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Predicting third-body collision efficiencies for water and other 

polyatomic baths

Ahren W. Jasper

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

Low-pressure-limit microcanonical (collisional activation) and thermal rate constants are 

predicted using a combination of automated ab initio potential energy surface construction, 

classical trajectories, transition state theory, and a detailed energy- and angular-momentum-

resolved collision kernel. Several systems are considered, including CH4 (+M) and HO2 (+M), 

with an emphasis on systems where experimental information is available for comparison. The a 

priori approach involves no adjustable parameters, and we show that the predicted thermal rate 

constants are in excellent agreement with experiment, with average deviations of less than 25%. 

Notably, the a priori approach is shown to perform equally well for atomic, diatomic, and 

polyatomic baths, including M = H2O, CO2, and “fuel” baths like M = CH4 and NH3. Finally, the 

utility of microcanonical rate constants for interpreting trends and inferring mechanistic details in 

the thermal kinetics is demonstrated.
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I. Introduction

The Lindemann–Hinshelwood expression1,2 for the pressure-dependent rate constant kp of 

a unimolecular reaction A (+M)  A* (+M)  B + C is obtained by imposing a steady state 

condition on the concentration of the energized reactant A* and explains the apparent change in 

the order of kp from second to first with increasing pressure p. Although not written this way 100 

years ago, the expression can be rearranged to

, (1)
1
kp

=
1

k0nM
+

1
k∞

where the second-order collisional activation rate constant  is multiplied by the number density k0

nM of the “third-body” M such that  depends linearly on pressure, and k is the first-order k0nM

intramolecular dissociation rate constant and is independent of pressure. Eqn 1 can be used to 

describe both microcanonical (here, total-energy- and total-angular-momentum-resolved) 

unimolecular rate constants kp(E,J) as well as thermal unimolecular rate constants kp(T), including 

the RRK and RRKM expressions3–6 with appropriate choices for  and k. k0

The form of eqn 1 emphasizes that unimolecular reactivity results from the competition of 

two dynamical bottlenecks: one is associated with collisional activation and is dominant at low 

pressures, and another is associated with intramolecular energy rearrangements and bond breaking 

and is dominant at high pressures. Despite their apparent symmetry in eqn 1, considerably more 

effort in the past 100 years has gone into developing a priori theoretical methods for predicting k 

than .k0

High pressure limit rate constants k are conveniently and often accurately predicted using 

ab initio transition state theory (TST).6–10 Ab initio TST has been repeatedly validated against 

higher-level theories as well as experiment, and continuing efforts are being made to understand 
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its general accuracy and limitations. Just as importantly, a useful chemical intuition regarding the 

connection between transition state structures and chemical mechanisms has been developed. 

In contrast,  is only rarely predicted. Pressure dependence, when it is not ignored, is k0

instead typically treated using empirical models containing a few adjustable parameters. The 

parameters are either estimated or tuned to match the model’s predictions to measured values of 

kp, if available. Experimental studies characterizing collision information,11–21 including 

measurements of the average energy transferred by collisions E, have been important to our 

understanding of pressure dependent kinetics. When E or equivalent experimental information is 

used to parametrize theoretical models, however, the results are not generally expected to be 

predictive, as the necessarily simple theoretical models are not sufficiently detailed. Furthermore, 

the lack of detailed predictive theories has left us with confounding observed trends in relative 

collision efficiencies (i.e., in relative values of k0(T)) and prevented the development of a useful 

chemical intuition regarding the dependence of collision efficiencies and k0 on temperature and 

the identity of the bath gas.

