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ABSTRACT 

Piezoelectric and triboelectric nanogenerators are at the forefront of converting ambient mechanical energy into 

electricity. They have experienced a significant leap in functionality and autonomy through integration with 

artificial intelligence (AI). This integration not only boosts nanogenerator performance for autonomous 

operations by improving mechanical-to-electrical energy conversion efficiency but also forges new pathways in 

robotics and intelligent systems. It enhances the responsiveness and adaptability of these devices. Looking ahead, 

combining nanogenerators with AI is set to play a crucial role in promoting sustainable and eco-friendly energy 

solutions. Their dual contribution to advancing the capabilities of intelligent systems and promoting 

environmental sustainability marks a significant advancement in the use of nanogenerators in robotics. This 

review underscores the essential role of AI in refining nanogenerators, highlighting a path toward achieving 

energy autonomy and sustainability. 

Keywords: piezoelectric nanogenerators (PENGs); triboelectric nanogenerators (TENGs); artificial intelligence 
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1 Introduction 

In the dynamically advancing field of renewable energy technologies, piezoelectric and triboelectric 

nanogenerators (PENGs and TENGs) emerge as cutting-edge approaches for converting ambient mechanical 

energy into electricity.1-10 Since their inception over a decade ago, these technologies have developed rapidly, 

sparking renewed interest in sustainable energy amidst a global energy crisis and concerns associated with 

traditional fossil fuels. Utilizing piezoelectric and triboelectric effects, PENGs and TENGs can harvest energy 

from various environmental sources, including motion, temperature changes, and structural vibrations, thereby 

surpassing conventional energy harvesters in terms of electrical efficiency.11-17 

The efficacy of PENGs and TENGs significantly depends on their design and material composition, which opens 

significant opportunities and challenges for improving their electrical characteristics. This has led to a vigorous 

multidisciplinary research effort, dedicated to optimizing these technologies for a wide range of applications, 

from energy harvesting to sensing, monitoring, soft robotics, and electronic skins (e-skins).8, 18-40 

The integration of artificial intelligence (AI) with PENGs and TENGs has initiated a novel phase in boosting 

their functionality.41, 42 AI provides a solution to the challenges of developing portable, reliable, and eco-friendly 

energy sources.43-45 By mimicking human cognitive processes, AI greatly enhances computational efficiency in 

the structural design and material selection for nanogenerators.46-48 Early endeavors to integrate AI with PENGs 

and TENGs have delivered promising results in tackling design, prediction, and optimization challenges,49 

signifying a pivotal shift from conventional statistical approaches. AI excels in uncovering complex 

relationships among variables,23, 50 significantly enhancing the exploration of design and materials for these 

nanogenerators.  

This synergy between AI and nanogenerators not only drives forward the frontier of energy harvesting 

technologies but also heralds a new era in robotics and intelligent systems. In this realm, AI-empowered 

nanogenerators enhance robotic perception, cognition, and interaction with their surroundings. This review aims 

to shed light on recent progress in nanogenerators, with a focus on the transformative impact of AI integration 

and its potential to revolutionize robotics and intelligent systems towards a more sustainable future. 

2 Fundamentals of PENGs and TENGs 

PENGs and TENGs are pioneering energy harvesting technologies that transform mechanical energy from the 

environment into electricity. This transformation is grounded in Maxwell's displacement current theory, with 

PENGs exploiting the piezoelectric effect and TENGs harnessing the triboelectric effect alongside electrostatic 

induction. 
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Introduced in 2006, PENGs work by converting mechanical stress or deformation directly into electrical energy 

through the piezoelectric effect.51 This phenomenon is observed in materials that generate an electrical charge 

in response to mechanical stress. Typically, a PENG consists of a piezoelectric material sandwiched between 

two electrodes in a metal-insulator-metal configuration. Upon mechanical deformation, these structures produce 

a voltage that drives an electrical current through an external circuit. Commonly used materials like ZnO or 

PVDF are selected to optimize the conversion efficiency from mechanical stress to electrical energy. 

TENGs, which emerged in 2012, operate based on the triboelectric effect.52 This involves generating electrical 

energy through the contact and separation of two different materials, which leads to the surface becoming 

positively charged and negatively charged. The movement between these charged surfaces creates an 

electrostatic potential, which in turn drives an electrical current through a connected load. TENGs can be 

designed in various configurations to suit different types of mechanical energy inputs, including vertical contact 

separation, lateral sliding, single-electrode, and freestanding triboelectric layer modes. The key to enhancing 

TENG performance lies in the selection of materials with opposite triboelectric polarities, optimizing the 

efficiency of triboelectric charge transfer and electrical output. 

3 Computation for nanogenerator integrations 

AI-augmented nanogenerators bring new capabilities to on-device and cloud-based processing by supporting 

continuous learning mechanisms that allow systems to adapt over time.53 Handling noisy data is critical for on-

device and cloud-based systems, as sensor readings from nanogenerators are often affected by background 

interference and environmental factors.54 Robust statistical models, such as regression and resistant measures of 

central tendency, help maintain performance by down-weighting the impact of outliers and noise.55, 56 These 

models provide a stable baseline by focusing on the core data patterns, reducing the influence of erratic data 

points. Outlier detection methods, such as isolation forests or distance-based algorithms, identify and manage 

data points that deviate significantly from expected patterns, further improving the reliability of the model in 

noisy environments.57 

Data preprocessing and filtering steps can enhance data quality before it is fed into models. Low-pass filters can 

remove high-frequency noise from the data.58 By integrating continuous learning with robust noise management 

techniques, AI-augmented nanogenerators can maintain high accuracy, adaptability, and resilience across 

various applications. 

3.1 On-device processing 

On-device processing is essential for real-time applications like wearable monitoring, tactile sensing, and health 

management, where low latency is critical to provide immediate feedback, ensuring functionality and user 

satisfaction.59 In prosthetics and smart clothing for health monitoring, slight delays in response time can disrupt 
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user control, coordination, and timely health alerts.60 Rapid on-device processing helps prevent these issues by 

supporting energy-intensive algorithms like Convolutional Neural Networks (CNNs) and Deep Neural 

Networks (DNNs) for image classification and predictive modeling,61 as well as less demanding algorithms like 

Artificial Neural Networks (ANNs), Deep Belief Networks (DBNs), and linear techniques such as Principal 

Component Analysis (PCA), Linear Classification Algorithms (LCA), and Linear Discriminant Analysis (LDA) 

(Fig. 1). 

On-device datasets, such as biometric data, sensor readings, and activity logs, are processed in real time to 

provide immediate insights.62 Efficient algorithms prioritize responsiveness within resource constraints, making 

them ideal for real-time motor control and sensor feedback. These algorithms often operate in bursts, activating 

only during specific time windows when sufficient energy is available, thus conserving power.63 For example, 

Recurrent Neural Networks (RNNs) may analyze heart rate data intermittently, performing computations during 

peak energy generation.63 However, on-device systems are limited by processing power and energy efficiency, 

restricting the complexity of algorithms and potentially hindering tasks like complex image processing or 

extensive data analysis.64 

In addition to energy efficiency, balancing energy consumption and decision accuracy is critical in energy-

limited applications like wearables and Internet of Things (IoT) devices, where small batteries and low-latency 

responses are essential for effective user interaction.65 While wearables face strict energy constraints, larger IoT 

or robotic systems have fewer power limitations. Efficient algorithms are necessary to maintain high accuracy 

and reliability, particularly for real-time monitoring. Pruning,66 quantization,67 and lightweight models like 

MobileNets68 streamline neural networks by reducing complexity, memory footprint, and computational load, 

enhancing processing speed without significantly compromising accuracy. 

