Synthesis and molecular structure of [Ti4(OPri)8(µ,η2-OCH2CH[double bond, length as m-dash]CHCH2O)232-OCH2CH[double bond, length as m-dash]CHCH2O)2]. Application to the elaboration of low density, microcellular, doped organic materials

(Note: The full text of this document is currently only available in the PDF Version )

Nathalie Miele-Pajot, Liliane G. Hubert-Pfalzgraf, Renée Papiernik, Jacqueline Vaissermann and Rémy Collier


Abstract

The reaction between Ti(OPri)4 and cis-but-2-ene-1,4-diol [HOCH2CH[double bond, length as m-dash]CHCH2OH] in 1∶1 stoichiometry at room temperature gave [Ti4(OPri)8(µ,η2-OCH2CH[double bond, length as m-dash]CHCH2O)232-OCH2CH[double bond, length as m-dash]CHCH2O)2] 1 which was characterized by single crystal X-ray diffraction. Its molecular structure consists of an open-shell tetranuclear polyhedron with terminal isopropoxide ligands while the unsaturated diolates act as bridging-chelating ligands assembling five- and six-coordinated metals. The Ti–O bond lengths are in the range 1.77(1)–2.12(1) Å with Ti–OPri<Ti–η2-OC6H4O<Ti–µ-OC6H4O. Compound 1 was used for doping polystyrene foams elaborated by a emulsion/polymerization (w/o) process with traces of titania. Microcellular polystyrene foams with a low density (0.048–0.055 g cm–3) doped with titania (0.72–1.5 Ti wt%) have been obtained. The influence of a number of parameters such as the nature of the radical initiator, of the precursor, of an electrolyte and of the amount of surfactant, on the properties of the foams has been evaluated. The influence of various polymerizable ligands, but-2-ene-1,4-diolate, 2-(methacryloyloxy)ethyl acetoacetate and 3-allyloxy-1,2-propanediolate, has been investigated. The results indicate the first of these to give the best results. The precursors were characterized by FTIR, 1H NMR, elemental analysis and the foams by IR, elemental analysis, SEM/EDX and compressibility measurements.