The goal of this work is to demonstrate accurate predictions for k0 and kp for polyatomic 

baths and to provide some discussion toward developing a chemical intuition for collisional 

activation. We consider falloff and low-pressure limit kinetics for several systems, focusing on the 

collision efficiency of water and other polyatomic baths relative to weaker common baths like N2 

and Ar. We consider thermal rate constants, which are compared with available experimental 

kinetics and collision efficiency measurements to further validate the a priori theory, as well as 

less-often considered microcanonical rate constants, which are briefly examined here for 

mechanistic insights.
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II. Theory

Background. The thermal rate constant for a unimolecular reaction can be written as a 

weighted sum of microcanonical rate constants

kp(T) =
∞

∑
J =  0

∞

∫
E =  0

dE kp(E,J)xp(E,J),

where E and J are the total energy and total angular momentum of the reactant, respectively, the 

arguments of kp distinguish thermal and microcanonical rate constants, and the weights xp are the 

population densities of the internal states of the reactant. In general, both kp(E,J) and xp(E,J) are 

functions of the temperature T as well as the identity of the bath gas M, but this dependence is not 

noted to avoid clutter. Only in the high pressure limit, where k(E,J) = N‡/h and x =  exp(–

E/kBT)/Q have familiar expressions from Marcus5 and Boltzmann, respectively, are the kinetics 

independent of the identity of the bath gas M. If we wish to characterize falloff and low-pressure–

limit kinetics, k0(E,J) and x0(E,J) must be predicted separately for each temperature and bath gas 

of interest.

In the low-pressure-limit, microcanonical rate constants describe the rate of activating 

collisions and have the form22,23

k0(E,J) =
∞

∑
J’ = 0

∞

∫
EJ’

dE' R(E',J';E,J),               for E <  EJ,                 (3)

where EJ is the J-dependent dissociation threshold for the reactant, and k0(E,J) is not defined for 

unbound initial states. The integrand of eqn 3, R, is sometimes called the “collision kernel” and 

describes the rate at which collisions knock the reactant from the initial state (E,J) to the final state 

(E',J'); the limits in eqn 3 ensure that k0(E,J) counts only those collisions that knock the system 

(2)
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from a bound state to an unbound one. Again, R depends on T and M, but this dependence is not 

noted.

The state-to-state collisional transfer rate constant R and its low-order moments have been 

characterized many times using ensembles of classical trajectories (see, for example,24–38 as well 

as own studies39–43), with a particularly useful characterization of R given by Barker and Weston;44 

this extensive literature was recently reviewed and interpreted by Lendvay.45 In general, the 

trajectory studies connect observed properties of R to mechanistic details of the collisions, 

including a nonexponential dependence on the energy transferred E = |E' – E| with a long tail 

associated with so-called “supercollisions,” nonseparability of energy and angular momentum 

transfer, and a strong dependence of R on the initial rotational state J with a relatively weaker 

dependence on E.

The state-to-state collisional transfer rate constant R is often written as the product of a 

bimolecular (reactant + bath) total collision rate constant, Z, and a normalized probability for 

collision outcomes, P = R/Z. This same substitution lets us write eqn 3 as

k0(E,J) = Z F(E,J) (4)

where 

 F(E,J) = ∑
J'

∞

∫
EJ'

dE P(E',J';E,J)                                                        (5)

is the fraction of reactant + bath collisions that activate the reactant above its dissociation 

threshold. 

Trajectories. We recently showed that k0(E,J) and F can be computed straightforwardly 

using classical trajectories,23 and that the trajectory simulations can be automated.43 We do not 

repeat many details here and instead provide an outline of the procedure with an emphasis on 
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considerations for treating polyatomic baths. Each simulation consists of an ensemble of 

trajectories defined by the initial state label (E,J) of the reactant A and the temperature T and the 

identity of the bath gas M. The internal coordinates of the reactant are determined subject to 

constraints imposed by the state label (E,J) by sampling from a small set of isolated trajectories 

for A(E,J).40 Any internal coordinates of M and the relative A + M collision parameters are 

sampled classically using a thermostat and conventional bimolecular thermal sampling, 

respectively.46,47 For each trajectory in the ensemble, the final total energy and angular momentum 

of A(E',J') are determined unambiguously once the reactant and bath had sufficiently separated. 

By comparing the final total energy E' to the dissociation threshold for the final rotational state J', 

EJ', for all of the trajectories in the ensemble, the fraction of activation collisions F and in turn the 

desired microcanonical rate constants k0(E,J) are readily obtained. 

