An acoustic technique for investigating the sol–gel transition

(Note: The full text of this document is currently only available in the PDF Version )

S. Serfaty, P. Griesmar, M. Gindre, G. Gouedard and P. Figuière


Abstract

The sol–gel synthesis of glasses and ceramics has received a great amount of scientific and technological interest. The close control of the evolution between the sol and gel states allows the elaboration of highly appropriate materials for technical purposes. The sol–gel transition can be characterized by a very rapid increase of the bulk viscosity of the medium. This work presents a non invasive technique of investigation based on acoustic resonance which can trace sol–gel evolution. Two different sol–gel matrices have been prepared from silica gels in the presence of either acidic and basic reagents. The study of the evolution of these sol–gel matrices, shows that in the gel phase, several resonance frequencies appear and increase as a function of time. In both types of matrices the evolution of these resonance frequencies follow an exponential law according to percolation models for a cross-linked polymeric network. In addition, this technique is particularly well suited to investigate SG matrices with short gelation times.


References

  1. J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 1988, 18, 259 CrossRef CAS.
  2. C. J. Brinker and G. Scherrer, Sol–gel Science, the Physics and Chemistry of Sol–gel Processing, Academic Press, San Diego, 1989 Search PubMed.
  3. L. L. Hench and J. K. West, Chem. Rev., 1988, 90, 33.
  4. D. Durand, Network formation from basic theories towards more realistic models, Harwood Ac. Publish. Polymer Yearbook, 1986, 229 Search PubMed.
  5. E. Wyn Jones and J. Gormally, Aggregation Process in Solutions, Elsevier, Amsterdam, 1983, p. 549 Search PubMed.
  6. A. Bleuzen, S. Barboux-Doeuff, P. Flaud and C. Sanchez, Mater. Res. Bull., 1994, 29, 1223 CAS.
  7. Sol–gel optics: Processing and Applications, ed. L. Klein, Kluwer Academic Pub., Boston, 1993 Search PubMed.
  8. B. C. Dave, B. Dunn, J. S. Valentine and J. I. Zink, J. I. Anal. Chem., 1994, 66, 22 Search PubMed.
  9. G. Pucetti and R. M. Leblanc, J. Phys. Chem., 1996, 100, 1731 CrossRef.
  10. W. Gander, Solving problems in Scientific Computing using Maple and Matlab, Spingler-Verlag, Berlin-Heidelberg, 1995, p. 121 Search PubMed.
  11. R. P. J. Corriu, D. Leclercq, A. Vioux, M. Pauthe and J. Phalippou, Ultrastructure of Advanced Ceramics, ed. J. D. Mackenzie and D. R. Ulrich, Wiley, New York, 1988, p. 113 Search PubMed.
  12. W. P. Mason, Physical Acoustics: Principles and methods, Academic Press, New York, London, 1964–1970 Search PubMed.
  13. G. S. Kino, Acoustic Waves, Prentice-Hall, Englewood Cliffs, NJ, 1987 Search PubMed.
  14. M. Mooney, J. Polym. Sci., 1959, 34, 599 Search PubMed.
  15. J. Fricke, J. Non-Cryst. Solids, 1992, 147–148, 356 CAS.
  16. V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelons and J. Phalippon, J. Non-Cryst. Solids, 1995, 186, 244 CrossRef CAS.
  17. P. Griesmar, C. Sanchez, G. Pucetti, I. Ledoux and J. Zyss, Mol. Eng., 1991, 1, 205 Search PubMed.
  18. P. Audebert, P. Griesmar, P. Hapiot and C. Sanchez, J. Mater. Chem., 1992, 2, 1293 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.