References

  1. H. Schmidt, J. Non-Cryst. Solids, 1988, 100, 51 CAS.
  2. C. Sanchez, Mater. Res. Soc. Symp. Proc., 1992, 669, 271; U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich and C. Chau, Chem Mater., 1992, 4, 291 CrossRef CAS.
  3. W. Ziemkowska, S. Pasynkiewics and E. Kalbarczyk, J. Organomet. Chem., 1994, 465, 93 CrossRef CAS; L. G. Hubert-Pfalzgraf, Coord. Chem. Rev., 1998, 178–180, 967 CrossRef CAS.
  4. P. Mastrorilli and C. F. Nobil, J. Mol. Catal., 1994, 94, 19 CrossRef CAS.
  5. U. Schubert, E. Arpac, W. Glaubitt, A. Helmreich and C. Chau, Chem. Mater., 1992, 4, 291 CrossRef CAS; L. G. Hubert-Pfalzgraf, V. Abada, S. Halut and J. Roziere, Polyhedron, 1997, 16, 581 CrossRef CAS; G. Kickelbick and U. Schubert, Chem. Ber., 1997, 130, 473 CrossRef CAS.
  6. P. Schmidt-Winkel, W. W. Lukens, D. Zhao, P. Yang, B. F. Chmelka and G. D. Stucky, J. Am. Ceram. Soc., 1999, 121, 254 CrossRef CAS; M. Xue, T. Fujiu and G. L. Messing, J. Non-Cryst. Solids, 1990, 121, 407 CAS.
  7. J. D. Le May, R. W. Hopper, L. W. Hrubest and R. W. Pekala, MRS Bull, 1990, XV(12), 44 Search PubMed.
  8. A. Coudeville, P. Eyharts, J. P. Perrine, L. Rey and J. P. Rouillard, J. Vac. Sci. Technol., 1981, 18, 1227 Search PubMed; C. Chen, T. Norimatsu, M. Takagi, H. Katayama, T. Yamanaka and S. Nakai, J. Vac. Sci. Technol. A, 1991, 9, 340 CrossRef CAS; T. Norimatsu, C. M. Chen, K. Nakajima, M. Takagi, Y. Izawa, T. Yamanaka and S. Nakai, J. Vac. Sci. Technol. A, 1994, 12, 1293 CrossRef CAS.
  9. D. J. Watkins, J. R. Carruthers and P. W. Bettridge, Crystals User Guide, Chemical Crystallography Laboratory, University of Oxford, UK, 1988 Search PubMed.
  10. D. T. Cromer, International Tables for X-ray Crystallography, Kynoch Press, Birmingham, UK, 1974, vol. IV Search PubMed.
  11. G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, University of Göttingen, 1986, Germany.
  12. N. Pajot, R. Papiernik, L. G. Hubert-Pfalzgraf, J. Vaissermann and S. Parraud, J. Chem. Soc., Chem. Commun., 1995, 1817 RSC.
  13. T. J. Boyle, R. W. Schwartz, R. J. Doedens and J. W. Ziller, Inorg. Chem., 1995, 34, 1110 CrossRef CAS.
  14. J. G. Gainsford, T. Kemmitt, C. Lensink and N. B. Milestone, Inorg. Chem., 1995, 34, 746 CrossRef CAS.
  15. T. Carofiglio, C. Floriani, A. Sgamellotti, M. Rosi, A. Chiesi-Villa and C. Rizzoli, J. Chem. Soc., Dalton Trans., 1992, 1081 RSC.
  16. P. D. Moran, C. E. F. Rickard, G. A. Bowmaker, R. P. Cooney, J. R. Bartleh and J. L. Woolfrey, Inorg. Chem., 1998, 37, 1417 CrossRef CAS.
  17. N. W. Eilerts, K. A. Heppert, M. L. Kennedy and F. Takusagawa, Inorg. Chem., 1994, 33, 4813 CrossRef CAS.
  18. L. G. Hubert-Pfalzgraf, V. Abada and J. Vaissermann, J. Chem. Soc., Dalton Trans., 1999, 2407 RSC.
  19. M. Takagi, M. Ishihara, T. Norimatsu, T. Yamanaka, Y. Izawa and S. Nakai, J. Vac. Sci. Technol. A, 1993, 11, 2837 CrossRef CAS.
  20. J. D. LeMay, R. W. Hopper, L. W. Hrubesh and R. W. Pekala, MRS Bull., 1990, XV(12), 24 Search PubMed.
  21. W. R. Evens and D. P. Gregory, MRS Bull., 1994, XIX(4), 29 Search PubMed.
  22. D. A. Wrobleski and J. M. Williams, Langmuir, 1988, 4, 44 CrossRef; F. M. Kong, R. Cook, B. Haendler, L. Hair and S. Letts, J. Vac. Sci. Technol. A, 1988, 6, 1894 CrossRef.
  23. R. Arshady, Colloid. Polym. Sci., 1992, 210, 717 CrossRef CAS.
  24. M. P. Aronson and M. F. Petko, J. Colloid Interface Sci., 1993, 159, 134 CrossRef CAS.
  25. R. C. Cook, G. E. Overturff III, B. L. Haendler, F. M. Kong and S. A. Letts, Low-Density Foam Materials from Styrene–Divinylbenzene Inverse Emulsions, Final Report, Lawrence Livermore National Laboratory, Livermore UCL-LR-09207, 1992 Search PubMed.
  26. D. Hoebbel, T. Reinert and H. Schmidt, Mater. Res. Soc. Symp. Proc., 1996, 435, 467.
Click here to see how this site uses Cookies. View our privacy policy here.