Similar trajectory ensembles are used to compute ensemble-averaged changes in E and J 

due to collisions such as the well-known “average energy transferred in deactivating collisions” 

<Ed>, along with other low-order moments of R. The “two-dimensional” master equation 

(2DME) kinetic model for R discussed below is parameterized against so-called “double 

moments,” which are moments of R that include averaging over a distribution of initial states (E,J) 

along with final state averaging. We choose a thermal distribution for J and set E to a value close 

to the dissociation threshold of the reactant. Our best kinetic models are parametrized against all 

135 double moments through third order,57 and typical fitting errors of the moments are just ~15%, 

on average. Unlike in past work,23 here we found that for some polyatomic colliders fitting the 45 

second order moments resulted in predicted low-pressure limit kinetics that differed significantly 

from the third-order fits, by as much as 40%. This result reflects that k0 is sensitive over a wider 

range of collision outcomes for stronger colliders than for weaker ones.
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In the trajectory ensembles, the initial conditions, propagation, and final state assignments 

are all treated classically. This is done to ensure that average collisional energy and angular 

momentum transfer correctly tends to zero as the species thermalize. In other contexts, such as 

predicting reaction rate constants, it is often preferred to prepare the reactants quasiclassically,48,49 

where the internal states of the reactants are quantized prior to the collision event and the initial 

reactant energy therefore includes zero-point energy. This procedure inevitably leads to 

ambiguities with respect to final state assignments (which will not in general be quantized at the 

end of a classical simulation) with dramatic consequences often related to the treatment of zero-

point-energy violations. Most importantly in the present context and in particular when dealing 

with polyatomic colliders, quasiclassical initial conditions cannot guarantee a tendency toward 

thermalized products, as the zero-point energies of the colliding species will tend toward 

equilibration along with the rest of the internal energy. We emphasize that the use of purely 

classical mechanics for characterizing collisional energy transfer is a choice, but it appears to be 

well supported by comparisons of our predictions with experimental kinetics, as demonstrated 

below. 

Importantly, the dissociation thresholds EJ are not treated classically, and instead 

variational transition-state-theory-based thresholds are used. Classical mechanics is known to 

perform poorly near thresholds, and the present semiclassical prescription avoids this potentially 

significant source of error.

Total collision rates. It is often convenient to scale the microcanonical rate constants (F = 

k0/Z) as well as the low-order moments of R such that the information they contain is written per-

collision rather than per-time. The Lennard–Jones collision rate constants Z used here to do this 

are calculated using the “one-dimensional minimization” method.50 It should be remembered that 
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our best kinetic models do not depend on this choice for Z. When any per-collision property 

appears in a detailed kinetics equation, it always appears multiplied by Z such that the arbitrary 

definition of a collision implied by the choice of Z does not affect the prediction.

Potential energy surfaces. For each system of interest, the interaction potential was 

described using permutationally invariant polynomial (PIP) expansions51 parameterized and 

validated using a recently described automated strategy.52,53 The PIP expansions were trained 

against large (>64,000) data sets of ab initio energies (typically, counterpoise corrected MP2 

energies with complete basis set extrapolations). Convergence in the predicted energy transfer 

moments and rates with respect both to the order of the PIP expansion and the level of electronic 

structure theory used to train the PIPs was demonstrated previously.52,53 Collision information is 

expected to be more sensitive to the interaction potential than to the intramolecular potential, and 

so the intramolecular PESs were described using a molecular mechanics force field with 

parameters confirmed or adjusted to predict experimental (NIST54) frequencies and rotational 

constants. 

The flexibility provided by PIP expansions is important for accurately describing the 

complex and often highly anisotropic interaction potentials of the polyatomic baths considered 

here. We showed previously52,53 that one could estimate relative errors in predicted collisional 

energy transfer moments due to fitting errors in the potential energy surface by computing a 

relative out-of-sample fitting error. For all the systems considered here, the order of the PIP 

expansion was chosen such that relative fitting errors were less than 20%. Simpler pairwise 

expressions for the interaction potential, such as the widely used Buckingham potential, cannot 

achieve this accuracy even for some diatomic baths.52
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Thermal kinetics. To compute thermal rate constants, low-pressure-limit steady-state 

populations x0(E,J) are needed alongside k0(E,J). These were obtained by solving the two-

dimensional master equation (2DME),44,55–57 where the two dimensions are E and J. In the 2DME 

calculations, the collision kernel is described using a detailed model57 designed to reproduce key 

collisional physics and trained against the trajectory-based “double moments” of R mentioned 

above. This model has no adjustable parameters and was previously shown to accurately predict 

thermal57,58 and microcanonical23 rate constants. Further demonstrations of the accuracy of this 

approach are given in the next section. 