Adaptive processing also adjusts model intensity based on task demands; for instance, RNNs, particularly Long 

Short-Term Memory (LSTM) networks, may activate only when vital signs deviate significantly, such as in 

abnormal heart rates, switching to simpler models under stable conditions to conserve energy.69,70 This approach 

extends battery life and efficiency in health monitoring while enabling quick responses to health changes. 

Continuous health monitoring systems should ensure high accuracy in tracking vital signs, necessitating energy-

efficient algorithms capable of sustaining long-term operation. In contrast, environmental sensors, which 

monitor slowly changing conditions, need only intermittent data collection, allowing for reduced power 

consumption.71 To maximize efficiency and precision, AI-augmented nanogenerators employ lightweight 

models for less critical tasks and shift to complex algorithms when necessary, optimizing energy use.72 

Additionally, integrating energy harvesting and storage solutions, like nanogenerators and supercapacitors, 

buffer power supply for peak demands, ensuring consistent performance. Advances in energy conversion 

efficiency of nanogenerators, alongside microbatteries and supercapacitors, stabilize power for intensive tasks, 
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like deep learning and real-time analytics.73 Low-power hardware and application-specific integrated circuits 

(ASICs) enhance efficiency, supporting self-powered applications.74 By effectively combining these strategies, 

AI-augmented nanogenerators can maximize functionality while minimizing energy consumption, ultimately 

enhancing user experience across various applications. 

3.2 Cloud-based processing 

Cloud-based processing excels in handling computationally intensive, less latency-sensitive tasks, allowing 

extensive datasets to be offloaded for advanced data analysis and pattern recognition.75 Security and document 

management applications benefit from this, as tasks like data encryption and complex pattern analysis require 

high processing power but are not critically time-sensitive. A hybrid approach is often used, with on-device 

processing for immediate feedback and cloud processing for in-depth analysis, such as long-term trend detection 

in gait analysis.76 While latency-sensitive applications require fast response times, on-device processing can 

meet this need but may lack resources for complex analyses.77 In contrast, cloud solutions handle intricate tasks, 

including deep learning and extensive pattern recognition, though data transmission may introduce delays,78 as 

cloud speeds range from hundreds of milliseconds to seconds depending on network conditions and task 

complexity.79 Transmission rates vary widely, with 4G long-term evolution (LTE) networks typically offering 

10-50 Mbps,80 while cloud tasks require higher bandwidth. On-device systems also conserve power to prolong 

battery life, while cloud servers, although more energy-intensive, support larger loads.81 Integrating AI with 

nanogenerators for on-device and cloud-based processing enables adaptive, intelligent systems, balancing real-

time responsiveness with complex data capabilities. 

4 AI-integrated nanogenerators 

AI algorithms play a pivotal role in predicting and improving the efficiency, responsiveness, and adaptability of 

nanogenerators, paving the way for developments in robotics, self-powered sensing, energy-efficient actuation, 

and intelligent human-machine interactions.22, 23, 38, 82-98  

The implementation of AI encompasses supervised learning models (classification and regression) and 

unsupervised models (clustering and dimensionality reduction).99, 100 Unsupervised learning models like DBNs 

to capture complex hierarchical data representations, and Hopfield Neural Networks (HNNs) to perform 

associative memory tasks, operate on unlabeled data to identify inherent structures or patterns without 

predefined outputs. In contrast, supervised learning, such as Support Vector Machines (SVMs) for classifying 

data by identifying the optimal hyperplane that separates different classes101 and decision trees to split data based 

on feature values for interpreting user activities,102 are trained on labeled data, where each input is paired with 

its corresponding output, allowing the algorithm to learn patterns and make predictions. ANNs are trained on 

labeled data for tasks like classification and regression,103 while LCA and LDA serve for dimensionality 
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reduction and class separation, respectively.104 LCA uses linear decision boundaries to classify labeled data, and 

LDA identifies the linear combination of features that best separates classes, maximizing inter-class distance 

while minimizing within-class variance by leveraging the mean and variance of each class. 

K-Nearest Neighbors (KNN) is a supervised, instance-based algorithm that classifies data points by proximity 

to labeled training instances,105 enabling rapid gesture recognition by comparing real-time sensor data with 

recorded movements for quick responses.47, 106-109 CNNs, versatile in machine learning, are primarily used in 

supervised tasks like image classification, object detection, and segmentation,110 but can also function 

unsupervised, as in autoencoders, to learn data representations without labels. Similarly, RNNs are often used 

for supervised tasks like speech recognition and time-series prediction but can adapt to unsupervised tasks like 

sequence prediction,111 allowing for flexible application across diverse machine learning challenges. DNNs, 

composed of multiple interconnected layers, effectively learn complex data relationships, making them suitable 

for pattern recognition tasks and multidimensional sensor data processing for applications requiring high 

accuracy in classification and prediction.112, 113 

Fig. 2 illustrates the integration of AI and nanogenerators to enhance daily life, industrial monitoring, and 

advanced interactive platforms.114-116 In wearable technology, nanogenerators enable biometric and health 

monitoring by supporting advanced machine learning algorithms, such as SVMs, neural networks, and decision 

trees, for health tracking and activity analysis.14, 37, 47, 117-121 Decision trees classify user activities by branching 

on feature values, while neural networks capture complex behavior patterns, and SVMs identify physiological 

signals (e.g., heart rate, skin temperature) for personalized monitoring by identifying the optimal hyperplane 

that separates different classes of data points.39, 122, 123 E-skins, which simulate touch, typically utilize CNNs to 

process spatial data, extracting features from tactile interactions to respond to stimuli accurately by applying 

convolutional layers that filter input data and pooling layers that reduce dimensionality.124-136 In environmental 

monitoring, nanogenerators paired with CNNs and SVMs enhance tasks like object recognition,137, 138 liquid 

leakage detection,139, 140 and gas sensing,47, 141, 142 with SVMs classifying environmental conditions and CNNs 

analyzing patterns for improved sensor detection. 

RNNs are well-suited for sequential data tasks where the order of data points is crucial, such as speech 

classification and lip decoding, by managing temporal dependencies in speech signals.63, 69, 109, 114, 143, 144 

However, standard RNNs struggle with retaining long-term information due to the vanishing gradient 

problem.145 This limitation leads to challenges in learning long-term dependencies for applications requiring 

sustained contextual awareness. 

LSTMs, a specialized RNN type, address this by using memory cells to track behavior changes and predict 

future actions over extended periods,111 making them effective in user activity recognition and health monitoring 

applications.146, 147 LSTMs enable continuous monitoring of vital signs like blood pressure with improved 
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accuracy by maintaining important information across longer sequences, offering timely health updates essential 

for medical intervention.148-150 ANNs, consisting of interconnected layers of nodes, are also used for monitoring, 

including tasks like marine environmental surveillance and pressure mapping,103 as they can learn to identify 

patterns and make predictions based on diverse inputs to model complex relationships within data and handling 

intricate datasets.17, 23, 151-154 HNNs, another form of RNNs for associative memory, excel at pattern recognition 

by managing complex patterns with hierarchical structures derived from data, such as typing dynamics and 

tactile information.155 HNNs can retrieve stored patterns based on partial inputs, making them suitable for 

applications that require quick and reliable recognition of previously learned information, thereby improving 

user experience in systems that rely on human interaction. 

