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ABSTRACT

Piezoelectric and triboelectric nanogenerators are at the forefront of converting ambient mechanical energy into
electricity. They have experienced a significant leap in functionality and autonomy through integration with
artificial intelligence (Al). This integration not only boosts nanogenerator performance for autonomous
operations by improving mechanical-to-electrical energy conversion efficiency but also forges new pathways in
robotics and intelligent systems. It enhances the responsiveness and adaptability of these devices. Looking ahead,
combining nanogenerators with Al is set to play a crucial role in promoting sustainable and eco-friendly energy
solutions. Their dual contribution to advancing the capabilities of intelligent systems and promoting
environmental sustainability marks a significant advancement in the use of nanogenerators in robotics. This
review underscores the essential role of Al in refining nanogenerators, highlighting a path toward achieving

energy autonomy and sustainability.

Keywords: piezoelectric nanogenerators (PENGS); triboelectric nanogenerators (TENGS); artificial intelligence

(Al); machine learning (ML); self-powered sensing; sustainable energy; self-powered robotics
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1 Introduction

In the dynamically advancing field of renewable energy technologies, piezoelectric and triboelectric
nanogenerators (PENGs and TENGS) emerge as cutting-edge approaches for converting ambient mechanical
energy into electricity.r% Since their inception over a decade ago, these technologies have developed rapidly,
sparking renewed interest in sustainable energy amidst a global energy crisis and concerns associated with
traditional fossil fuels. Utilizing piezoelectric and triboelectric effects, PENGs and TENGs can harvest energy
from various environmental sources, including motion, temperature changes, and structural vibrations, thereby

surpassing conventional energy harvesters in terms of electrical efficiency.t%’

The efficacy of PENGs and TENGs significantly depends on their design and material composition, which opens
significant opportunities and challenges for improving their electrical characteristics. This has led to a vigorous
multidisciplinary research effort, dedicated to optimizing these technologies for a wide range of applications,

from energy harvesting to sensing, monitoring, soft robotics, and electronic skins (e-skins).® 1840

The integration of artificial intelligence (Al) with PENGs and TENGs has initiated a novel phase in boosting
their functionality.*> 42 Al provides a solution to the challenges of developing portable, reliable, and eco-friendly
energy sources.****® By mimicking human cognitive processes, Al greatly enhances computational efficiency in
the structural design and material selection for nanogenerators.*®-*8 Early endeavors to integrate Al with PENGs
and TENGs have delivered promising results in tackling design, prediction, and optimization challenges,*®
signifying a pivotal shift from conventional statistical approaches. Al excels in uncovering complex
relationships among variables,?® *° significantly enhancing the exploration of design and materials for these

nanogenerators.

This synergy between Al and nanogenerators not only drives forward the frontier of energy harvesting
technologies but also heralds a new era in robotics and intelligent systems. In this realm, Al-empowered
nanogenerators enhance robotic perception, cognition, and interaction with their surroundings. This review aims
to shed light on recent progress in nanogenerators, with a focus on the transformative impact of Al integration

and its potential to revolutionize robotics and intelligent systems towards a more sustainable future.
2 Fundamentals of PENGs and TENGs

PENGs and TENGs are pioneering energy harvesting technologies that transform mechanical energy from the
environment into electricity. This transformation is grounded in Maxwell's displacement current theory, with
PENGs exploiting the piezoelectric effect and TENGs harnessing the triboelectric effect alongside electrostatic

induction.
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Introduced in 2006, PENGs work by converting mechanical stress or deformation directly into electrical energy
through the piezoelectric effect.>® This phenomenon is observed in materials that generate an electrical charge
in response to mechanical stress. Typically, a PENG consists of a piezoelectric material sandwiched between
two electrodes in a metal-insulator-metal configuration. Upon mechanical deformation, these structures produce
a voltage that drives an electrical current through an external circuit. Commonly used materials like ZnO or

PVDF are selected to optimize the conversion efficiency from mechanical stress to electrical energy.

TENGS, which emerged in 2012, operate based on the triboelectric effect.>? This involves generating electrical
energy through the contact and separation of two different materials, which leads to the surface becoming
positively charged and negatively charged. The movement between these charged surfaces creates an
electrostatic potential, which in turn drives an electrical current through a connected load. TENGs can be
designed in various configurations to suit different types of mechanical energy inputs, including vertical contact
separation, lateral sliding, single-electrode, and freestanding triboelectric layer modes. The key to enhancing
TENG performance lies in the selection of materials with opposite triboelectric polarities, optimizing the

efficiency of triboelectric charge transfer and electrical output.
3 Computation for nanogenerator integrations

Al-augmented nanogenerators bring new capabilities to on-device and cloud-based processing by supporting
continuous learning mechanisms that allow systems to adapt over time.>® Handling noisy data is critical for on-
device and cloud-based systems, as sensor readings from nanogenerators are often affected by background
interference and environmental factors.>* Robust statistical models, such as regression and resistant measures of
central tendency, help maintain performance by down-weighting the impact of outliers and noise.> %® These
models provide a stable baseline by focusing on the core data patterns, reducing the influence of erratic data
points. Outlier detection methods, such as isolation forests or distance-based algorithms, identify and manage
data points that deviate significantly from expected patterns, further improving the reliability of the model in

noisy environments.>’

Data preprocessing and filtering steps can enhance data quality before it is fed into models. Low-pass filters can
remove high-frequency noise from the data.>® By integrating continuous learning with robust noise management
techniques, Al-augmented nanogenerators can maintain high accuracy, adaptability, and resilience across

various applications.
3.1 On-device processing

On-device processing is essential for real-time applications like wearable monitoring, tactile sensing, and health
management, where low latency is critical to provide immediate feedback, ensuring functionality and user

satisfaction.® In prosthetics and smart clothing for health monitoring, slight delays in response time can disrupt
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user control, coordination, and timely health alerts.®® Rapid on-device processing helps prevent these issues by
supporting energy-intensive algorithms like Convolutional Neural Networks (CNNs) and Deep Neural
Networks (DNNs) for image classification and predictive modeling, as well as less demanding algorithms like
Artificial Neural Networks (ANNSs), Deep Belief Networks (DBNs), and linear techniques such as Principal
Component Analysis (PCA), Linear Classification Algorithms (LCA), and Linear Discriminant Analysis (LDA)

(Fig. 1).