Predicting thermochemistry and high-pressure-limit rate constants is not the focus here, 

but these quantities are needed to fully characterized kp(T) and to compare with experiment. High-

pressure limit kinetics k(E,J) and dissociation thresholds EJ were calculated using Klippenstein’s 

variable reaction coordinate TST (VRC-TST),59,60 and anharmonic state densities and partition 

functions were calculated using semiclassical Monte Carlo phase space integrals61,62 (MCPSI).

III. Results and Discussion

III.A. Thermal rate constants, relative collision efficiencies, and comparisons with 

experiment. First, we validate the a priori theoretical kinetics approach described above for 

predicting kp(T) at falloff pressures and k0(T) for a few systems where experimental information is 

available. We focus on predictions for polyatomic colliders.

Very similar theoretical approaches to the ones described here were previously used to 

predict kp(T) for CH4 (+M) ⇌ CH3 + H (+M), initially for He57 and later for several atomic, 

diatomic, and polyatomic baths.63 These calculations were repeated here using the automated PIP 

potential energy surface construction and trajectory strategies described above, and as expected 
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the new results are in close agreement with the earlier calculations (with moments of R typically 

differing by less than 10% from the earlier results). A new comparison with two sets of 

experimental results64,65 around 1000 K for M = Ar and CH4 is shown in Fig. 1. The predicted and 

measured rate constants typically differ by less than 25%, as indicated by 25% error bars added to 

the theoretical curves, and these deviations are consistent with earlier comparisons57,58 and 

assessments.23 There are somewhat larger deviations from the higher-pressure measurements for 

M = Ar, and the source of these deviations is unclear. The present predictions are in very close 

agreement with experiment at lower pressures where the rate constants are most sensitive to the 

description of collisional energy transfer, which is the focus of the present study.

Notably, at the lowest experimental pressures considered (~0.05 atm for M = CH4), the 

experimental data could be interpreted as showing a near linear dependence with pressure, whereas 

the theoretical results show somewhat more curvature. This difference in interpretation can affect 

experimental determinations of k0. For example, Fig. 2(a) shows predicted values of kp(T = 1000 

K) for CH4 (+M)  CH3 + H (+M) in five baths including three polyatomic baths (M = Ar, N2, 

CO2, CH4, and H2O), and their values relative to those for M = Ar are plotted in Fig. 2(b). Over 

the experimental pressure ranges from Fig. 1 (0.03 to 1 atm and 5 to 50 atm), the relative values 

of kp deviate from those at lower pressures and therefore from the relative values of k0 by as much 

as a factor of two to three.

In practice, low enough pressures required to accurately determine k0 from experiment may 

be well outside the range of accessible pressures, and indeed these pressures might be too low to 

be relevant to any practical application. Even when the unimolecular kinetics of interest is close 

to the high-pressure limit, the magnitude of any pressure-dependent “falloff” is nonetheless 

controlled by collisional energy transfer and its competition with intramolecular kinetics. The 
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theoretical consideration of the effect of collisional energy transfer on kinetics is conveniently 

studied by considering k0, and k0 is the focus of the remainder of this article.

Figure 3 compares predicted low-pressure limit rate constants for H + O2 + M, M = Ar, N2, 

CO2, and H2O, around 1000 K with measurements reported in three experimental studies from 

Hanson and co-workers.66–68 The calculated HO2 (+M)  H + O2 (+M) rate constants were 

reversed to match the reported experiments. Focusing on the most recent experimental study (Shao 

et al.68 indicated in Fig. 3 by squares), we see that the predictions are in close agreement with the 

measured values and are typically within their assigned error bars of less than 15%. The Shao et 

al. study was conducted at pressures as low as 13 atm, and Fig. 3 shows that our calculated rate 

constants at 13 atm are ~10% lower than the LPL and appear in even better agreement with Shao 

et al. Notably, based on these comparisons, the present theoretical procedure appears to work 

equally well for the weaker colliders Ar and N2 and the stronger colliders CO2 and H2O.