DBNs, combining multiple layers of stochastic, latent variables to facilitate feature learning and classification,8 

can capture hierarchical representations in high-dimensional data through unsupervised feature learning, useful 

in applications with unlabeled or poorly structured data. PCA aids in reducing the dimensionality of data from 

human interactions and typing dynamics, retaining key features while enhancing classification accuracy by 

transforming them into a smaller set of uncorrelated variables known as principal components.143  

The interplay between nanogenerators and various machine learning algorithms marks a step toward intelligent 

systems that augment human capabilities and experiences. This integration can achieve improved accuracy, 

efficiency, and user interaction, involving a range of algorithms (Table 1), such as SVM for object and character 

recognition,156, 157 KNN through instance-based learning for analyzing signal sequences and handwriting 

features,108 ANN for time-series analysis in sensory networks,23, 151 CNN for image and pattern recognition,125, 

158-160 and RNN for sequential tasks such as speech processing.151  

One key approach to reusing AI models without the need for full retraining is transfer learning, which involves 

utilizing pretrained models that have already learned general features from large datasets and fine-tuning them 

for new applications.161 For example, a health monitoring model can be fine-tuned for fitness tracking by 

modifying layers to target metrics like steps or heart rate.162 Another effective strategy is modular AI design, 

where specific components of a model can be reused across different applications.163 Foundational layers that 

have been trained on common features, such as motion patterns or general image features, can be repurposed 

for various tasks like differentiating between types of physical activity or detecting anomalies in sensor data. 

This modularity allows for significant savings in retraining efforts, enabling systems to adapt quickly to new 

challenges while maintaining efficiency. Moreover, distributed processing approaches where computational 

tasks are spread across multiple systems or devices, allow for handling more complex tasks while maintaining 

performance.164 In larger systems, this can involve cloud computing resources that complement local processing, 

enabling advanced data analytics and machine learning operations that exceed the capabilities of individual 

devices. 
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4.1 On-device AI-integrated TENG for tactile sensing and recognition 

Nanogenerators are pioneering a new era in artificial sensory systems and human-machine interfaces (HMIs) by 

creating self-powered, intelligent devices inspired by the biological sensory nervous system.165 

Various AI models, such as CNNs, SVMs, and RNNs, are tailored to handle the data types in tactile sensing and 

gait analysis (Table 2). For gait analysis, 1D CNNs excel at processing sequential, time-series data along a single 

temporal dimension.166 These layers, adapted with broader strides, capture temporal dependencies within each 

gait cycle, supporting accurate classification of gait patterns for applications like sports training and 

rehabilitation. Pooling layers reduce data size while retaining key features, ensuring efficiency. 2D CNNs are 

well-suited for tactile sensing, using convolutional layers to capture spatial relationships such as texture and 

shape.167 By pairing these layers with the max-pooling layer, which down-samples by retaining only the most 

prominent features, 2D CNNs reduce data dimensionality while preserving essential spatial features. Fine-tuning 

stride and kernel settings enhances localized sensitivity, enabling precise, high-resolution data processing for 

real-time, responsive interactions. In complex scenarios requiring analysis across spatial and temporal 

dimensions, like robotic tactile systems and environmental monitoring, 3D CNNs capture evolving three-

dimensional patterns.168 When used in tandem with CNNs, SVMs enhance the tactile peripheral nervous system 

(TPNS) sensor’s ability to classify structured data, recognizing high-dimensional patterns like pressure or 

texture variations by identifying optimal hyperplanes, making them ideal for nuanced recognition tasks.169 

RNNs, particularly LSTMs, handle the sequential nature of tactile data by capturing short- and long-term 

dependencies, essential for interpreting touch sequences in real time, benefiting prosthetics and robotics.170  

The integration of these AI models—2D CNNs for spatial data, 1D CNNs for temporal data, and SVMs and 

LSTMs for classification and sequential analysis—demonstrates the flexibility and adaptability of AI-

augmented, nanogenerator-powered systems. 

4.1.1 SVMs, 2D CNNs, and RNNs for tactile peripheral nervous system  

TPNS sensor, powered by TENG-based nanogenerators, exemplifies the synergy of nanotechnology and 

machine learning in mimicking human tactile responses. By converting mechanical touch into electrical signals, 

TENGs enable real-time, nuanced tactile perception, enhanced through advanced machine learning algorithms 

like SVMs, CNNs, and RNNs, which classify and interpret complex tactile data with high accuracy. 

SVMs analyze the structured, high-dimensional data (datasets with numerous features) from TENG sensors, 

including touch intensity, duration, and texture, by identifying optimal hyperplanes that separate tactile classes, 

such as different pressures and textures, with high precision.139, 169, 171 By maximizing the distance between data 

points from different classes, SVMs achieve high classification accuracy, making them useful for recognizing 

structured patterns in tactile data. This capability enriches the TPNS by distinguishing tactile stimuli in 
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applications like prosthetics and robotics. Additionally, 2D CNNs work in tandem with SVMs to extract spatial 

hierarchies in tactile data.167 Through convolutional layers, CNNs capture local features like edges and textures, 

creating a hierarchical understanding of tactile inputs. As the data moves through deeper layers of the CNN, 

increasingly complex spatial features are extracted, creating a hierarchical understanding of tactile input. 

Pooling layers further enhance this by downsampling while retaining essential details, enabling tasks such as 

identifying textures akin to braille172 (Fig. 3a). SVMs classify these patterns, ensuring high accuracy in 

differentiating tactile sensations. 

For temporal tactile data, the TPNS employs RNNs, specifically LSTM networks, to handle the dynamic nature 

of tactile data that unfolds over time.170 RNNs process sequential data by retaining information about previous 

inputs for interpreting patterns that change or evolve, while LSTM networks enhance this capability by 

incorporating memory cells that manage both short-term and long-term dependencies in data sequences, 

allowing the TPNS to analyze the occurrence of touch and its duration and intensity over time.173 In prosthetics 

and robotics, LSTMs support real-time adaptive responses, imitating human touch perception effectively. 

TENGs generate power autonomously by converting mechanical touch into electricity, eliminating the need for 

external batteries and enhancing the sensor’s eco-friendliness. This self-sustained energy generation supports 

continuous, real-time tactile processing, allowing the TPNS to deliver rapid, precise responses for applications 

in prosthetics and intelligent robotics that rely on immediate, reliable feedback to function effectively.174-186 

These advancements position the TPNS as a transformative technology in future sensory networks, where 

energy-efficient, intelligent sensors can provide human-like tactile sensitivity in environmentally sustainable 

ways. 

4.1.2 2D CNNs for handwriting human-machine interfaces 

The development of TENG-powered handwriting HMIs demonstrates the integration of AI and nanogenerators 

for interactive applications. TENG-based touchpads convert mechanical handwriting energy into unique 

electrical signals, capturing the nuances of each user’s style187 (Fig. 3b). Given the complex, multidimensional 

nature of these signals, CNNs play a key role in accurately processing and converting them. 

In handwriting HMIs powered by TENGs, CNNs manage spatial data from the grid-like TENG sensor array, 

which records variations in pressure, texture, and shape.188, 189 This spatial data forms hierarchical levels of 

detail, with CNNs progressively abstracting and refining information from basic outlines to intricate handwriting 

characteristics through multiple convolutional and pooling layers.  