On-device datasets, such as biometric data, sensor readings, and activity logs, are processed in real time to
provide immediate insights.®? Efficient algorithms prioritize responsiveness within resource constraints, making
them ideal for real-time motor control and sensor feedback. These algorithms often operate in bursts, activating
only during specific time windows when sufficient energy is available, thus conserving power.®® For example,
Recurrent Neural Networks (RNNs) may analyze heart rate data intermittently, performing computations during
peak energy generation.®® However, on-device systems are limited by processing power and energy efficiency,
restricting the complexity of algorithms and potentially hindering tasks like complex image processing or

extensive data analysis.%

In addition to energy efficiency, balancing energy consumption and decision accuracy is critical in energy-
limited applications like wearables and Internet of Things (IoT) devices, where small batteries and low-latency
responses are essential for effective user interaction.®® While wearables face strict energy constraints, larger 10T
or robotic systems have fewer power limitations. Efficient algorithms are necessary to maintain high accuracy
and reliability, particularly for real-time monitoring. Pruning,®® quantization,®” and lightweight models like
MobileNets®® streamline neural networks by reducing complexity, memory footprint, and computational load,

enhancing processing speed without significantly compromising accuracy.

Adaptive processing also adjusts model intensity based on task demands; for instance, RNNs, particularly Long
Short-Term Memory (LSTM) networks, may activate only when vital signs deviate significantly, such as in
abnormal heart rates, switching to simpler models under stable conditions to conserve energy.%®"° This approach

extends battery life and efficiency in health monitoring while enabling quick responses to health changes.

Continuous health monitoring systems should ensure high accuracy in tracking vital signs, necessitating energy-
efficient algorithms capable of sustaining long-term operation. In contrast, environmental sensors, which
monitor slowly changing conditions, need only intermittent data collection, allowing for reduced power
consumption.” To maximize efficiency and precision, Al-augmented nanogenerators employ lightweight
models for less critical tasks and shift to complex algorithms when necessary, optimizing energy use.’
Additionally, integrating energy harvesting and storage solutions, like nanogenerators and supercapacitors,
buffer power supply for peak demands, ensuring consistent performance. Advances in energy conversion

efficiency of nanogenerators, alongside microbatteries and supercapacitors, stabilize power for intensive tasks,
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like deep learning and real-time analytics.”® Low-power hardware and application-specific integrated circuits
(ASICs) enhance efficiency, supporting self-powered applications.”* By effectively combining these strategies,
Al-augmented nanogenerators can maximize functionality while minimizing energy consumption, ultimately

enhancing user experience across various applications.
3.2 Cloud-based processing

Cloud-based processing excels in handling computationally intensive, less latency-sensitive tasks, allowing
extensive datasets to be offloaded for advanced data analysis and pattern recognition.” Security and document
management applications benefit from this, as tasks like data encryption and complex pattern analysis require
high processing power but are not critically time-sensitive. A hybrid approach is often used, with on-device
processing for immediate feedback and cloud processing for in-depth analysis, such as long-term trend detection
in gait analysis.”® While latency-sensitive applications require fast response times, on-device processing can
meet this need but may lack resources for complex analyses.”” In contrast, cloud solutions handle intricate tasks,
including deep learning and extensive pattern recognition, though data transmission may introduce delays,® as
cloud speeds range from hundreds of milliseconds to seconds depending on network conditions and task
complexity.” Transmission rates vary widely, with 4G long-term evolution (LTE) networks typically offering
10-50 Mbps,® while cloud tasks require higher bandwidth. On-device systems also conserve power to prolong
battery life, while cloud servers, although more energy-intensive, support larger loads.®* Integrating Al with
nanogenerators for on-device and cloud-based processing enables adaptive, intelligent systems, balancing real-
time responsiveness with complex data capabilities.

4 Al-integrated nanogenerators

Al algorithms play a pivotal role in predicting and improving the efficiency, responsiveness, and adaptability of
nanogenerators, paving the way for developments in robotics, self-powered sensing, energy-efficient actuation,

and intelligent human-machine interactions.?? 23 38.82-98

The implementation of Al encompasses supervised learning models (classification and regression) and
unsupervised models (clustering and dimensionality reduction).®® % Unsupervised learning models like DBNs
to capture complex hierarchical data representations, and Hopfield Neural Networks (HNNs) to perform
associative memory tasks, operate on unlabeled data to identify inherent structures or patterns without
predefined outputs. In contrast, supervised learning, such as Support Vector Machines (SVMs) for classifying
data by identifying the optimal hyperplane that separates different classes'®* and decision trees to split data based
on feature values for interpreting user activities, are trained on labeled data, where each input is paired with
its corresponding output, allowing the algorithm to learn patterns and make predictions. ANNs are trained on

labeled data for tasks like classification and regression,'® while LCA and LDA serve for dimensionality
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reduction and class separation, respectively.'® LCA uses linear decision boundaries to classify labeled data, and
LDA identifies the linear combination of features that best separates classes, maximizing inter-class distance

while minimizing within-class variance by leveraging the mean and variance of each class.

K-Nearest Neighbors (KNN) is a supervised, instance-based algorithm that classifies data points by proximity
to labeled training instances,!®® enabling rapid gesture recognition by comparing real-time sensor data with
recorded movements for quick responses.*’ 1%6-10° CNNs, versatile in machine learning, are primarily used in
supervised tasks like image classification, object detection, and segmentation,'® but can also function
unsupervised, as in autoencoders, to learn data representations without labels. Similarly, RNNs are often used
for supervised tasks like speech recognition and time-series prediction but can adapt to unsupervised tasks like
sequence prediction,!** allowing for flexible application across diverse machine learning challenges. DNNSs,
composed of multiple interconnected layers, effectively learn complex data relationships, making them suitable
for pattern recognition tasks and multidimensional sensor data processing for applications requiring high

accuracy in classification and prediction.1!2 113

Fig. 2 illustrates the integration of Al and nanogenerators to enhance daily life, industrial monitoring, and
advanced interactive platforms.!#1® In wearable technology, nanogenerators enable biometric and health
monitoring by supporting advanced machine learning algorithms, such as SVMs, neural networks, and decision
trees, for health tracking and activity analysis.'* 3747 117-121 Decision trees classify user activities by branching
on feature values, while neural networks capture complex behavior patterns, and SVMs identify physiological
signals (e.g., heart rate, skin temperature) for personalized monitoring by identifying the optimal hyperplane
that separates different classes of data points.®® 122 123 E-skins, which simulate touch, typically utilize CNNs to
process spatial data, extracting features from tactile interactions to respond to stimuli accurately by applying
convolutional layers that filter input data and pooling layers that reduce dimensionality.?41% In environmental
monitoring, nanogenerators paired with CNNs and SVMs enhance tasks like object recognition,®*” 13 liquid
leakage detection,'3 140 and gas sensing,*” 4 142 with SVMs classifying environmental conditions and CNNs

analyzing patterns for improved sensor detection.

RNNs are well-suited for sequential data tasks where the order of data points is crucial, such as speech
classification and lip decoding, by managing temporal dependencies in speech signals.®3 69 109, 114, 143, 144
However, standard RNNs struggle with retaining long-term information due to the vanishing gradient
problem.!® This limitation leads to challenges in learning long-term dependencies for applications requiring

sustained contextual awareness.