Table 1 summarizes calculated bath gas collision efficiencies (i.e., the relative values of 

k0) for the systems discussed so far, CH4 (+M) and HO2 (+M), including some new baths and 

alongside results for additional systems where comparisons with experimental bath gas efficiencies 

can be made. A large number experimental studies have been carried out for some of the systems 

in Table 1, and we cannot attempt comprehensive comparisons here. Instead, we rely on recent 

experiments and evaluations given by others. We note that preliminary versions of these results 

for HO2 (+M), H2O2 (+M), NH3 (+M), and N2H4 (+M) were mentioned in an earlier paper 

describing the generation of their potential energy surfaces.53 Here, these results are expanded and 

analyzed in more detail. 

For HO2 (+M), Michael et al.69 measured (and reviewed existing) collision efficiencies at 

room temperature that are seen to be in good agreement with the present predictions, as shown in 
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Table 1. At higher temperatures, Ashman and Haynes70 reported relative collision efficiencies 

from 750–900 K for M = Ar, N2, CO2, and H2O, and the experimental study of Shao et al.68 

highlighted in Fig. 3 considered these same baths around ~1500 K. In Refs. 69 and 70, the 

measured rate constants were assigned uncertainties of ~30% or more (and if we assume that errors 

for different baths are uncorrelated the uncertainty in the ratios given in Table 1 would be 2-times 

larger). The calculated values typically agree within these experimental errors, although we find 

an exception in the factor of ~2 difference for HO2 (+CO2) at 1000 K. Agreement with the higher-

temperature data set of Shao et al., which includes CO2, is excellent as emphasized by Fig. 3. 

Notably, the theory correctly predicts the very large relative collision efficiency of water 

k0(H2O)/k0(Ar) > 20, in agreement with experiment.68,69

For H2O2 (+M), we refer to a recent theoretical study by Matsugi71 who used similar 

trajectory approaches but did not solve the 2DME. He provided a discussion of available 

experiments, most of which are older, and the discussion is not repeated here. Instead, Table 1 

includes one comparison with a set of more recent experimental results72 around 1000 K, where 

agreement is again seen to be good, though we note factor of ~2 differences for M = CO2 and 

H2O2.

For H2O (+M), M = Ar and H2O, we compare our predicted results with experimentally 

informed expressions given by Srinivasan and Michael.73 The recommended expressions show an 

increase in the relative rate constants for H2O and Ar with temperature, whereas the predicted 

collision efficiencies show no temperature dependence. Quantitatively, the two values are 

nonetheless in fair agreement with one another, with deviations close to the experimentally 

assigned uncertainties.
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A comparison of predicted and experimental collision efficiencies was recently made for 

NH3 (+M) and N2H4 (+M) and for several baths including polyatomic colliders.74 The results are 

summarized in Table 1. Although we are not aware of experimental measurements for NH3 (+Ar), 

our current predicted relative values of N2:CH4:CO2 = 1 : 3.15 : 3.54 for NH3 (+M) at 300 K agree 

well with the relative experimental values of 1 : 2.60 : 2.83 of Macdonald and co-workers.75–77 

Similarly good agreement with experiment75–78 is found for N2H4 (+M), as shown in Table 1. New 

results for M = H2O have been added for NH3(+M) and N2H4(+M). Finally, Table 1 includes a 

small set of results for HNO (+M) and HCN (+M) to add some variety.

The comparisons in Table 1 alongside more the detailed comparisons in Figs. 1 and 3 and 

elsewhere23,57,58 suggest a predictive accuracy in our theoretical approach of better than ~25%. 