Convolutional filters slide across the sensor grid, capturing fine details in pressure and contact that distinguish 

individual handwriting styles.167 As data passes through layers, CNNs build hierarchical representations, from 

basic shapes to complex strokes, allowing for high-resolution interpretation of handwriting. Max-pooling layers 
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further streamline data by retaining prominent features like high-pressure zones and distinct edges, reducing 

noise and data complexity.190 

Tactile inputs in flexible, wearable devices often vary due to changes in pressure, contact angle, or surface area, 

particularly when devices undergo bending or twisting. To accommodate these variations, CNNs employ fine-

tuned stride settings and adaptive kernel sizes. Finer stride settings (smaller movement steps across the data) 

enhance the CNN's sensitivity to minor changes, capturing subtle differences in texture or pressure.191, 192 

Meanwhile, adaptive kernel sizes allow the model to focus on different scales of spatial features, adjusting its 

“field of view” to capture both fine details and broader strokes.193 This adaptability is crucial for applications 

requiring real-time feedback, allowing CNNs to maintain accuracy even under physical distortions. 

The synergy of TENGs and CNNs enables real-time data processing and instant feedback in handwriting HMIs. 

TENGs generate continuous electrical signals from handwriting, which CNNs rapidly interpret, supporting 

applications like virtual keyboards and digital notetaking where seamless interaction is expected. This 

integration sets a benchmark in self-powered HMIs, balancing energy efficiency with adaptability to physical 

changes. 

4.1.3 1D and lightweight CNNs for smart socks and sports gait analysis 

In sports and personal fitness, integrating TENGs with AI in smart wearables, like smart socks and shoes, is 

revolutionizing gait analysis. These devices embed TENG sensors that harvest kinetic energy from foot 

movements, converting it into electrical signals that reflect gait characteristics, walking phases, and pressure 

distributions46, 194, 195,106 (Fig. 3c). The self-powered feature allows for long-term continuous, discreet monitoring, 

fitting seamlessly into daily wear. Gait details, like stride length, cadence, and weight distribution, are analyzed 

for insights into balance and stability. 

Unlike tactile sensing, which relies on spatial data, gait analysis involves time-series data—a sequence of signals 

that represent movement patterns over time. 1D CNNs are well-suited as they can detect temporal dependencies 

across sequential movements, enabling the system to interpret complex gait cycles.166, 194 1D convolutional 

layers slide filters across the time-series data, capturing recurrent patterns and subtle shifts in foot pressure over 

each step. This process enables the system to classify various gait types (e.g., normal walking, limping) by 

detecting recurring signal patterns that correspond to different types of movement. The use of broader strides in 

1D CNNs allows the network to observe multiple time steps at once, capturing sequential relationships within 

the gait cycle that provide a complete, coherent view of movement patterns. This enhances classification 

accuracy by allowing the network to integrate and contextualize data over a sequence, rather than focusing solely 

on individual points in time. 
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Lightweight CNNs, which require minimal computational resources, further optimize on-device analysis, 

capturing essential features of foot pressure and movement for real-time feedback.196 Unlike typical CNNs, 

which demand substantial processing power, lightweight CNNs use fewer parameters and streamlined layer 

structures, making them ideal for energy-efficient wearable devices. They process data from embedded sensors 

that monitor foot pressure and movement across gait stages. This capability supports instant adjustments in 

sports training and rehabilitation, where small gait corrections enhance performance and reduce injury risk. 

Real-time feedback is vital for high-performance sports and rehabilitation, enabling athletes, coaches, and 

therapists to make precise adjustments based on accurate gait data. CNN-enhanced wearables offer valuable 

insights, including stability, balance, and load distribution, critical for athletic performance, injury prevention, 

and recovery tracking. In personalized medicine, detailed gait analysis assists in diagnosing mobility issues and 

customizing rehabilitation exercises to an individual’s movement patterns.197, 198 This technology allows coaches 

to refine technique, monitor fatigue, and proactively address injury risks by identifying asymmetries in 

movement.199 In rehabilitation, CNNs provide precise progress tracking, allowing therapists to adjust treatment 

plans based on quantifiable, real-time feedback, fostering more effective recovery.200 By enabling data-driven 

decisions, AI-powered smart wearables optimize performance and minimize injury risks.201 

4.2. Cloud-based AI-integrated TENG for security and document management 

4.2.1 SVM and PCA for high-dimensional document classification 

The integration of nanogenerators with SVM and PCA is advancing energy-efficient solutions in user 

authentication, security, and document management. When implemented in devices like keyboards and 

touchpads, TENGs can capture individual typing dynamics such as rhythm, pressure, and speed—producing 

unique, high-dimensional data patterns for each user47, 117, 202 (Fig. 3d). SVM is suited for handling this high-

dimensional data due to its ability to create an optimal hyperplane that maximally separates data classes, which 

correspond to distinct typing behaviors associated with each user. This separation ensures robust, precise user 

authentication, as SVM effectively classifies nuanced variations in typing patterns, making it difficult for 

unauthorized users to replicate. 

PCA, on the other hand, plays a complementary role by simplifying high-dimensional datasets for efficient data 

processing and storage.203 PCA works by identifying the main components (features) of the data, reducing 

complexity while preserving the most significant patterns, thereby optimizing the data for classification by SVM. 

This combination of PCA and SVM improves processing efficiency and enhances classification accuracy, as 

PCA distills the data to its most relevant features before SVM performs classification. In cloud-supported 

systems, this setup allows for large-scale data analysis, making it a viable solution for secure user authentication 

and document management across distributed networks. 
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In document management applications such as library archives and secure facilities, this approach is beneficial 

for monitoring document interactions. Systems can capture electrical signals generated by handling documents 

and analyze these signals with SVM and PCA to track user interactions in real-time and prevent theft117, 204, 205 

(Fig. 3e). This innovation surpasses traditional radio frequency identification-based systems, providing a smarter, 

more sustainable solution that leverages cloud capabilities for managing extensive, high-dimensional datasets. 

4.2.2 Decision trees for workflow automation in document management 

Decision trees are hierarchical models that make classifications or decisions based on a series of branching paths 

determined by specific criteria, making them ideal for workflow automation in document management.206 By 

mapping out logical decisions in a tree-like structure, Decision trees can systematically evaluate different 

features of documents such as classification categories, access levels, and handling requirements without 

requiring manual input for every step. This systematic branching allows for rapid, consistent categorization of 

documents, ensuring efficient management and access control. In document storage and retrieval systems, a 

decision tree could automatically categorize documents by type, assign appropriate access permissions, or flag 

documents requiring special handling. This automation minimizes manual oversight, streamlining processes in 

secure environments where handling large volumes of documents is essential. 

Handwriting recognition in document management captures an individual’s unique writing style through sensors 

that detect variations in mechanical pressure exerted during writing207 (Fig. 3f). SVM classifies these distinct 

writing patterns for reliable identity verification, while PCA simplifies data complexity, making classification 

more efficient by focusing on key features of the handwriting. This application provides an additional layer of 

security in document management, as each user’s handwriting is treated as a unique biometric signature that can 

be authenticated alongside other security protocols. 

By combining SVM’s precision in distinguishing high-dimensional data and PCA’s efficiency in reducing data 

complexity, handwriting recognition systems offer secure, energy-efficient verification methods suitable for 

document management in high-security environments.178, 208 This integration not only enhances user 

authentication but also extends the capabilities of document management by adding personalized, biometric-

based security options, contributing to a more intelligent, responsive, and energy-efficient system for managing 

sensitive information. 

4.3 Cloud-based AI-integrated TENG for pattern recognition and memory 

4.3.1 PCA, and SVM for typing analysis and user authentication 

The combination of TENGs with PCA and SVM algorithms has significantly advanced typing behavior analysis, 

achieving greater accuracy and efficiency. TENGs capture mechanical nuances of typing, such as signal 
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magnitudes, latencies, and hold times, transforming these details into electrical signals that serve as robust 

datasets. PCA simplifies this high-dimensional data by reducing it to essential components, effectively isolating 

the core elements of typing patterns without unnecessary complexity202 (Fig. 3g,h). By distilling the data into 

its most informative aspects, PCA sharpens the focus for further analysis, improving computational efficiency. 

