Minimization of acid effects at low consumption rates in an axially viewed inductively coupled plasma atomic emission spectrometer by using micronebulizer-based sample introduction systems

(Note: The full text of this document is currently only available in the PDF Version )

José-luis Todolí and Jean-michel Mermet


Abstract

Two methods were applied in order to minimize acid effects at very low liquid uptake rates in an axially viewed ICP-AES system: aerosol solvent elimination and direct injection in the plasma base. The latter choice eliminated the use of a spray chamber. Four different sample introduction systems were evaluated based on the use of micronebulizers. The first system made use of a so-called microconcentric nebulizer (MCN) associated with a double-pass Scott spray chamber. Two other systems were based on the use of a desolvation unit that consisted of a first and a second stage in which the solvent was partially removed. The solvent elimination system was either two Liebig condensers connected in series or a porous PTFE membrane. In these cases two different MCNs were coupled. The last sample introduction system employed was a direct injection nebulizer (DIN) that eliminated the contribution of the spray chamber to the acid interference. The liquid flow rates ranged from 5 to 120 µl min–1, depending on the sample introduction system employed. Nitric, hydrochloric and sulfuric acid of 0.9 mol l–1 were tested and 3.6 mol l–1 nitric acid solution was also studied in order to evaluate the acid concentration effect. The Mg II to Mg I line intensity ratio was used to evaluate any possible changes in the plasma conditions. The results showed that, for the MCN coupled to the spray chamber, the lower the liquid flow rate, the greater was the acid interference. The extension of this effect was dependent on the MCN configuration. For the desolvation systems and DIN the behavior was the opposite, the acid interference being more important as the liquid flow rate increased. For the four acids employed, and at very low liquid flow rates (below 30 µl min–1), the acid effect was eliminated by using a conventional desolvation system with a heating temperature of 160 °C, the condensation temperatures for the two condensers being 10 and 0 °C, respectively. The use of a membrane was found to be advisable because, under some conditions, acids and water gave the same analytical signal. As regards the DIN, it was able to eliminate the interference for 0.9 mol l–1 nitric and hydrochloric acid. Nevertheless, the two remaining solutions, i.e., 0.9 mol l–1 sulfuric and 3.6 mol l–1 nitric acid, gave rise to a decrease in the signal of around 20%.