Sometimes larger deviations are observed in Table 1, but we note relatively large uncertainties in 

the experimental work. When precise and systematic data sets are available, relative efficiencies 

are predicted in excellent agreement with experiment, as demonstrated in Fig. 3 and 

elsewhere.23,57,58 Importantly, collision efficiencies for polyatomic colliders are shown to be 

predicted just as accurately as those for weaker colliders. This demonstration is the major result of 

this work. 

In the remainder of the paper, we look for trends in Table 1 and analyze a few cases in 

more detail. Qualitative trends in Table 1 support the following conventional assumptions often 

made about collision efficiencies. 

N2 is consistently a stronger collider than Ar, with k0(N2)/k0(Ar)  1.5–3, although a notable 

exception is CH4 (+M), where k0(N2)/k0(Ar)  1. CH4 (+M) is one of the more widely studied 

systems in this context, which could be the source of the occasional assumption that the two baths 

generally have similar efficiencies. 
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The atomic and diatomic baths (He, H2, N2, and O2), typically considered “weak” colliders, 

are predicted to have collision efficiencies relative to Ar of around 1 to 3, whereas H2O and 

polyatomic “fuel” baths (NH3, CH4, and H2O2) have much larger collision efficiencies relative to 

Ar of around 10–20. Unfortunately, there is significant dispersion in the results, with results for 

k0(H2O)/k0(Ar) varying from 4 to 28, for example, suggesting that universal bath gas efficiencies 

may not be suitable in many contexts. 

Finally, relative collision efficiencies are often but are not always temperature dependent. 

The collision efficiency of CO2 relative to Ar tends to decrease somewhat with temperature, while 

this trend is reversed for k0(H2O)/k0(Ar), but overall it appears difficult to generalize trends in the 

temperature dependence of k0(M)/k0(Ar) with M. Collision efficiencies for some systems increase 

by as much as a factor of 2.5 from 300 to 2000 K and decrease by as much as a factor of 4.5 for 

other systems over this same temperature range.

III.B. Microcanonical rate constants. In a recent study,23 we suggested that trends in 

relative thermal low-pressure-limit rate constants k0(T), i.e., in relative collision efficiencies, are 

confounded by a strong sensitivity of the underlying microcanonical low-pressure limit rate 

constants to the initial state (E,J). Microcanonical low-pressure limit rate constants k0(E,J) are 

discussed next for HO2 (+M), M = Ar, N2, CO2, NH3, and H2O. 

In Fig. 4, the integrand of eqn 2, k0(E,J)x0(E,J), i.e., the initial-state-selected contribution 

to the thermal rate constant, is plotted for HO2 (+M) at 1000 K for four baths. (M = NH3 was also 

considered; its contour plot is similar to that for M = H2O and is not shown.) The relative thermal 

collision efficiencies for these baths are Ar:N2:CO2:NH3:H2O = 1 : 1.6 : 8.9 : 18 : 22, and indeed 

these relative efficiencies are reflected in the shapes of the contours in Fig. 4.
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All four distributions peak around the same initial state (E = 600 cm–1, J = 28 ħ), with the 

location of this “preferred” initial state largely controlled by the variation in the density of states 

of the reactant (EJ,J) along the threshold for dissociation EJ. Strong and weak colliders deplete 

threshold states to different degrees, and it is notable that these differences do not shift the 

preferred state.

The contours in Fig. 4 are linearly spaced, and for the two weaker colliders the distributions 

are seen to decrease sharply with energy, with insignificant contributions to reactivity for states 

more than a ~500 cm–1 below threshold. Notably, the range of depletion is nearly independent of 

the initial rotational state J over a broad range of J, suggesting that one-dimensional kinetic models 

for treating J (i.e., models that ignore the nonseparability44 of E and J) may be appropriate. The 

more rounded shapes for the stronger colliders, M = CO2, NH3, and H2O, however, clearly reveal 

strong E and J coupling and indicate that explicitly two-dimensional master equation models are 

needed for quantitative descriptions. The qualitatively different initial-rotational-state preferences 

for strong and weak baths suggest that explicitly two-dimensional treatments might be important 

for understanding bath gas mixing effects, as recently explored by Lei and Burke.79,80

The trends in Fig. 4 are further quantified by considering k0(E,J) apart from x0(E,J). Cuts 

through k0(E,J) for three kinetically-relevant initial rotational states are shown in Fig. 5(a) for M 

= Ar, N2, CO2, and H2O at 1000 K. (Results for M = NH3 were found to be similar to those for M 

= H2O and are not shown.) Significant reactivity is shown to occur only very close to threshold 

even for the strongest bath, M = H2O, with k0(E,J) decreasing by an order of magnitude just ~300 

cm–1 below threshold. 