Utilizing the refined data provided by PCA, SVM employs its classification capabilities to differentiate between 

individuals based on their unique typing signatures. SVM identifies an optimal hyperplane that separates data 

points across high-dimensional spaces, capturing the subtle distinctions in typing behavior that are critical for 

accurate user identification and authentication. The synergy between PCA’s dimensionality reduction and 

SVM’s high-precision classification allows for a robust, energy-efficient typing analysis system, supporting 

enhanced security and personalization in applications like user authentication and productivity analysis. 

4.3.2 HNNs, and DBNs for smart robotics and environmental interaction 

HNNs play a pivotal role in developing artificial sensory memory for robotics, particularly in the recognition 

and recall of complex patterns.155 HNNs are associative memory networks that excel at pattern recognition and 

recall based on partial inputs, making them highly effective for sensory memory applications in robotics. In 

systems with TENG matrix sensors, which capture intricate tactile data from interactions, HNNs process and 

store these sensory patterns. This capability enables robots to dynamically respond to changes in texture, 

pressure, and other tactile stimuli by recognizing familiar patterns and recalling previous interactions209 (Fig. 

3i). With their layered architecture, HNNs support a robust framework for recognizing and storing high-

dimensional sensory data, allowing robots to adapt to various environmental stimuli with precision and memory 

recall.210 

Complementing HNNs, DBNs, and layered neural networks that learn hierarchical data patterns without the 

need for labeled inputs, can be used for sensory memory systems where data often lacks explicit labels through 

unsupervised feature learning, which is beneficial for high-dimensional tactile data.8 In cloud-based tactile 

memory applications, DBNs extract meaningful features directly from complex, multi-faceted TENG sensor 

data, including information on texture, pressure, and motion. As DBNs autonomously identify underlying 

structures and patterns within this data, they allow sensory systems to improve responsiveness and adapt over 

time. 

The use of cloud infrastructure with DBNs supports the substantial computational requirements for processing 

high-dimensional tactile data. This infrastructure enables DBNs to efficiently manage and organize complex 

tactile information, facilitating pattern recognition and feature learning that enhances robotic systems’ real-time 

interactions and memory functions. HNNs and DBNs provide a comprehensive framework for artificial sensory 
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memory, allowing intelligent robotic systems to navigate, interpret, and recall tactile experiences with precision, 

thereby paving the way for responsive and autonomous interactions. 

4.4. On-device/cloud-based AI-assisted advanced sensory detection 

4.4.1 Cloud-integrated CNNs for object recognition in environmental monitoring 

Cloud integration enhances the power of CNNs, enabling them to handle large-scale, high-dimensional datasets 

while benefiting from cloud-based computational resources. The cloud infrastructure continuously refines CNN 

models, improving accuracy and allowing them to scale effectively for diverse environmental applications. This 

setup supports real-time monitoring needs in data-intensive scenarios, as CNNs can quickly update and analyze 

large datasets from various sensors, providing precise and scalable insights essential for safety and 

environmental monitoring. The cloud-enabled architecture makes CNNs well-suited for large-scale 

environmental data analysis, where continuous updates and real-time object recognition play vital roles211, 212 

(Fig. 4a,b). 

For environmental monitoring, CNNs integrated with cloud computing bring advanced capabilities for object 

recognition and data classification. CNNs are adept at detecting spatial patterns through their hierarchical 

structure, which processes data in layers to capture features ranging from simple edges to intricate shapes. This 

makes CNNs highly effective in identifying objects, patterns, and environmental features, such as recognizing 

volatile organic compounds (VOCs) or detecting specific items or hazards within complex landscapes8, 142 (Fig. 

4c).  

4.4.2 RNNs for real-time sound analysis 

AI-enhanced sensory detection systems that combine nanotechnology with RNNs are significantly advancing 

real-time sound analysis capabilities in robotics. Biomimetic tactile sensors, such as those powered by TENGs, 

autonomously respond to mechanical stimuli akin to human skin, allowing robots to detect and precisely process 

subtle changes in pressure and strain213 (Fig. 4d). An important development in this field is a self-powered neural 

tactile sensor that integrates a graphene layer with a TENG sensor featuring microlines, yielding heightened 

sensitivity to pressure and vibration214 (Fig. 4e). 

RNNs offer distinct advantages for real-time sound analysis, making them highly effective in applications 

requiring continuous and rapid processing of audio data. Their unique architecture enables them to maintain 

context across time steps, making RNNs especially well-suited for handling sequential data like sound waves. 

This capacity to retain information allows RNNs to capture temporal patterns in sound, as they can integrate 

context from previous inputs—ideal for recognizing complex acoustic signatures that unfold over time. For 
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example, variations in pitch, frequency, and duration in sound waves are effectively analyzed as the RNN 

processes each element in the sequence, updating its understanding based on previous patterns. 

In real-time applications, RNNs operate directly on-device to minimize latency, enabling instant processing of 

acoustic data and allowing robotic systems to respond to auditory cues with minimal delay. This immediate 

responsiveness is particularly valuable in robotics, where quick sound recognition and reaction are crucial for 

navigation, interaction, and environmental awareness. By processing sound data as it arrives, RNNs enable 

robotic systems to differentiate sounds in dynamic environments—whether identifying speech, mechanical 

noise, or environmental cues in real-time—enhancing their adaptability, autonomy, and responsiveness to the 

surrounding world215 (Fig. 4f). Moreover, the introduction of biomimetic piezoelectric acoustic nanosensors 

marks a breakthrough in auditory fidelity. These sensors convert vibrations into electrical signals similar to the 

human hearing process, offering advanced sound detection capabilities216 (Fig. 5a). 

These advancements in CNN-driven object recognition for environmental monitoring and RNN-enhanced real-

time sound analysis mark a transformative step toward autonomous, responsive sensory systems in robotics. By 

merging AI with nanotechnology, these approaches enable real-time learning and adaptive functionality across 

various fields, including medical diagnostics, environmental monitoring, and smart infrastructure. The 

combination of on-device and cloud-supported AI bolsters robot interactions with their surroundings, enhancing 

pattern recognition, decision-making, and sensory precision, furthering the autonomy and intelligence of 

advanced robotics systems. 

4.5. On-device AI-assisted PENG wearables for health monitoring 

4.5.1 ANN and RNN for wearable health monitoring 

The fusion of nanogenerators with AI-driven algorithms, specifically ANNs, and RNNs, empowers wearable 

health monitors to continuously track health metrics in real time.42, 118, 209, 217-232 ANNs process complex, 

nonlinear health data patterns by extracting key features from multiple sensor inputs, which is vital for 

comprehensive health monitoring. RNNs, on the other hand, excel at interpreting time-dependent data, making 

them ideal for sequential monitoring tasks, such as analyzing heart rate variability, breathing patterns, or 

prolonged physical activity. By retaining information over time, RNNs allow wearables to recognize evolving 

patterns in health signals, which is essential for detecting subtle changes that may indicate health risks.  

Wearable devices that incorporate ZnO nanorod-based PENGs add an extra dimension to this functionality.233-

235 These materials are highly responsive to motion, generating electrical signals in response to bending, 

stretching, and other mechanical movements. This sensitivity enables precise measurement of physiological 

movements and provides valuable input for ANN and RNN models to analyze, enhancing the quality and 

relevance of real-time health monitoring. This breakthrough lays the groundwork for creating highly sensitive 
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e-skins236 (Fig. 5b,c). When coupled with AI, these devices can interpret complex motions, finding their place 

in advanced prosthetics and interactive technologies, thus improving the human-machine interface.  