LSTMs, a specialized RNN type, address this by using memory cells to track behavior changes and predict
future actions over extended periods,*!! making them effective in user activity recognition and health monitoring

applications.!#® 147 |_.STMs enable continuous monitoring of vital signs like blood pressure with improved
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accuracy by maintaining important information across longer sequences, offering timely health updates essential
for medical intervention.'#81° ANNS, consisting of interconnected layers of nodes, are also used for monitoring,
including tasks like marine environmental surveillance and pressure mapping,*® as they can learn to identify
patterns and make predictions based on diverse inputs to model complex relationships within data and handling
intricate datasets.'” 2% 151-1% HNNs, another form of RNNSs for associative memory, excel at pattern recognition
by managing complex patterns with hierarchical structures derived from data, such as typing dynamics and
tactile information.’®™ HNNSs can retrieve stored patterns based on partial inputs, making them suitable for
applications that require quick and reliable recognition of previously learned information, thereby improving

user experience in systems that rely on human interaction.

DBNSs, combining multiple layers of stochastic, latent variables to facilitate feature learning and classification,®
can capture hierarchical representations in high-dimensional data through unsupervised feature learning, useful
in applications with unlabeled or poorly structured data. PCA aids in reducing the dimensionality of data from
human interactions and typing dynamics, retaining key features while enhancing classification accuracy by

transforming them into a smaller set of uncorrelated variables known as principal components.'43

The interplay between nanogenerators and various machine learning algorithms marks a step toward intelligent
systems that augment human capabilities and experiences. This integration can achieve improved accuracy,
efficiency, and user interaction, involving a range of algorithms (Table 1), such as SVM for object and character
recognition,®® > KNN through instance-based learning for analyzing signal sequences and handwriting
features,'%® ANN for time-series analysis in sensory networks,? 1! CNN for image and pattern recognition,*?>

1%8-160 and RNN for sequential tasks such as speech processing.*

One key approach to reusing Al models without the need for full retraining is transfer learning, which involves
utilizing pretrained models that have already learned general features from large datasets and fine-tuning them
for new applications.’®* For example, a health monitoring model can be fine-tuned for fitness tracking by
modifying layers to target metrics like steps or heart rate.'®2 Another effective strategy is modular Al design,
where specific components of a model can be reused across different applications.'®® Foundational layers that
have been trained on common features, such as motion patterns or general image features, can be repurposed
for various tasks like differentiating between types of physical activity or detecting anomalies in sensor data.
This modularity allows for significant savings in retraining efforts, enabling systems to adapt quickly to new
challenges while maintaining efficiency. Moreover, distributed processing approaches where computational
tasks are spread across multiple systems or devices, allow for handling more complex tasks while maintaining
performance.'®* In larger systems, this can involve cloud computing resources that complement local processing,
enabling advanced data analytics and machine learning operations that exceed the capabilities of individual

devices.
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4.1 On-device Al-integrated TENG for tactile sensing and recognition

Nanogenerators are pioneering a new era in artificial sensory systems and human-machine interfaces (HMIs) by

creating self-powered, intelligent devices inspired by the biological sensory nervous system.*6

Various Al models, such as CNNs, SVMs, and RNNSs, are tailored to handle the data types in tactile sensing and
gait analysis (Table 2). For gait analysis, 1D CNNs excel at processing sequential, time-series data along a single
temporal dimension.®® These layers, adapted with broader strides, capture temporal dependencies within each
gait cycle, supporting accurate classification of gait patterns for applications like sports training and
rehabilitation. Pooling layers reduce data size while retaining key features, ensuring efficiency. 2D CNNs are
well-suited for tactile sensing, using convolutional layers to capture spatial relationships such as texture and
shape.®” By pairing these layers with the max-pooling layer, which down-samples by retaining only the most
prominent features, 2D CNNs reduce data dimensionality while preserving essential spatial features. Fine-tuning
stride and kernel settings enhances localized sensitivity, enabling precise, high-resolution data processing for
real-time, responsive interactions. In complex scenarios requiring analysis across spatial and temporal
dimensions, like robotic tactile systems and environmental monitoring, 3D CNNs capture evolving three-
dimensional patterns.*®® When used in tandem with CNNs, SVMs enhance the tactile peripheral nervous system
(TPNS) sensor’s ability to classify structured data, recognizing high-dimensional patterns like pressure or
texture variations by identifying optimal hyperplanes, making them ideal for nuanced recognition tasks.'5®
RNNSs, particularly LSTMs, handle the sequential nature of tactile data by capturing short- and long-term
dependencies, essential for interpreting touch sequences in real time, benefiting prosthetics and robotics.”

The integration of these Al models—2D CNNs for spatial data, 1D CNNs for temporal data, and SVMs and
LSTMs for classification and sequential analysis—demonstrates the flexibility and adaptability of Al-

augmented, nanogenerator-powered systems.
4.1.1 SVMs, 2D CNNs, and RNNs for tactile peripheral nervous system

TPNS sensor, powered by TENG-based nanogenerators, exemplifies the synergy of nanotechnology and
machine learning in mimicking human tactile responses. By converting mechanical touch into electrical signals,
TENGS enable real-time, nuanced tactile perception, enhanced through advanced machine learning algorithms
like SVMs, CNNs, and RNNSs, which classify and interpret complex tactile data with high accuracy.

SVMs analyze the structured, high-dimensional data (datasets with numerous features) from TENG sensors,
including touch intensity, duration, and texture, by identifying optimal hyperplanes that separate tactile classes,
such as different pressures and textures, with high precision.'3% 16171 By maximizing the distance between data
points from different classes, SVMs achieve high classification accuracy, making them useful for recognizing

structured patterns in tactile data. This capability enriches the TPNS by distinguishing tactile stimuli in
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applications like prosthetics and robotics. Additionally, 2D CNNs work in tandem with SVMs to extract spatial
hierarchies in tactile data.'®” Through convolutional layers, CNNs capture local features like edges and textures,
creating a hierarchical understanding of tactile inputs. As the data moves through deeper layers of the CNN,
increasingly complex spatial features are extracted, creating a hierarchical understanding of tactile input.
Pooling layers further enhance this by downsampling while retaining essential details, enabling tasks such as
identifying textures akin to braille!”> (Fig. 3a). SVMs classify these patterns, ensuring high accuracy in

differentiating tactile sensations.

For temporal tactile data, the TPNS employs RNNs, specifically LSTM networks, to handle the dynamic nature
of tactile data that unfolds over time.1’® RNNs process sequential data by retaining information about previous
inputs for interpreting patterns that change or evolve, while LSTM networks enhance this capability by
incorporating memory cells that manage both short-term and long-term dependencies in data sequences,
allowing the TPNS to analyze the occurrence of touch and its duration and intensity over time.1”® In prosthetics
and robotics, LSTMs support real-time adaptive responses, imitating human touch perception effectively.