References

  1. S. Greenfield, M. McD. McGeachin and P. B. Smith, Anal. Chim. Acta, 1976, 84, 67 CrossRef CAS.
  2. J. Farino, J. R. Miller, D. D. Smith and R. F. Browner, Anal. Chem., 1987, 59, 2303 CrossRef CAS.
  3. M. Marichy, M. Mermet and J. M. Mermet, Spectrochim. Acta Part B, 1990, 45, 1195 CrossRef.
  4. A. Fernández, M. Murillo, N. Carrión and J. M. Mermet, J. Anal. At. Spectrom., 1994, 9, 217 RSC.
  5. M. Carré, K. Lebas, M. Marichy, M. Mermet, E. Poussel and J. M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 271 CrossRef.
  6. A. Canals, V. Hernandis, J. L. Todoli and R. F. Browner, Spectrochim. Acta, Part B, 1995, 50, 305 CrossRef.
  7. I. B. Brenner, I. Segal, M. Mermet and J. M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 333 CrossRef.
  8. I. B. Brenner, J. M. Mermet, I. Segal and G. L. Long, Spectrochim. Acta, Part B, 1995, 50, 323 CrossRef.
  9. J.-L. Todoli, J.-M. Mermet, A. Canals and V. Hernandis, J. Anal. At. Spectrom., 1998, 13, 55 RSC.
  10. C. Dubuisson, E. Poussel, J.-M. Mermet and J.-L. Todoli, J. Anal. At. Spectrom., 1998, 13, 63 RSC.
  11. F. J. M. J. Maessen, J. Balke and J. L. M. De Boer, Spectrochim. Acta, Part B, 1982, 37, 517 CrossRef.
  12. M. A. E. Wandt, M. A. B. Pougnet and A. L. Rodgers, Analyst, 1984, 109, 1071 RSC.
  13. R. L. Dahlquist and J. W. Knoll, Appl. Spectrosc., 1978, 32, 1 CAS.
  14. X.-E. Shen and Q.-L. Chen, Spectrochim. Acta, Part B, 1983, 38, 115 CrossRef.
  15. S. A. Myers and D. H. Tracy, Spectrochim. Acta, Part B, 1983, 38, 1227 CrossRef.
  16. Z. Zadgorska, H. Nickel, M. Mazurkiewicz and G. Wolff, Fresenius' Z. Anal. Chem., 1983, 314, 356 CAS.
  17. R. I. Botto, Spectrochim. Acta, Part B, 1985, 40, 397 CrossRef.
  18. A. Delijska and M. Vounchkov, Fresenius' Z. Anal. Chem., 1985, 321, 448 CrossRef.
  19. R. M. Belchamber, D. Betteridge, A. P. Wade, A. J. Cruickshank and P. Davison, Spectrochim. Acta, Part B, 1986, 41, 503 CrossRef.
  20. K. Kitagawa and H. Kikuchi, Anal. Sci., 1988, 4, 53 CAS.
  21. B. Budič and V. Hudnik, J. Anal. At. Spectrom., 1994, 9, 53 RSC.
  22. C. Dubuisson, E. Poussel, J. L. Todoli and J. M. Mermet, Spectrochim. Acta, Part B, 1998, 53, 593 CrossRef.
  23. F. Vanhaecke, M. van Holderbeke, L. Moens and R. Dams, J. Anal. At. Spectrom., 1996, 11, 543 RSC.
  24. S. Augagneur, B. Médina, J. Szpunar and R. Łobiński, J. Anal. At. Spectrom., 1996, 11, 713 RSC.
  25. C. Dubuisson, E. Poussel and J.-M. Mermet, J. Anal. At. Spectrom., 1997, 12, 281 RSC.
  26. J. W. Olesik, J. A. Kinzer and B. Harkleroad, Anal. Chem., 1994, 66, 2022 CrossRef CAS.
  27. H. Liu and A. Montaser, Anal. Chem., 1994, 66, 3233 CrossRef CAS.
  28. H. Liu, R. H. Clifford, S. P. Dolan and A. Montaser, Spectrochim. Acta Part B, 1996, 51, 27 CrossRef.
  29. H. Liu, A. Montaser, S. P. Dolan and R. S. Schwartz, J. Anal. At. Spectrom., 1996, 11, 307 RSC.
  30. K. E. Lawrence, G. W. Rice and V. A. Fassel, Anal. Chem., 1984, 56, 289 CrossRef CAS.
  31. D. R. Wiederin and R. S. Houk, Appl. Spectrosc., 1991, 45, 1408 CAS.
  32. S. C. K. Shum, S. K. Johnson, H. Pang and R. S. Houk, Appl. Spectrosc., 1993, 47, 575 CAS.
  33. A. Montaser, H. Tan, I. Ishii, S.-H. Nam and M. Cai, Anal. Chem., 1991, 63, 2660 CrossRef CAS.
  34. R. I. Botto and J. J. Zhu, J. Anal. At. Spectrom., 1994, 9, 905 RSC.
  35. R. I. Botto and J. J. Zhu, J. Anal. At. Spectrom., 1996, 11, 675 RSC.
  36. A. Gustavsson, Spectrochim. Acta, Part B, 1988, 43, 917 CrossRef.
  37. K. Backstrom, A. Gustavsson and P. Hietala, Spectrochim. Acta, Part B, 1989, 44, 1041 CrossRef.
  38. J. W. McLaren, W. Lam and A. Gustavsson, Spectrochim. Acta, Part B, 1990, 45, 1091 CrossRef.
  39. A. Gustavsson and P. Hietala, Spectrochim. Acta, Part B, 1990, 45, 1103 CrossRef.
  40. J. Yang, T. S. Conver, J. A. Koropchak and D. A. Leighty, Spectrochim. Acta, Part B, 1996, 51, 1491 CrossRef.
  41. H. Tao and A. Miyazaki, J. Anal. At. Spectrom., 1995, 10, 1 RSC.
  42. CETAC Technologies Inc. Applications Bulletin, 003MCN1196U, CETAC Technologies, Omaha, NE Search PubMed.
  43. I. Novotny, J. C. Farinas, J.-L. Wan, E. Poussel and J. M. Mermet, Spectrochim. Acta, Part B, 1996, 51, 1517 CrossRef.
  44. J. M. Mermet, Spectrochim. Acta, Part B, 1989, 44, 1109 CrossRef.
  45. E. Poussel, J. M. Mermet and O. Samuel, Spectrochim. Acta, Part B, 1993, 48, 743 CrossRef.
  46. W. C. Hinds, Aerosol Technology Properites, Behaviour and Measurement of Airborne Particles, Wiley, New York, 1982 Search PubMed.
  47. M. A. Tarr, G. Zhu and R. F. Browner, J. Anal. At. Spectrom., 1992, 7, 813 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.