4.5.2 SVM, KNN, and decision trees for wearable tactile feedback 

Advances in stretchable nanogenerators are revolutionizing wearable tactile feedback, making it possible for 

devices to deliver responsive sensations directly to users' fingertips112 (Fig. 5d). These PENG-based devices, 

designed for industrial-scale production, have transformed touch-sensitive wearables, enabling them to detect 

and respond to tactile inputs in real time. By integrating these nanogenerators with AI, wearable devices provide 

users with a more immersive, intuitive interaction, as they can interpret and respond to complex tactile stimuli. 

The development of bio-PENGs, which utilize eco-friendly materials to generate power from body movements, 

furthers this approach, supporting sustainable, self-powered wearables capable of adapting to various 

environmental and physiological cues237 (Fig. 5e). 

In achieving this high degree of tactile feedback, several algorithms play complementary roles, each addressing 

distinct aspects of tactile data processing. SVMs are pivotal for classifying tactile data by clearly separating 

various touch inputs, such as different pressures or textures, into specific categories, allowing wearables to 

differentiate touch types accurately.238 KNN, a straightforward yet effective algorithm, is useful for classifying 

tactile sensations by comparing them to known data points. KNN's proximity-based approach is valuable for 

recognizing textures, pressure levels, or gestures, making it a natural complement to SVM in applications where 

cumulative sensory data informs tactile feedback.239 Decision trees and random forests can enhance tactile 

classification by evaluating input data based on multiple criteria.240 Decision trees individually assess sensory 

data, while random forests employ an ensemble of trees for more robust classification. 

While SVMs offer foundational classification precision, KNN’s historical comparison helps refine touch 

recognition by drawing on accumulated sensory data. Decision trees and random forests, with their multiple-

layered decision-making, add robustness to tactile feedback by providing nuanced classification for a broad 

range of touch inputs. By dynamically interpreting and adapting to tactile inputs, these algorithms empower 

nanogenerator-based wearables to deliver advanced, real-time feedback, paving the way for intelligent, self-

sufficient, and seamlessly integrated technologies in everyday life. 

4.6 On-device/cloud-based AI-integrated PENG biomedical robotics 

4.6.1 LSTM for precision control in robotic hands 

The integration of LSTM networks with 3D piezoelectric microsystems in robotic hands marks a transformative 

advancement in biomedical robotics, particularly for cloud-supported applications requiring precision and 

adaptability. LSTMs are uniquely suited to capture long-term dependencies in sequential data, a critical feature 
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for interpreting tactile inputs that continuously evolve. In robotic hand applications, these dependencies 

encompass complex tactile feedback patterns that arise as the hand interacts with diverse objects, surfaces, and 

textures. By retaining contextual information across time steps, LSTMs enable the robotic hand to make 

intelligent, real-time adjustments based on sequences of past interactions rather than isolated data points. This 

capability enhances the hand’s sensitivity and adaptability, allowing for precise modulation of grip and pressure 

in response to varying tactile stimuli.  

An example of this approach is demonstrated in robotic hands equipped with a monolayer MoS2-x-based PENG 

designed to optimize electrical outputs in flexible configurations241 (Fig. 5f) and a PVDF layer with 

chromium/gold electrodes mounted on a serpentine polyimide ribbon for sensitive tactile feedback213 (Fig. 5g). 

By dynamically interpreting tactile data through LSTM algorithms, these systems achieve enhanced sensitivity 

during manipulation tasks, allowing for highly controlled and responsive actions. 

Moreover, AI elevates the functionality of these systems beyond passive data collection, fostering active 

learning and real-time adaptation. This advanced AI-driven approach utilizes pattern recognition, predictive 

analytics, and dynamic decision-making processes to boost sensor sensitivity and adaptability under various 

environmental conditions.242 For instance, AI’s ability to dynamically adjust the electrical output of a sulfur 

vacancy-passivated MoS2 PENG in response to changes in pressure and bending angles significantly increases 

energy efficiency, optimizing system performance and extending operational lifespan.243 

In 3D piezoelectric microsystem integrated into a robotic hand, AI can significantly improve the hand’s grip 

and manipulation abilities by continually learning from tactile feedback.244, 245 This adaptability allows the 

robotic hand to perform a wide range of tasks with enhanced precision and responsiveness to touch, enabling it 

to handle diverse and unpredictable objects effectively. This fusion of AI with nanogenerator-powered 

biomedical robotics opens a myriad of possibilities, from self-adjusting prosthetic systems that provide a more 

seamless user experience to autonomous energy management within these systems, ensuring optimal power 

distribution. Such advancements are crucial for enhancing the autonomy of robotic and biomedical applications, 

making them more efficient and user-friendly.  

4.6.2 ANN for real-time decision-making in adaptive prosthetics 

In adaptive prosthetics, the integration of ANNs on-device enables real-time responsiveness, which is essential 

for seamless and intuitive user experiences. Unlike LSTMs, which are more suitable for handling sequential 

dependencies over time, ANNs provide immediate decision-making by analyzing tactile feedback and positional 

data in real time. This capability allows the prosthetic to react instantly to changes in movement, enabling fluid, 

adaptive motion that closely aligns with the user's natural actions. 
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By processing tactile inputs on-device, ANNs eliminate the latency associated with cloud processing, ensuring 

that the prosthetic can adjust grip, orientation, and movement as the user performs various tasks. This real-time 

processing is particularly useful for adaptive prosthetic hands, where instantaneous feedback is needed to 

accommodate changes in grip strength and angle based on the detected force or shape of the object being handled. 

Additionally, by optimizing response based on real-time inputs, ANNs reduce wear and tear on the device by 

avoiding unnecessary movements, thereby improving the lifespan and efficiency of the prosthetic system. The 

PENG-based design, with materials such as sulfur vacancy-passivated MoS₂, enables these prosthetics to harvest 

energy autonomously, further enhancing their usability and sustainability. 

These innovations in AI-integrated PENG biomedical robotics, through cloud-enabled LSTM applications for 

robotic hands and on-device ANN applications for adaptive prosthetics, mark a significant step towards creating 

self-sufficient, highly adaptive systems in healthcare. The combination of precise tactile feedback processing 

and intelligent adaptability enables these systems to provide a more personalized, responsive experience for 

users, with applications that span both medical and robotic fields. 

5. Conclusions and Outlook 

The fusion of artificial intelligence with nanogenerators is transforming the conversion of mechanical energy 

into electrical energy, leading to more efficient and sustainable energy solutions. This breakthrough is paving 

the way for the creation of self-powered devices, crucial for advancing autonomous robotics and intelligent 

systems independent of external power sources. Moreover, AI’s integration is refining the accuracy and 

responsiveness of robotics sensors and actuators, significantly improving healthcare wearables for precise 

monitoring of vital signs and enabling real-time data analytics. These advancements promote predictive 

maintenance and adaptive learning, tailoring devices to user-specific requirements.  

However, this integration presents several challenges, including complexities in analysis, design, fabrication, 

and the broad application of these technologies. There is an urgent need for a universal framework that can 

thoroughly understand the piezoelectric and triboelectric effects, optimize structures, innovate new materials, 

effectively scale current outputs, and expand the application domains. This advancement should extend beyond 

sensing functions to include computational capabilities as well.  

