 33, 401 Search PubMed.
  28. M. Gabor, M. Toth, J. Kristof and G. Komaromi-Hiller, Clays Clay Miner., 1995, 43, 223 CAS.
  29. D. Plee, F. Borg, L. Gatineau and J. J. Fripiat, J. Am. Chem. Soc., 1985, 107, 2362 CrossRef CAS.
  30. M. Schmücker and H. Schneider, Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 1550.
Click here to see how this site uses Cookies. View our privacy policy here.