TENGS generate power autonomously by converting mechanical touch into electricity, eliminating the need for
external batteries and enhancing the sensor’s eco-friendliness. This self-sustained energy generation supports
continuous, real-time tactile processing, allowing the TPNS to deliver rapid, precise responses for applications
in prosthetics and intelligent robotics that rely on immediate, reliable feedback to function effectively 17418
These advancements position the TPNS as a transformative technology in future sensory networks, where
energy-efficient, intelligent sensors can provide human-like tactile sensitivity in environmentally sustainable

ways.
4.1.2 2D CNNs for handwriting human-machine interfaces

The development of TENG-powered handwriting HMIs demonstrates the integration of Al and nanogenerators
for interactive applications. TENG-based touchpads convert mechanical handwriting energy into unique
electrical signals, capturing the nuances of each user’s style'®’ (Fig. 3b). Given the complex, multidimensional

nature of these signals, CNNs play a key role in accurately processing and converting them.

In handwriting HMIs powered by TENGs, CNNs manage spatial data from the grid-like TENG sensor array,
which records variations in pressure, texture, and shape.'® 18 This spatial data forms hierarchical levels of
detail, with CNNs progressively abstracting and refining information from basic outlines to intricate handwriting

characteristics through multiple convolutional and pooling layers.

Convolutional filters slide across the sensor grid, capturing fine details in pressure and contact that distinguish
individual handwriting styles.’®” As data passes through layers, CNNs build hierarchical representations, from

basic shapes to complex strokes, allowing for high-resolution interpretation of handwriting. Max-pooling layers
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further streamline data by retaining prominent features like high-pressure zones and distinct edges, reducing

noise and data complexity.%

Tactile inputs in flexible, wearable devices often vary due to changes in pressure, contact angle, or surface area,
particularly when devices undergo bending or twisting. To accommodate these variations, CNNs employ fine-
tuned stride settings and adaptive kernel sizes. Finer stride settings (smaller movement steps across the data)
enhance the CNN's sensitivity to minor changes, capturing subtle differences in texture or pressure.'% 192
Meanwhile, adaptive kernel sizes allow the model to focus on different scales of spatial features, adjusting its
“field of view” to capture both fine details and broader strokes.!®® This adaptability is crucial for applications

requiring real-time feedback, allowing CNNs to maintain accuracy even under physical distortions.

The synergy of TENGs and CNNSs enables real-time data processing and instant feedback in handwriting HMIs.
TENGSs generate continuous electrical signals from handwriting, which CNNs rapidly interpret, supporting
applications like virtual keyboards and digital notetaking where seamless interaction is expected. This
integration sets a benchmark in self-powered HMIs, balancing energy efficiency with adaptability to physical

changes.
4.1.3 1D and lightweight CNNs for smart socks and sports gait analysis

In sports and personal fitness, integrating TENGs with Al in smart wearables, like smart socks and shoes, is
revolutionizing gait analysis. These devices embed TENG sensors that harvest kinetic energy from foot
movements, converting it into electrical signals that reflect gait characteristics, walking phases, and pressure
distributions?®6: 194195106 (Fjg 3¢). The self-powered feature allows for long-term continuous, discreet monitoring,
fitting seamlessly into daily wear. Gait details, like stride length, cadence, and weight distribution, are analyzed

for insights into balance and stability.

Unlike tactile sensing, which relies on spatial data, gait analysis involves time-series data—a sequence of signals
that represent movement patterns over time. 1D CNNs are well-suited as they can detect temporal dependencies
across sequential movements, enabling the system to interpret complex gait cycles.'®® 1% 1D convolutional
layers slide filters across the time-series data, capturing recurrent patterns and subtle shifts in foot pressure over
each step. This process enables the system to classify various gait types (e.g., normal walking, limping) by
detecting recurring signal patterns that correspond to different types of movement. The use of broader strides in
1D CNNs allows the network to observe multiple time steps at once, capturing sequential relationships within
the gait cycle that provide a complete, coherent view of movement patterns. This enhances classification
accuracy by allowing the network to integrate and contextualize data over a sequence, rather than focusing solely

on individual points in time.
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Lightweight CNNs, which require minimal computational resources, further optimize on-device analysis,
capturing essential features of foot pressure and movement for real-time feedback.!®® Unlike typical CNNs,
which demand substantial processing power, lightweight CNNs use fewer parameters and streamlined layer
structures, making them ideal for energy-efficient wearable devices. They process data from embedded sensors
that monitor foot pressure and movement across gait stages. This capability supports instant adjustments in

sports training and rehabilitation, where small gait corrections enhance performance and reduce injury risk.

Real-time feedback is vital for high-performance sports and rehabilitation, enabling athletes, coaches, and
therapists to make precise adjustments based on accurate gait data. CNN-enhanced wearables offer valuable
insights, including stability, balance, and load distribution, critical for athletic performance, injury prevention,
and recovery tracking. In personalized medicine, detailed gait analysis assists in diagnosing mobility issues and
customizing rehabilitation exercises to an individual’s movement patterns.'”1% This technology allows coaches
to refine technique, monitor fatigue, and proactively address injury risks by identifying asymmetries in
movement.1*® In rehabilitation, CNNs provide precise progress tracking, allowing therapists to adjust treatment
plans based on quantifiable, real-time feedback, fostering more effective recovery.?® By enabling data-driven

decisions, Al-powered smart wearables optimize performance and minimize injury risks.?%
4.2. Cloud-based Al-integrated TENG for security and document management
4.2.1 SVM and PCA for high-dimensional document classification

The integration of nanogenerators with SVM and PCA is advancing energy-efficient solutions in user
authentication, security, and document management. When implemented in devices like keyboards and
touchpads, TENGs can capture individual typing dynamics such as rhythm, pressure, and speed—producing
unique, high-dimensional data patterns for each user*” 292 (Fig. 3d). SVM is suited for handling this high-
dimensional data due to its ability to create an optimal hyperplane that maximally separates data classes, which
correspond to distinct typing behaviors associated with each user. This separation ensures robust, precise user
authentication, as SVM effectively classifies nuanced variations in typing patterns, making it difficult for

unauthorized users to replicate.