In every case, the curves show a narrow energy range very close to threshold where k0(E,J) 

declines rapidly with decreasing initial energy as well as a long tail with relatively less initial-state 
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dependence. The stronger baths have more prominent tails, and these differences can be seen more 

clearly in Fig. 5(b) in which the results in Fig. 5(a) have been normalized as in eqn 4. The 

normalization constants are compared with Lennard–Jones collision rates in the figure, and they 

are shown to be ~20% larger for the weaker baths and 2–3 times larger for the stronger baths. This 

normalization procedure provides yet another way to define collision rate constants, and we 

emphasize that it is just as arbitrary as any other. Nonetheless, it lets us develop an intuition 

regarding the relative likelihood of an activating collision as a function of the initial state of the 

reactant.

The resulting curves in Fig. 5(b) can be interpreted as state-selected per-collision activation 

probabilities (eqn 5). We see that for initial states in the “long tail” of the stronger baths, ~10% of 

collisions are reactive for both M = H2O and CO2 and that differences in the overall rates for these 

two baths arise instead from differences in the number of collisions per time, i.e., differences in Z. 

Observed differences in F might suggest different energy transfer mechanisms, whereas collisional 

differences in Z are simpler to explain.

Finally, Fig. 5(c) shows microcanonical bath gas efficiencies relative to Ar, again as a 

function of initial state. The values of k0(E,J) for the two weak baths, Ar and N2, show a very 

similar energy-dependence and a negligible rotational state dependence, and as a result the relative 

microcanonical collision efficiencies are close to the thermal ones for these baths. In contrast, there 

is significant initial state dependence for the stronger baths. For M = CO2, NH3, and H2O, the 

relative values of k0(E,J) vary by a factor of two or more with initial state, even over the narrow 

energy range shown in Fig. 5. The relative thermal values necessarily pass through the 

microcanonical curves near kinetically relevant initial states, as the thermal properties are weighted 

averages of the underlying microcanonical ones (eqn 2).
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IV. Conclusions

The main goal of this work was to demonstrate that pressure-dependent kinetics can be 

predicted with high accuracy, both for weak atomic and diatomic colliders and for stronger 

polyatomic colliders including water. By comparing with available experimental results for CH4 

(+M) and HO2(+M) and with measured relative collision efficiencies for a few other systems, we 

quantified the expected accuracy of our approach to be better than ~25%, rivaling the accuracy of 

kinetics experiment in many cases. 

A brief presentation of microcanonical rate constants was given, with the goal of 

rationalizing trends and providing mechanistic insight. Most notably, perhaps, relative 

microcanonical collision efficiencies were shown to vary significantly as a function of the initial 

state of the reactant. It is important to emphasize just how surprising the magnitude of this variation 

is. Notice in Fig. 5(c) that the relative value of k0,H2O(E,J)/k0,Ar(E,J) equals 5 for initial states close 

to threshold but equals ~40 for initial states just –750 cm–1 (~2 kcal/mol) below threshold! One 

goal of past trajectory studies was to aid in the development of a useful intuition for explaining 

differences in observed relative collision efficiencies. Such simple explanations seem unlikely 

when, as in our example, a change of just 2 kcal/mol out of a total internal energy of ~40 kcal/mol 

leads to such dramatically different relative outcomes. 

