A study of electron spin dynamics and phase transition in [Co(H2O)6][SiF6] by single crystal 19F NMR spin–lattice relaxation time measurements

(Note: The full text of this document is currently only available in the PDF Version )

Motohiro Mizuno, Tomonori Ida, Hideaki Nakahama and Masahiko Suhara


Abstract

The temperature dependence of the 19F NMR spin–lattice relaxation time, T1, was measured for a [Co(H2O)6][SiF6] single crystal in the temperature range 170–320 K. A large hysteresis for the transition was observed: Tc≈265 K with increasing temperature, Tc≈245 K with decreasing temperature. The spin–lattice relaxation time of the unpaired electron spin in the Co2+ ion (T1e) was estimated from 19F NMR T1, which is dominated by a dipole interaction between the 19F nuclei and the electron spins of the Co2+ ions. The energy differences between the electronic ground and excited states in the Co2+ ion involving the Orbach process were estimated from the temperature dependence of T1e as ε=180 and 330 cm-1 above and below Tc, respectively. The investigations of the angular variations of 19F NMR T1 were performed at 291 and 193 K. Although T1 for the rotation about the c axis was invariant, the variation of T1 was observed in a plane containing the c axis at both temperatures. An anisotropy of T1e was not seen at either temperature.


References

  1. S. Ray, A. Zalkin and D. H. Templeton, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1973, 29, 2741 CrossRef CAS.
  2. G. Chevrier and R. Saint-James, Acta Crystallogr., Sect. C: Struct. Crystallogr. Cryst. Chem., 1990, 46, 186 Search PubMed.
  3. S. Ray and G. Mostafa, Z. Kristallogr., 1996, 211, 368 CAS.
  4. E. Kodera, A. Torii and K. Osaki, J. Phys. Soc. Jpn., 1972, 32, 863 Search PubMed.
  5. R. D. Weir, K. E. Halstead and L. A. K. Staveley, J. Chem. Soc., Faraday Trans. 2, 1985, 81, 189 RSC.
  6. I. N. Flerov, M. V. Gorev, S. V. Mel'nikova, M. L. Afanas'ev and K. S. Aleksandrov, Sov. Phys. Solid State (Engl. Transl.), 1991, 33, 1921 Search PubMed.
  7. G. Jayaram and S. Sastry, Chem. Phys. Lett., 1981, 77, 314 CrossRef CAS.
  8. R. Harabański, Chem. Phys. Lett., 1986, 123, 182 CrossRef.
  9. M. Das and A. K. Pal, J. Phys. Chem. Solids, 1987, 48, 903 CrossRef CAS.
  10. B. Ghosh, N. Chatterjee, A. N. Das and S. C. Nath, J. Phys. C: Solid State Phys., 1978, 11, L243 CrossRef CAS.
  11. A. Birkland and I. Svare, Phys. Scr., 1978, 18, 154 Search PubMed.
  12. M. Majumdar and S. K. Datta, J. Chem. Phys., 1965, 42, 418 CAS.
  13. H. Rager, Z. Naturforsch. A: Phys. Phys. Chem. Kasmophys., 1984, 39, 111 Search PubMed.
  14. A. Abragam and M. H. L. Pryce, Proc. R. Soc. L ondon, Ser. A, 1951, 206, 173.
  15. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961 Search PubMed.
  16. I. J. Lowe and D. Tse, Phys. Rev., 1968, 166, 279 Search PubMed.
  17. G. H. Larson and C. D. Jeffries, Phys. Rev., 1966, 145, 311 Search PubMed.
  18. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970 Search PubMed.
  19. A. Bose, L. C. Jackson and R. Rai, Indian J. Phys., 1965, 39, 7 Search PubMed.
  20. P. Choudhury, B. Ghosh, M. B. Patel and H. D. Bist, J. Phys. C: Solid State Phys., 1984, 17, 5827 CrossRef CAS.
  21. P. Choudhury, B. Ghosh, M. B. Patel and H. D. Bist, J. Raman Spectrosc., 1985, 16, 149 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.