PCA, on the other hand, plays a complementary role by simplifying high-dimensional datasets for efficient data
processing and storage.?®® PCA works by identifying the main components (features) of the data, reducing
complexity while preserving the most significant patterns, thereby optimizing the data for classification by SVM.
This combination of PCA and SVM improves processing efficiency and enhances classification accuracy, as
PCA distills the data to its most relevant features before SVM performs classification. In cloud-supported
systems, this setup allows for large-scale data analysis, making it a viable solution for secure user authentication

and document management across distributed networks.
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In document management applications such as library archives and secure facilities, this approach is beneficial
for monitoring document interactions. Systems can capture electrical signals generated by handling documents
and analyze these signals with SVM and PCA to track user interactions in real-time and prevent theft't’ 204,205
(Fig. 3e). This innovation surpasses traditional radio frequency identification-based systems, providing a smarter,

more sustainable solution that leverages cloud capabilities for managing extensive, high-dimensional datasets.
4.2.2 Decision trees for workflow automation in document management

Decision trees are hierarchical models that make classifications or decisions based on a series of branching paths
determined by specific criteria, making them ideal for workflow automation in document management.?% By
mapping out logical decisions in a tree-like structure, Decision trees can systematically evaluate different
features of documents such as classification categories, access levels, and handling requirements without
requiring manual input for every step. This systematic branching allows for rapid, consistent categorization of
documents, ensuring efficient management and access control. In document storage and retrieval systems, a
decision tree could automatically categorize documents by type, assign appropriate access permissions, or flag
documents requiring special handling. This automation minimizes manual oversight, streamlining processes in

secure environments where handling large volumes of documents is essential.

Handwriting recognition in document management captures an individual’s unique writing style through sensors
that detect variations in mechanical pressure exerted during writing?®’ (Fig. 3f). SVM classifies these distinct
writing patterns for reliable identity verification, while PCA simplifies data complexity, making classification
more efficient by focusing on key features of the handwriting. This application provides an additional layer of
security in document management, as each user’s handwriting is treated as a unique biometric signature that can

be authenticated alongside other security protocols.

By combining SVM’s precision in distinguishing high-dimensional data and PCA’s efficiency in reducing data
complexity, handwriting recognition systems offer secure, energy-efficient verification methods suitable for
document management in high-security environments.t’® 2% This integration not only enhances user
authentication but also extends the capabilities of document management by adding personalized, biometric-
based security options, contributing to a more intelligent, responsive, and energy-efficient system for managing

sensitive information.
4.3 Cloud-based Al-integrated TENG for pattern recognition and memory
4.3.1 PCA, and SVM for typing analysis and user authentication

The combination of TENGs with PCA and SVM algorithms has significantly advanced typing behavior analysis,

achieving greater accuracy and efficiency. TENGs capture mechanical nuances of typing, such as signal
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magnitudes, latencies, and hold times, transforming these details into electrical signals that serve as robust
datasets. PCA simplifies this high-dimensional data by reducing it to essential components, effectively isolating
the core elements of typing patterns without unnecessary complexity?°? (Fig. 3g,h). By distilling the data into
its most informative aspects, PCA sharpens the focus for further analysis, improving computational efficiency.

Utilizing the refined data provided by PCA, SVM employs its classification capabilities to differentiate between
individuals based on their unique typing signatures. SVM identifies an optimal hyperplane that separates data
points across high-dimensional spaces, capturing the subtle distinctions in typing behavior that are critical for
accurate user identification and authentication. The synergy between PCA’s dimensionality reduction and
SVM’s high-precision classification allows for a robust, energy-efficient typing analysis system, supporting

enhanced security and personalization in applications like user authentication and productivity analysis.
4.3.2 HNNs, and DBNs for smart robotics and environmental interaction

HNNs play a pivotal role in developing artificial sensory memory for robotics, particularly in the recognition
and recall of complex patterns.™> HNNs are associative memory networks that excel at pattern recognition and
recall based on partial inputs, making them highly effective for sensory memory applications in robotics. In
systems with TENG matrix sensors, which capture intricate tactile data from interactions, HNNs process and
store these sensory patterns. This capability enables robots to dynamically respond to changes in texture,
pressure, and other tactile stimuli by recognizing familiar patterns and recalling previous interactions®®® (Fig.
3i). With their layered architecture, HNNs support a robust framework for recognizing and storing high-
dimensional sensory data, allowing robots to adapt to various environmental stimuli with precision and memory

recall.?10

Complementing HNNs, DBNs, and layered neural networks that learn hierarchical data patterns without the
need for labeled inputs, can be used for sensory memory systems where data often lacks explicit labels through
unsupervised feature learning, which is beneficial for high-dimensional tactile data.® In cloud-based tactile
memory applications, DBNs extract meaningful features directly from complex, multi-faceted TENG sensor
data, including information on texture, pressure, and motion. As DBNs autonomously identify underlying
structures and patterns within this data, they allow sensory systems to improve responsiveness and adapt over

time.

The use of cloud infrastructure with DBNs supports the substantial computational requirements for processing
high-dimensional tactile data. This infrastructure enables DBNs to efficiently manage and organize complex
tactile information, facilitating pattern recognition and feature learning that enhances robotic systems’ real-time

interactions and memory functions. HNNs and DBNs provide a comprehensive framework for artificial sensory
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memory, allowing intelligent robotic systems to navigate, interpret, and recall tactile experiences with precision,

thereby paving the way for responsive and autonomous interactions.
4.4. On-device/cloud-based Al-assisted advanced sensory detection
4.4.1 Cloud-integrated CNNs for object recognition in environmental monitoring

Cloud integration enhances the power of CNNs, enabling them to handle large-scale, high-dimensional datasets
while benefiting from cloud-based computational resources. The cloud infrastructure continuously refines CNN
models, improving accuracy and allowing them to scale effectively for diverse environmental applications. This
setup supports real-time monitoring needs in data-intensive scenarios, as CNNs can quickly update and analyze
large datasets from various sensors, providing precise and scalable insights essential for safety and
environmental monitoring. The cloud-enabled architecture makes CNNs well-suited for large-scale
environmental data analysis, where continuous updates and real-time object recognition play vital roles?'! 212
(Fig. 4a,b).

For environmental monitoring, CNNs integrated with cloud computing bring advanced capabilities for object
recognition and data classification. CNNs are adept at detecting spatial patterns through their hierarchical
structure, which processes data in layers to capture features ranging from simple edges to intricate shapes. This
makes CNNs highly effective in identifying objects, patterns, and environmental features, such as recognizing
volatile organic compounds (VOCs) or detecting specific items or hazards within complex landscapes® 142 (Fig.
4c).

4.4.2 RNNs for real-time sound analysis

Al-enhanced sensory detection systems that combine nanotechnology with RNNs are significantly advancing
real-time sound analysis capabilities in robotics. Biomimetic tactile sensors, such as those powered by TENGs,
autonomously respond to mechanical stimuli akin to human skin, allowing robots to detect and precisely process
subtle changes in pressure and strain?'® (Fig. 4d). An important development in this field is a self-powered neural
tactile sensor that integrates a graphene layer with a TENG sensor featuring microlines, yielding heightened

sensitivity to pressure and vibration®* (Fig. 4e).

