Pyrochlore–perovskite phase transformation in highly homogeneous (Pb,La)(Zr,Sn,Ti)O3 powders

(Note: The full text of this document is currently only available in the PDF Version )

Joon-Hyung Lee and Yet-Ming Chiang


Abstract

Control of undesirable pyrochlore is critical to the processing of lead perovskite dielectrics and ferroelectrics. In this work, a homogeneous and stoichiometric fine powder of the ferroelectric Pb0.97La0.02(Zr0.64Sn0.25Ti0.11)O3 (PLZST) has been prepared by a hydroxide coprecipitation and freeze-drying method. Through systematic variation of processing temperature and time, we have characterized the pyrochlore-to-perovskite crystallization process of the powder. Studies of the crystallization behavior of the precursor as a function of temperature by X-ray powder diffraction and transmission electron microscopy showed that the pyrochlore phase forms from an amorphous precursor, initially at low temperatures around 500–550[thin space (1/6-em)]°C. Further heat treatment to 750[thin space (1/6-em)]°C resulted in development of the perovskite phase with no significant pyrochlore crystallite growth. At intermediate temperatures the precursor yielded a fine mixture of pyrochlore and perovskite phases. When the pyrochlore phase was heat-treated in air a slight weight increase was observed in the temperature range of 300–700[thin space (1/6-em)]°C, which is attributed to oxygen absorption. The weight increase was not observed upon firing in argon atmosphere; instead, a weight loss occurred near 700[thin space (1/6-em)]°C, which was identified as being mostly due to CO2 gas evolution. This implies that the pyrochlore phase is crystallographically and thermodynamically metastable. An apparent activation energy of 53.9 kcal mol–1 was estimated for the pyrochlore–perovskite phase transformation.


References

  1. W. Pan, Q. Zhang, A. Bhalla and L. E. Cross, J. Am. Ceram. Soc., 1989, 72, 571 CAS.
  2. W. Y. Pan, C. Q. Dam, Q. M. Zhang and L. E. Cross, J. Appl. Phys., 1989, 66, 6014 CrossRef CAS.
  3. K. G. Brook, J. Chen, K. R. Udayakumar and L. E. Cross, J. Appl. Phys., 1994, 75, 1699 CrossRef.
  4. K. Ghandi and N. W. Hagood, Am. Inst. Aeronaut. Astronaut., 1994, AIAA-94-1758-CP, 221 Search PubMed.
  5. D. Viehland, D. Forst and J.-F. Li, J. Appl. Phys., 1994, 75, 4137 CrossRef CAS.
  6. G. Arlt, D. Hennings and G. de With, J. Appl. Phys., 1985, 58, 1619 CrossRef CAS.
  7. J. Thomson, Jr., Am. Ceram. Soc. Bull., 1974, 53, 421.
  8. C. D. Chandler, C. Roger and M. J. Hampden-Smith, Chem. Rev., 1993, 93, 1205 CrossRef CAS.
  9. R. L. Holman and R. M. Fulrath, J. Appl. Phys., 1973, 44, 5227 CAS.
  10. T. Tani and D. A. Payne, J. Am. Ceram. Soc., 1994, 77, 1242 CAS.
  11. B. Tuttle, R. W. Schwartz, D. H. Doughty and I. A. Voigt, in Ferroelectric Thin Films, ed. E. R. Myers and A. I. Kingon, Materials Research Society, Pittsburgh, PA, 1990, p. 159 Search PubMed.
  12. B. A. Tuttle, J. A. Voigt, D. C. Goodnow, D. L. Lamppa, T. J. Headley, M. O. Eatough, G. Zeuder, R. D. Nasby and S. M. Rodgers, J. Am. Ceram. Soc., 1993, 76, 1537 CAS.
  13. J. F. Chang and S. B. Desu, J. Mater. Res., 1994, 9, 955 CAS.
  14. S. L. Swartz and T. R. Shrout, Mater. Res. Bull., 1982, 17, 1245 CrossRef CAS.
  15. S. A. Mansour, G. L. Liedl and R. W. Vest, J. Am. Ceram. Soc., 1995, 78, 1617 CAS.
  16. C. K. Kwok and S. B. Desu, in Ceramic Transactions Vol. 25: Ferroelectric Films, ed. A. S. Bhalla and K. M. Nair, American Ceramic Society, Westerville, OH, 1992, p. 85 Search PubMed.
  17. C. H. Peng and S. B. Desu, J. Am. Ceram. Soc., 1994, 77, 1486 CAS.
  18. M. Ishida, H. Matsunami and T. Tanaka, J. Appl. Phys., 1997, 48, 951 CrossRef.
  19. K. Iijima, R. Takayama, Y. Tomita and I. Ueda, J. Appl. Phys., 1986, 60, 2914 CrossRef CAS.
  20. A. H. Carim, B. A. Tuttle, D. H. Doughty and S. L. Martinez, J. Am. Ceram. Soc., 1991, 74, 1455 CAS.
  21. A. Siefert, F. F. Lange and J. S. Speck, J. Mater. Sci., 1995, 10, 680.
  22. L. A. Bursill and K. G. Brooks, J. Appl. Phys., 1994, 75, 4501 CrossRef CAS.
  23. G. R. Fox and S. B. Krupanidhi, J. Mater. Res., 1994, 9, 699 CAS.
  24. K. G. Brooks, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill and N. Setter, J. Mater. Res., 1994, 9, 2540 CAS.
  25. R. Roy, Science, 1987, 238, 1664 CrossRef CAS.
  26. D. Berlincourt, IEEE Trans. Sonics Ultrasonics, 1966, 13, 116 Search PubMed.
  27. C. F. Baes, Jr., and R. E. Mesmer, The Hydrolysis of Cations, John Wiley & Sons, New York, 1976 Search PubMed.
  28. K. L. Yadav and R. N. P. Choudhary, J. Mater. Sci., 1993, 28, 765.
  29. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Co., Inc., Massachusetts, 1978, p. 102 Search PubMed.
  30. C. K. Kwok and S. B. Desu, Appl. Phys. Lett., 1992, 60, 1430 CrossRef CAS.
  31. M. Avrami, J. Chem. Phys., 1939, 7, 1103 CrossRef CAS.
  32. M. Avrami, J. Chem. Phys., 1941, 9, 177 CrossRef CAS.
  33. J. D. Hancock and J. H. Sharp, J. Am. Ceram. Soc., 1972, 55, 74 CAS.
  34. H. M. Jang, S. R. Cho and K. M. Lee, J. Am. Ceram. Soc., 1995, 78, 297 CAS.
  35. E. M. Griswold, L. Weaver, I. D. Calder and M. Sayer, Mater. Res. Soc. Symp. Proc., 1995, 361, 389 CAS.
  36. Y. Yoshikawa and K. Tsuzuki, J. Am. Ceram. Soc., 1990, 73, 31 CAS.
  37. S. Y. Chen, C. M. Wang and S. Y. Cheng, J. Am. Ceram. Soc., 1991, 74, 2506 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.