Ongoing research offers promising directions for incorporating active materials that can respond dynamically 

to external stimuli, such as pressure, heat, or electrical fields into nanogenerator-powered soft robotics and 

intelligent machine systems. These materials are useful in robotic systems requiring adaptive responses, such as 

soft sensors, e-skins, actuators, and microfluidic devices, where flexibility and responsiveness are essential. 

Combining TENGs and PENGs within a single system can offer dual capabilities in both sensing and actuation. 

This combination leverages TENGs' sensitivity to surface contact and movement and PENGs' ability to generate 
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stable output under deformation, creating a more comprehensive energy-harvesting and sensory network. This 

integration may be accomplished by layering materials or designing hybrid circuits where each generator type 

contributes to specific functions. These hybrid systems support the development of self-powered, untethered 

robotic devices capable of responding to environmental cues. 

For soft robotics, low-power actuation mechanisms are crucial as they allow for motion without requiring high 

energy input. Further development of electroactive polymers, dielectric elastomers, and shape-memory alloys 

enables movements like bending, contracting or expanding with minimal electrical power for soft actuators in 

robots. When paired with TENG or PENG devices, these materials support sustained operation in autonomous 

systems that rely on limited power sources. 

Microscale TENG- and PENG-based robots, due to their compact size, hold significant potential for biomedical 

applications within confined spaces, such as vascular systems. These miniature devices could navigate narrow 

blood vessels or other internal pathways to perform diagnostics, deliver targeted drugs, or even conduct minor 

repairs within the body. Biocompatible materials, such as hydrogels and flexible polymers, enable safe 

interactions with biological tissues, while advanced microfabrication techniques like photolithography, 3D 

printing, and laser micromachining allow for the precise construction of robots at the microscale, essential for 

delicate medical applications. In the development of flexible tactile sensors, innovations in materials science 

and structural design have led to substantial improvements in sensitivity. Flexible substrates, such as elastomers 

and conductive polymers, combined with structured micro/nano-patterns on the surface, enhance the device's 

ability to detect and differentiate between subtle pressure changes, temperature variations, and other material 

properties. These advances also support enhanced auditory and olfactory sensing, enabling more precise sound 

and gas detection, respectively, in soft robotics and wearable devices. 

Moving forward, key areas for nanogenerator-based systems include addressing performance limitations, 

ensuring stability in challenging conditions, and advancing production techniques for scalability. Strategies to 

enhance output performance include using multilayered structures and optimizing the surface area to boost 

energy capture. Ensuring device stability in harsh environments may involve material coatings that protect 

against high temperature, humidity, or mechanical stress, as well as encapsulation techniques to shield sensitive 

components. Scaling production can benefit from automated fabrication techniques, such as roll-to-roll 

processing or 3D printing, to achieve consistent, high-quality manufacturing at a large scale. 

Addressing these challenges will be essential for advancing the practical applications of nanogenerator systems. 

By enhancing durability, efficiency, and scalability, the potential of AI-enhanced nanogenerators can be 

unlocked across diverse fields, from medical devices and biosensors to self-powering buildings, ultimately 

marking a substantial step toward sustainable, autonomous technological solutions. 
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Figures and Captions 

 

Fig. 1. Machine learning models for AI-augmented nanogenerators. In supervised learning, models like k-

Nearest Neighbors (KNN), Support Vector Machines (SVM), Artificial Neural Networks (ANNs), Linear 

Discriminant Analysis (LDA), Recurrent Neural Networks (RNNs), Decision trees, and Convolutional Neural 

Networks (CNNs) are included. These models, trained on labeled data, are effective for tasks such as 

classification, pattern recognition, and real-time monitoring in energy-sensitive systems. In unsupervised 

learning, Deep Belief Networks (DBNs), Hopfield Neural Networks (HNNs), autoencoders (unsupervised 

CNNs), and Principal Component Analysis (PCA) operate without labeled data for clustering and dimensionality 

reduction. Energy efficiency strategies like pruning/compression and quantization can optimize these algorithms 

for low-power environments typical in wearables and IoT devices powered by nanogenerators. CNNs,124 

Copyright 2020, Springer Nature. 
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Fig. 2. Applications of AI-enhanced nanogenerators. AI-assisted nanogenerators provide responsive, 

efficient, and intelligent solutions in advancing human-machine interfaces. In wearable and portable applications, 

nanogenerators power biometric and health monitoring devices, such as (a) blood pressure monitors, (b) cardiac 

monitoring systems, and (c) user identification tools. For smart wearables, AI-augmented sensors enable (d) 

augmented reality/virtual reality (AR/VR) interfaces, (e) smart clothing,37 Copyright 2022, Springer Nature; and 

(f) gesture-recognition glove,109 Copyright 2020, Springer Nature; (g) tactile sensing glove,136 Copyright 2019, 

Springer Nature; and (h) e-skin,40 Copyright 2019, Elsevier. In environmental monitoring, (i) haptic interfaces 

and (j) blue energy harvesting,17 Copyright 2017, Elsevier, represent advancements in sustainable interactions. 

In communication and interaction, nanogenerators facilitate (k) speech classification and (l) lip decoding,114 

Copyright 2022, Springer Nature. In advanced sensing and detection, AI-augmented nanogenerators improve 

capabilities for (m) object recognition,138 Copyright 2020, Springer Nature; (n) liquid leakage detection, and (o) 

gas sensing, including the detection of volatile organic compounds (VOCs)142 Copyright 2021, AAAS. 
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Fig. 3. AI-assisted TENGs for self-powered systems and interfaces. (a) A self-powered artificial tactile 

peripheral nervous system using TENG, simulating biological sensory circuits using CNN.172 Copyright 2021, 

Elsevier. (b) Self-powered handwriting HMI via TENG, with structure and recognition principles using CNN.187 

Copyright 2020, Elsevier. (c) Smart socks with TENG sensors for recognizing sports gait data using CNN.195 

Copyright 2020, Springer Nature. (d) Training and recognition process for a 16-key stretchable keyboard 

security system using SVM.202 Copyright 2018, Elsevier. (e) Self-powered TENG sensor for document 

management: page-turn recording and book theft prevention.205 Copyright 2014, Springer. (f) Handwriting 

recognition with self-powered TENG for machine learning-based user classification using SVM.207 Copyright 

2020, Elsevier. (g,h) Electrical signal-time curve and feature radar chart for user typing, alongside a cross-user 

difference score matrix with feature combinations using PCA and SVM.202 Copyright 2018, Elsevier. (i) TENG 

matrix-based artificial sensory memory using HNN.143 Copyright 2020, Elsevier.   
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Fig. 4. AI-assisted TENGs for sensory detection. (a) Angle sensor.211 Copyright 2020, Wiley. (b) Dual-mode 

vector motion sensors for direction and angle.212 Copyright 2022, Elsevier. (c) Ionizer with machine learning 

enhancement.8 Copyright 2021, RSC. (d) Stretchable sensor for object scanning, pressure measurement, and 

hardness detection.213 Copyright 2019, Springer Nature. (e) Neural tactile sensor for pressure detection and 

texture identification.214 Copyright 2019, ACS. (f) Artificial auditory pathway.215 Copyright 2020, Elsevier.  
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Fig. 5. AI-integrated PENGs for wearables and robotics. (a) Biomimetic inorganic piezoelectric acoustic 

nanosensor.216 Copyright 2014, Wiley. (b,c) Multi-sensing e-skin for pressure and temperature detection.236 

Copyright 2018, ACS. (d) Output voltage and pressure for affordable e-skin.112 Copyright 2020, IOPscience. (e) 