RNNs offer distinct advantages for real-time sound analysis, making them highly effective in applications
requiring continuous and rapid processing of audio data. Their unique architecture enables them to maintain
context across time steps, making RNNs especially well-suited for handling sequential data like sound waves.
This capacity to retain information allows RNNSs to capture temporal patterns in sound, as they can integrate

context from previous inputs—ideal for recognizing complex acoustic signatures that unfold over time. For
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example, variations in pitch, frequency, and duration in sound waves are effectively analyzed as the RNN

processes each element in the sequence, updating its understanding based on previous patterns.

In real-time applications, RNNs operate directly on-device to minimize latency, enabling instant processing of
acoustic data and allowing robotic systems to respond to auditory cues with minimal delay. This immediate
responsiveness is particularly valuable in robotics, where quick sound recognition and reaction are crucial for
navigation, interaction, and environmental awareness. By processing sound data as it arrives, RNNs enable
robotic systems to differentiate sounds in dynamic environments—whether identifying speech, mechanical
noise, or environmental cues in real-time—enhancing their adaptability, autonomy, and responsiveness to the
surrounding world?®® (Fig. 4f). Moreover, the introduction of biomimetic piezoelectric acoustic nanosensors
marks a breakthrough in auditory fidelity. These sensors convert vibrations into electrical signals similar to the

human hearing process, offering advanced sound detection capabilities®'® (Fig. 5a).

These advancements in CNN-driven object recognition for environmental monitoring and RNN-enhanced real-
time sound analysis mark a transformative step toward autonomous, responsive sensory systems in robotics. By
merging Al with nanotechnology, these approaches enable real-time learning and adaptive functionality across
various fields, including medical diagnostics, environmental monitoring, and smart infrastructure. The
combination of on-device and cloud-supported Al bolsters robot interactions with their surroundings, enhancing
pattern recognition, decision-making, and sensory precision, furthering the autonomy and intelligence of

advanced robotics systems.
4.5. On-device Al-assisted PENG wearables for health monitoring
4.5.1 ANN and RNN for wearable health monitoring

The fusion of nanogenerators with Al-driven algorithms, specifically ANNs, and RNNs, empowers wearable
health monitors to continuously track health metrics in real time.*? 118 209217232 ANNs process complex,
nonlinear health data patterns by extracting key features from multiple sensor inputs, which is vital for
comprehensive health monitoring. RNNSs, on the other hand, excel at interpreting time-dependent data, making
them ideal for sequential monitoring tasks, such as analyzing heart rate variability, breathing patterns, or
prolonged physical activity. By retaining information over time, RNNs allow wearables to recognize evolving
patterns in health signals, which is essential for detecting subtle changes that may indicate health risks.

Wearable devices that incorporate ZnO nanorod-based PENGs add an extra dimension to this functionality.?*
235 These materials are highly responsive to motion, generating electrical signals in response to bending,
stretching, and other mechanical movements. This sensitivity enables precise measurement of physiological
movements and provides valuable input for ANN and RNN models to analyze, enhancing the quality and

relevance of real-time health monitoring. This breakthrough lays the groundwork for creating highly sensitive
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e-skins?® (Fig. 5b,c). When coupled with Al, these devices can interpret complex motions, finding their place

in advanced prosthetics and interactive technologies, thus improving the human-machine interface.
4.5.2 SVM, KNN, and decision trees for wearable tactile feedback

Advances in stretchable nanogenerators are revolutionizing wearable tactile feedback, making it possible for
devices to deliver responsive sensations directly to users' fingertips!? (Fig. 5d). These PENG-based devices,
designed for industrial-scale production, have transformed touch-sensitive wearables, enabling them to detect
and respond to tactile inputs in real time. By integrating these nanogenerators with Al, wearable devices provide
users with a more immersive, intuitive interaction, as they can interpret and respond to complex tactile stimuli.
The development of bio-PENGSs, which utilize eco-friendly materials to generate power from body movements,
furthers this approach, supporting sustainable, self-powered wearables capable of adapting to various

environmental and physiological cues®®’ (Fig. 5e).

In achieving this high degree of tactile feedback, several algorithms play complementary roles, each addressing
distinct aspects of tactile data processing. SVMs are pivotal for classifying tactile data by clearly separating
various touch inputs, such as different pressures or textures, into specific categories, allowing wearables to
differentiate touch types accurately.?®® KNN, a straightforward yet effective algorithm, is useful for classifying
tactile sensations by comparing them to known data points. KNN's proximity-based approach is valuable for
recognizing textures, pressure levels, or gestures, making it a natural complement to SVM in applications where
cumulative sensory data informs tactile feedback.?®® Decision trees and random forests can enhance tactile
classification by evaluating input data based on multiple criteria.?*° Decision trees individually assess sensory
data, while random forests employ an ensemble of trees for more robust classification.

While SVMs offer foundational classification precision, KNN’s historical comparison helps refine touch
recognition by drawing on accumulated sensory data. Decision trees and random forests, with their multiple-
layered decision-making, add robustness to tactile feedback by providing nuanced classification for a broad
range of touch inputs. By dynamically interpreting and adapting to tactile inputs, these algorithms empower
nanogenerator-based wearables to deliver advanced, real-time feedback, paving the way for intelligent, self-

sufficient, and seamlessly integrated technologies in everyday life.
4.6 On-device/cloud-based Al-integrated PENG biomedical robotics
4.6.1 LSTM for precision control in robotic hands

The integration of LSTM networks with 3D piezoelectric microsystems in robotic hands marks a transformative
advancement in biomedical robotics, particularly for cloud-supported applications requiring precision and

adaptability. LSTMs are uniquely suited to capture long-term dependencies in sequential data, a critical feature
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for interpreting tactile inputs that continuously evolve. In robotic hand applications, these dependencies
encompass complex tactile feedback patterns that arise as the hand interacts with diverse objects, surfaces, and
textures. By retaining contextual information across time steps, LSTMs enable the robotic hand to make
intelligent, real-time adjustments based on sequences of past interactions rather than isolated data points. This
capability enhances the hand’s sensitivity and adaptability, allowing for precise modulation of grip and pressure

in response to varying tactile stimuli.

An example of this approach is demonstrated in robotic hands equipped with a monolayer MoSzx-based PENG
designed to optimize electrical outputs in flexible configurations®*! (Fig. 5f) and a PVDF layer with
chromium/gold electrodes mounted on a serpentine polyimide ribbon for sensitive tactile feedback?'® (Fig. 5g).
By dynamically interpreting tactile data through LSTM algorithms, these systems achieve enhanced sensitivity

during manipulation tasks, allowing for highly controlled and responsive actions.

