Covalent self-assembly of a dimeric borazaaromatic macrocycle†
(Note: The full text of this document is currently only available in the PDF Version )
Paul J. Comina, Douglas Philp, Benson M. Kariuki and Kenneth D. M. Harris
Abstract
Bis(10-hydroxy-10,9-boraza-2-phenanthryl) ether is capable of covalent self-assembly upon dehydration in solution to form the corresponding cyclic dimer.
References
D. Philp and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, 35, 1154 CrossRef; D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., 1995, 95, 2229 CrossRefCAS; J. S. Lindsey, New J. Chem., 1991, 15, 153 CAS; G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254, 1312 CrossRefCAS.
S. V. Kolotuchin and S. C. Zimmerman, J. Am. Chem. Soc., 1998, 120, 9092 CrossRefCAS; T. Martin, U. Obst and J. Rebek, Jr, Science, 1998, 281, 1842 CrossRefCAS; M. Mammen, E. I. Shakhnovich, J. M. Deutch and G. M. Whitesides, J. Org. Chem., 1998, 63, 3821 CrossRefCAS; T. B. Norsten, R. McDonald and N. R. Branda, Chem. Commun., 1999, 719 RSC; M. Enomoto and T. Aida, J. Am. Chem. Soc., 1999, 121, 874 CrossRefCAS.
Large, complex architectures can be constructed using strict self-assembly. The classical example is the Tobacco Mosaic Virus, see A. Klug, Angew. Chem., Int. Ed. Engl., 1983, 22, 565 Search PubMed.
For other elegant examples of covalent self-assembly, see S. J. Rowan, P. A. Brady and J. K. M. Sanders, Angew. Chem., Int. Ed. Engl., 1996, 35, 2143 Search PubMed; P. A. Brady and J. K. M. Sanders, Chem. Soc. Rev., 1997, 26, 327 CrossRefCAS; S. J. Rowan, D. G. Hamilton, P. A. Brady and J. K. M. Sanders, J. Am. Chem. Soc., 1997, 119, 2578 RSC; S. J. Rowan and J. K. M. Sanders, J. Org. Chem., 1998, 63, 1536 CrossRefCAS; S. J. Rowan, D. J. Reynolds and J. K. M. Sanders, J. Org. Chem., 1999, 64, 5804 CrossRefCAS; J. Ipaktschi, R. Hosseinzadeh, P. Schlaf and E. Dreiseidler, Helv. Chim. Acta, 1998, 81, 1821 CrossRefCAS; J. Ipaktschi, R. Hosseinzadeh and P. Schlaf, Angew. Chem., Int. Ed., 1999, 38, 1658 CrossRefCAS Sanders uses the term predisposition to describe the encoding of a thermodynamically-favourable oligomeric structure through the conformational properties of the monomer once incorporated into this larger structure. In this language, the conformational space which is open to monomer 1 should predispose, or encode, the formation of a particular oligomer of 1.
An example of this phenomenon, known as nucleation, can be seen in the assembly of oligonucleotides to form double helical structures which is essentially an all-or nothing process once a critical chain length is reached. See D. Pörschke and M. Eigen, J. Mol. Biol., 1971, 62, 361 Search PubMed; M. E. Craig, D. M. Crothers and P. Doty, J. Mol. Biol., 1971, 62, 383 CrossRefCAS.
K. D. M. Harris, B. M. Kariuki, C. Lambropoulos, D. Philp and J. M. A. Robinson, Tetrahedron, 1997, 53, 8599 CrossRefCAS; J. M. A. Robinson, B. M. Kariuki, D. Philp and K. D. M. Harris, Tetrahedron Lett., 1997, 38, 6281 CrossRefCAS.
T. C. Bruice and F. C. Lightstone, Acc. Chem. Res., 1999, 32, 127 CrossRefCAS.
G. Ercolani, J. Phys. Chem. B, 1998, 102, 5699 CrossRefCAS; A. J. Kirby, Adv. Phys. Org. Chem., 1980, 17, 183 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.