Wearables inspired by the fish swim bladder.237 Copyright 2018, Wiley. (f) MoS2-x-based PENG under different 

bending speeds.241 Copyright 2018, Wiley. (g) Implanted microsystem in a robotic hand.213 Copyright 2019, 

Springer Nature. 
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Table 1 Overview of algorithms with nanogenerator integration 

Algorithm Roles Deployment 
Energy-

efficiency 
Reusability Pros Cons 

PCA 

Dimensionality 

reduction for 

enhanced 

classification 

efficiency 

On-device 

High (relatively 

low data 

dimensionality) 

Limited 

Efficient for 

dimensionality 

reduction, 

improves data 

processing 

speed 

May lose critical 

information in 

reduced 

dimensions; 

sensitive to 

scaling 

variations 

SVM 

Classifies data 

using 

hyperplanes; 

effective in 

high-

dimensional 

spaces 

Cloud 

Moderate 

(memory for 

large datasets) 

Limited; 

often needs 

retraining 

for 

different 

data 

Effective in 

high-

dimensional 

spaces; robust 

to overfitting, 

enhances 

classification 

accuracy 

High 

computational 

demand, may 

slow down real-

time processing 

RNNs 

Temporal data 

analysis, ideal 

for sequential 

data like time-

series signals 

On-device 

Low 

(sequential 

processing) 

Adaptable, 

with 

limited 

retraining 

for 

different 

patterns 

Short 

sequential data 

and time-

series analysis 

Computationally 

expensive, 

vanishing 

gradients, 

challenging for 

long sequences 

LSTM 

Enhanced 

RNN capable 

of long-term 

dependencies; 

suitable for 

adaptive 

interfaces 

Cloud 
Low (memory 

cells) 

Partially 

reusable 

through 

fine-tuning 

for 

sequential 

tasks 

Effective for 

long-term 

dependencies, 

addresses 

vanishing 

gradient issues 

in RNNs 

Resource-

intensive, 

requires high 

computational 

power for 

training and 

inference 

CNNs 

Hierarchical 

feature 

extraction, 

especially 

effective in 

image and 

spatial feature 

recognition 

On-device/ 

cloud 

Requires 

substantial 

power 

Transfer 

learning 

allows 

reuse for 

similar 

tasks 

Excellent at 

spatial data 

recognition, 

suitable for 

image and 

spatial feature 

extraction. 

High 

computational 

cost; risk of 

overfitting in 

deep 

architectures 

without 

sufficient data 

Page 41 of 46 Journal of Materials Chemistry A



Table 1 Overview of algorithms with nanogenerator integration 

Algorithm Roles Deployment 
Energy-

efficiency 
Reusability Pros Cons 

DNN 

Models 

complex 

relationships; 

versatile in 

complex 

pattern 

detection. 

Cloud 
Low (memory 

requirements) 

Reusable 

with fine-

tuning; 

transfer 

learning 

possible. 

Capable of 

modeling 

complex 

patterns, 

versatile for 

diverse 

applications 

Requires 

substantial 

computational 

resources and 

large datasets; 

prone to 

overfitting in 

small data 

DBN 

Unsupervised 

feature 

learning for 

enhanced 

classification 

accuracy 

Cloud 

Moderate (high 

computational 

load) 

Reusable 

with 

adjustments 

to layers; 

retains 

learned 

features 

Effective for 

hierarchical 

feature 

extraction, 

enhances 

classification 

accuracy 

Training is 

complex and 

time-

consuming, 

demanding 

computational 

resources 

KNN 

Instance-based 

learning, good 

for small 

datasets; 

suitable for 

recognition 

tasks 

On-device 

Low energy 

efficiency with 

large datasets; 

energy-

efficient in 

small, targeted 

datasets 

Requires 

retraining 

for 

different 

classes; 

limited 

reus. 

Simple and 

effective for 

small datasets, 

suitable for 

real-time 

applications 

Inefficient with 

large datasets; 

performance 

degrades with 

irrelevant 

features 

ANN 

Models 

nonlinear 

relationships 

across diverse 

applications 

On-device 

Moderate; 

lightweight 

architectures 

viable 

Moderate 

reusability 

with layer-

specific 

fine-tuning. 

Highly 

accurate for 

complex 

relationships; 

versatile 

across 

applications 

Computationally 

demanding and 

requires large 

amounts of 

labeled data for 

training 
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Table 1 Overview of algorithms with nanogenerator integration 

Algorithm Roles Deployment 
Energy-

efficiency 
Reusability Pros Cons 

HNN 

Associative 

memory tasks, 

handling 

complex 

hierarchical 

data patterns 

Cloud 

Low (relatively 

high cost and 

energy 

consumption) 

Good 

reusability; 

effective 

for 

memory-

intensive 

tasks 

without full 

retraining 

Effective for 

associative 

memory, 

retrieves 

stored patterns 

from partial 

input 

High 

computational 

complexity, 

often requires 

cloud-based 

processing for 

real-time use 

Reusability: Pretrained models or parts of the models can be reused for energy-efficient adaptation to new tasks. 
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Table 2 Algorithmic requirements for various applications in AI-integrated nanogenerators 

Application Algorithms Roles Example applications Data 

Tactile sensing and 

recognition 

2D CNNs (spatial) Spatial feature extraction e-skins (texture/pressure 

recognition) 

Tactile logs, pressure 

mappings 

1D CNNs 

(temporal), KNN, 

RNN 

Sequential and instance-

based learning 

Smart gloves (gesture 

recognition), AR/VR 

interfaces 

Gesture sequences, 

spatial motion data 

1D CNNs 

(temporal), SVM, 

ANN, RNN 

Classification, pattern 

recognition, sequential 

data 

Wearable health monitors 

(heart rate, activity) 

Biometric data, 

sensor readings 

SVMs 

(classification) 

Classifying touch or 

pressure types 
Haptic feedback systems Tactile data logs 

LSTMs 

(sequential) 

Sequential data 

processing 

Adaptive human-machine 

interfaces 

Sequential tactile 

data 

Security and 

document 

management 

SVM + PCA High-dimensional data 

classification 

Document authentication, 

user biometric verification 

Biometric data, 

document signatures 

Decision trees 
Decision-making in 

workflows 

Document categorization, 

access control 

Encrypted 

signatures, security 

protocols 

LDA Class separation 
Document type 

classification 

High-dimensional 

data 

Pattern recognition 

and memory 

HNNs (associative 

memory) 

Pattern recognition with 

stored memory 

Typing behavior analysis, 

user authentication 

Sequential logs, 

sensory interaction 

patterns 

DBNs (feature 

learning) 

Unsupervised feature 

extraction 

Sensory memory for 

robots, pattern detection 

Sensory data, 

hierarchical patterns 

RNNs (sequential) Sequential pattern 

analysis 

Repetitive behavior 

recognition 

Time-series data 

Autoencoders 

(unsupervised) 

Feature extraction 

without labels 

Data compression for 

sensor logs 

Unlabeled data logs 
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Table 2 Algorithmic requirements for various applications in AI-integrated nanogenerators 

Application Algorithms Roles Example applications Data 

Advanced sensory 

detection 

CNNs (feature 

extraction) 

Feature extraction for 

detection tasks 

Object and sound 

recognition 

Environmental 

readings 

RNNs (real-time 

analysis) 
Sequential data analysis 

Continuous auditory 

analysis 

Real-time sound 

patterns 

PCA, DBN, HNN 

outlier detection 

Dimensionality 

reduction, feature 

learning, associative 

memory 

VOC detection, unusual 

pattern identification, air 

quality monitoring 

VOC sensor 

readings, 

environmental data 

logs 
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Data Availability Statement

Data available on request from the authors
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