Moreover, Al elevates the functionality of these systems beyond passive data collection, fostering active
learning and real-time adaptation. This advanced Al-driven approach utilizes pattern recognition, predictive
analytics, and dynamic decision-making processes to boost sensor sensitivity and adaptability under various
environmental conditions.?*? For instance, AI’s ability to dynamically adjust the electrical output of a sulfur
vacancy-passivated MoSz PENG in response to changes in pressure and bending angles significantly increases

energy efficiency, optimizing system performance and extending operational lifespan.?*3

In 3D piezoelectric microsystem integrated into a robotic hand, Al can significantly improve the hand’s grip
and manipulation abilities by continually learning from tactile feedback.?** 2*° This adaptability allows the
robotic hand to perform a wide range of tasks with enhanced precision and responsiveness to touch, enabling it
to handle diverse and unpredictable objects effectively. This fusion of Al with nanogenerator-powered
biomedical robotics opens a myriad of possibilities, from self-adjusting prosthetic systems that provide a more
seamless user experience to autonomous energy management within these systems, ensuring optimal power
distribution. Such advancements are crucial for enhancing the autonomy of robotic and biomedical applications,

making them more efficient and user-friendly.
4.6.2 ANN for real-time decision-making in adaptive prosthetics

In adaptive prosthetics, the integration of ANNs on-device enables real-time responsiveness, which is essential
for seamless and intuitive user experiences. Unlike LSTMSs, which are more suitable for handling sequential
dependencies over time, ANNSs provide immediate decision-making by analyzing tactile feedback and positional
data in real time. This capability allows the prosthetic to react instantly to changes in movement, enabling fluid,

adaptive motion that closely aligns with the user's natural actions.
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By processing tactile inputs on-device, ANNs eliminate the latency associated with cloud processing, ensuring
that the prosthetic can adjust grip, orientation, and movement as the user performs various tasks. This real-time
processing is particularly useful for adaptive prosthetic hands, where instantaneous feedback is needed to
accommodate changes in grip strength and angle based on the detected force or shape of the object being handled.
Additionally, by optimizing response based on real-time inputs, ANNSs reduce wear and tear on the device by
avoiding unnecessary movements, thereby improving the lifespan and efficiency of the prosthetic system. The
PENG-based design, with materials such as sulfur vacancy-passivated MoS., enables these prosthetics to harvest

energy autonomously, further enhancing their usability and sustainability.

These innovations in Al-integrated PENG biomedical robotics, through cloud-enabled LSTM applications for
robotic hands and on-device ANN applications for adaptive prosthetics, mark a significant step towards creating
self-sufficient, highly adaptive systems in healthcare. The combination of precise tactile feedback processing
and intelligent adaptability enables these systems to provide a more personalized, responsive experience for
users, with applications that span both medical and robotic fields.

5. Conclusions and Outlook

The fusion of artificial intelligence with nanogenerators is transforming the conversion of mechanical energy
into electrical energy, leading to more efficient and sustainable energy solutions. This breakthrough is paving
the way for the creation of self-powered devices, crucial for advancing autonomous robotics and intelligent
systems independent of external power sources. Moreover, Al’s integration is refining the accuracy and
responsiveness of robotics sensors and actuators, significantly improving healthcare wearables for precise
monitoring of vital signs and enabling real-time data analytics. These advancements promote predictive

maintenance and adaptive learning, tailoring devices to user-specific requirements.

However, this integration presents several challenges, including complexities in analysis, design, fabrication,
and the broad application of these technologies. There is an urgent need for a universal framework that can
thoroughly understand the piezoelectric and triboelectric effects, optimize structures, innovate new materials,
effectively scale current outputs, and expand the application domains. This advancement should extend beyond

sensing functions to include computational capabilities as well.

Ongoing research offers promising directions for incorporating active materials that can respond dynamically
to external stimuli, such as pressure, heat, or electrical fields into nanogenerator-powered soft robotics and
intelligent machine systems. These materials are useful in robotic systems requiring adaptive responses, such as

soft sensors, e-skins, actuators, and microfluidic devices, where flexibility and responsiveness are essential.

Combining TENGs and PENGs within a single system can offer dual capabilities in both sensing and actuation.

This combination leverages TENGS' sensitivity to surface contact and movement and PENGs' ability to generate
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stable output under deformation, creating a more comprehensive energy-harvesting and sensory network. This
integration may be accomplished by layering materials or designing hybrid circuits where each generator type
contributes to specific functions. These hybrid systems support the development of self-powered, untethered

robotic devices capable of responding to environmental cues.

For soft robotics, low-power actuation mechanisms are crucial as they allow for motion without requiring high
energy input. Further development of electroactive polymers, dielectric elastomers, and shape-memory alloys
enables movements like bending, contracting or expanding with minimal electrical power for soft actuators in
robots. When paired with TENG or PENG devices, these materials support sustained operation in autonomous
systems that rely on limited power sources.

Microscale TENG- and PENG-based robots, due to their compact size, hold significant potential for biomedical
applications within confined spaces, such as vascular systems. These miniature devices could navigate narrow
blood vessels or other internal pathways to perform diagnostics, deliver targeted drugs, or even conduct minor
repairs within the body. Biocompatible materials, such as hydrogels and flexible polymers, enable safe
interactions with biological tissues, while advanced microfabrication techniques like photolithography, 3D
printing, and laser micromachining allow for the precise construction of robots at the microscale, essential for
delicate medical applications. In the development of flexible tactile sensors, innovations in materials science
and structural design have led to substantial improvements in sensitivity. Flexible substrates, such as elastomers
and conductive polymers, combined with structured micro/nano-patterns on the surface, enhance the device's
ability to detect and differentiate between subtle pressure changes, temperature variations, and other material
properties. These advances also support enhanced auditory and olfactory sensing, enabling more precise sound

and gas detection, respectively, in soft robotics and wearable devices.

Moving forward, key areas for nanogenerator-based systems include addressing performance limitations,
ensuring stability in challenging conditions, and advancing production techniques for scalability. Strategies to
enhance output performance include using multilayered structures and optimizing the surface area to boost
energy capture. Ensuring device stability in harsh environments may involve material coatings that protect
against high temperature, humidity, or mechanical stress, as well as encapsulation techniques to shield sensitive
components. Scaling production can benefit from automated fabrication techniques, such as roll-to-roll

processing or 3D printing, to achieve consistent, high-quality manufacturing at a large scale.

Addressing these challenges will be essential for advancing the practical applications of nanogenerator systems.
By enhancing durability, efficiency, and scalability, the potential of Al-enhanced nanogenerators can be
unlocked across diverse fields, from medical devices and biosensors to self-powering buildings, ultimately

marking a substantial step toward sustainable, autonomous technological solutions.
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Fig. 1. Machine learning models for Al-augmented nanogenerators. In supervised learning, models like k-
Nearest Neighbors (KNN), Support Vector Machines (SVM), Artificial Neural Networks (ANNSs), Linear
Discriminant Analysis (LDA), Recurrent Neural Networks (RNNs), Decision trees, and Convolutional Neural
Networks (CNNs) are included. These models, trained on labeled data, are effective for tasks such as

classification, pattern recognition, and

real-time monitoring in energy-sensitive systems. In unsupervised

learning, Deep Belief Networks (DBNs), Hopfield Neural Networks (HNNs), autoencoders (unsupervised
CNNSs), and Principal Component Analysis (PCA) operate without labeled data for clustering and dimensionality
reduction. Energy efficiency strategies like pruning/compression and quantization can optimize these algorithms

for low-power environments typical in
Copyright 2020, Springer Nature.

wearables and 10T devices powered by nanogenerators. CNNs,'%*
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Fig. 2. Applications of Al-enhanced nanogenerators. Al-assisted nanogenerators provide responsive,
efficient, and intelligent solutions in advancing human-machine interfaces. In wearable and portable applications,
nanogenerators power biometric and health monitoring devices, such as (a) blood pressure monitors, (b) cardiac
monitoring systems, and (c) user identification tools. For smart wearables, Al-augmented sensors enable (d)
augmented reality/virtual reality (AR/VR) interfaces, (€) smart clothing,®” Copyright 2022, Springer Nature; and
(f) gesture-recognition glove,*® Copyright 2020, Springer Nature; (g) tactile sensing glove,'* Copyright 2019,
Springer Nature; and (h) e-skin,*® Copyright 2019, Elsevier. In environmental monitoring, (i) haptic interfaces
and (j) blue energy harvesting,!” Copyright 2017, Elsevier, represent advancements in sustainable interactions.
In communication and interaction, nanogenerators facilitate (k) speech classification and (1) lip decoding,*'*
Copyright 2022, Springer Nature. In advanced sensing and detection, Al-augmented nanogenerators improve
capabilities for (m) object recognition,** Copyright 2020, Springer Nature; (n) liquid leakage detection, and (0)
gas sensing, including the detection of volatile organic compounds (VOCs)!*? Copyright 2021, AAAS.
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Fig. 3. Al-assisted TENGs for self-powered systems and interfaces. (a) A self-powered artificial tactile
peripheral nervous system using TENG, simulating biological sensory circuits using CNN.*"? Copyright 2021,
Elsevier. (b) Self-powered handwriting HMI via TENG, with structure and recognition principles using CNN.#’
Copyright 2020, Elsevier. (c) Smart socks with TENG sensors for recognizing sports gait data using CNN.1%
Copyright 2020, Springer Nature. (d) Training and recognition process for a 16-key stretchable keyboard
security system using SVM.2%? Copyright 2018, Elsevier. (e) Self-powered TENG sensor for document
management: page-turn recording and book theft prevention.?®® Copyright 2014, Springer. (f) Handwriting
recognition with self-powered TENG for machine learning-based user classification using SVM.2” Copyright
2020, Elsevier. (g,h) Electrical signal-time curve and feature radar chart for user typing, alongside a cross-user
difference score matrix with feature combinations using PCA and SVM.?%? Copyright 2018, Elsevier. (i) TENG
matrix-based artificial sensory memory using HNN.** Copyright 2020, Elsevier.
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Fig. 5. Al-integrated PENGs for wearables and robotics. (a) Biomimetic inorganic piezoelectric acoustic
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different
classes;
limited

reus.

Moderate
reusability
with layer-
specific

fine-tuning.

Pros

Capable of
modeling
complex
patterns,
versatile  for
diverse

applications

Effective for
hierarchical
feature
extraction,
enhances
classification

accuracy

Simple  and
effective  for
small datasets,
suitable  for
real-time

applications

Highly
accurate  for
complex
relationships;
versatile
across

applications

Cons

Requires
substantial
computational
resources  and
large datasets;
prone to
overfitting  in

small data

Training is
complex  and
time-
consuming,
demanding
computational

resources

Inefficient with
large  datasets;
performance
degrades  with
irrelevant

features

Computationally
demanding and
requires  large
amounts of
labeled data for

training
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Table 1 Overview of algorithms with nanogenerator integration

Algorithm

HNN

Roles

Associative
memory tasks,
handling
complex
hierarchical

data patterns

Deployment

Cloud

Energy-

efficiency

Low (relatively
high cost and
energy

consumption)

Reusability

Good
reusability;
effective
for
memory-
intensive
tasks

without full

Pros

Effective for
associative
memory,
retrieves
stored patterns
from  partial

input

Reusability: Pretrained models or parts of the models can be reused for energy-efficient adaptation to new tasks.

Cons

High
computational
complexity,
often  requires
cloud-based
processing  for

real-time use
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Table 2 Algorithmic requirements for various applications in Al-integrated nanogenerators

Application

Algorithms

Roles

Example applications

Data

Tactile sensing and

2D CNNSs (spatial)

1D CNNs
(temporal), KNN,
RNN

1D CNNs
(temporal), SVM,

Spatial feature extraction

Sequential and instance-

based learning

Classification,  pattern
recognition,  sequential

e-skins  (texture/pressure

reconnition)

Smart gloves (gesture
recognition), AR/VR

interfaces

Wearable health monitors
(heart rate, activity)

Tactile logs, pressure

manninns

Gesture  sequences,

spatial motion data

Biometric data,

sensor readings

recognition
ANINI PNIND Anba
SVMs Classifying touch or ] .
o Haptic feedback systems Tactile data logs
(classification) pressure types
LSTMs Sequential data Adaptive human-machine Sequential tactile
(sequential) processing interfaces data
SVM + PCA High-dimensional data Document authentication, Biometric data,
classification user biometric verification document signatures
Security and .. . . -
. Decision-making in Document categorization, Encrypted
document Decision trees . .
workflows access control signatures, security
management

LDA

Class separation

Document type

classification

High-dimensional

data

Pattern recognition

and memory

HNNs (associative

memory)

DBNs (feature

learninm

RNNs (sequential)

Autoencoders

(unsupervised)

Pattern recognition with

stored memory

Unsupervised  feature

Axtractinn

Sequential pattern
analysis

Feature extraction

without labels

Typing behavior analysis,
user authentication

Sensory  memory  for

rohnte nattern detectinn

Repetitive behavior

recognition

Data compression  for

sensor logs

Sequential logs,

sensory interaction

Sensory data,

hierarchical natterng

Time-series data

Unlabeled data logs
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Table 2 Algorithmic requirements for various applications in Al-integrated nanogenerators

Application Algorithms Roles Example applications Data
CNNs (feature Feature extraction for Object and sound Environmental
extraction) detection tasks recognition readings
RNNs  (real-time ) ] Continuous auditory Real-time sound
Advanced sensory ] Sequential data analysis .
. analysis) analysis patterns
detection
Dimensionality VOC detection, unusual VvOoC sensor

PCA, DBN, HNN

] ) reduction, feature pattern identification, air readings,
outlier detection

learning, associative quality monitoring environmental data
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Data Availability Statement

Data available on request from the authors