In our opinion, it seems unavoidable that a priori strategies are needed for predicting 

collisional energy transfer and its effect on k0 and kp that can be applied alongside advanced 

treatments for thermochemistry and transition state theory now widely in use. The present 

computations are not significantly more computationally intensive than high-accuracy methods for 

thermochemistry or transition state theory. We hope that advanced treatments for predicting 
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collisional energy transfer and pressure-dependent kinetics will find more widespread use such 

that both contributions to unimolecular reactivity central to Lindeman and Hinshelwood’s 

celebrated advance can be treated on equal footing.
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Table 1. Predicted and experimental thermal collision efficiencies relative to Ar
System 300 K 1000 K 2000 K
CH4 (+M)
     He:Ar 1.01 1.70 2.56
     N2:Ar 1.02 1.10 1.28
     O2:Ar 1.09 1.19 1.33
     H2:Ar 2.29 3.31 4.09
     CO2:Ar 1.64 1.65 1.77
     CH4:Ar 2.98 4.66 5.11
     H2O:Ar 4.17 6.19 6.96
HO2 (+M)
     He:Ar 0.90 (0.82)a 1.17 1.34
     N2:Ar 1.71 (1.95)a 1.58 (1.79)b 1.20 (1.38)c

     H2:Ar 3.69 (2.52)a 3.07 1.71
     CO2:Ar 13.7 8.94 (4.29)b 3.03 (5.0)c

     NH3:Ar 20.4 17.9 18.7
     H2O:Ar 23.3 (22.7)a 22.2 (18.9)b 21.3 (23.0)c

H2O2 (+M)
     N2:Ar 1.50 1.58 (1.49)d 1.63
     CO2:Ar 5.22 4.14 (1.85)d 3.27
     H2O2:Ar 6.83 12.0 (6.42)d 16.3
     H2O:Ar 5.51 10.2 (9.85)d 13.3
H2O (+M)
     N2:Ar 2.51 1.62 1.20
     H2O:Ar 8.97 (6.7)e 8.55 (9.3)e 8.75 (14.6)e

NH3 (+M)
     N2:Ar 3.15f 2.47 2.25
     O2:Ar 1.55 1.48 1.70
     CO2:Ar 11.2f 13.4 14.3
     NH3:Ar 13.9 20.0 22.2
     CH4:Ar 9.94f 13.3 14.3
     H2O:Ar 14.0 23.6 27.9
N2H4 (+M)
     N2:Ar 2.00 (2.5)g (1.3)h 1.69 1.43
     O2:Ar 1.22 1.17 1.14
     NH3:Ar 5.86 (10)g (5.2)h 8.25 8.60
     H2O:Ar 5.60 7.98 8.19
HNO (+M)
     N2:Ar 1.61 1.71 1.59
     H2O:Ar 6.42 8.15 9.09
HCN (+M)
     N2:Ar 1.05 1.26 1.47
     H2O:Ar 4.24 4.87 5.56

aMichael et al.69; bAshman and Haynes70 at 750–900 K; cShao et al.68 at 1500 K; dHong et al.72; 
eSrinivasan and Michael73; fN2:CH4:CO2 = 1 : 3.15 : 3.54 at 300 K, which agrees well with the 
relative experimental values of 1 : 2.60 : 2.83 of Macdonald and co-workers.75–77 gKhe at al.78 
hMacdonald and co-workers.75–77
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Figure 1

Fig. 1. Predicted (lines) and experimental (symbols) pressure-dependent thermal rate constants kp 

for CH4 (+M), M = Ar and CH4 around 1000 K. The lower-pressure measurements are 

from Chen et al.,64 and the higher-pressure measurements are from Barnes et al.65
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Figure 2

Fig. 2. The upper panel shows predicted pressure-dependent thermal rate constants kp for CH4 

(+M) in five baths at 1000 K. The horizontal dotted line indicates the calculated high-

pressure limit, and the other straight lines show low-pressure limit rate constants multiplied 

by the number density of the bath gas, k0nM. The lower panel shows the relative values of 

kp from the upper panel, and the horizontal lines indicate the relative values of k0.
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Figure 3

Fig. 3. Predicted low-pressure-limit (LPL) thermal rate constants k0 for H + O2 + M in four baths 

from 1000–1500 K. The thicker lines show the calculated LPLs, and the thinner lines show 

the calculated rate constants at 13 atm. The predictions are compared with results from 

three experimental studies.66–68 Note that for M = N2, the red squares and red triangles 

overlap and are difficult to distinguish.
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Figure 4

Fig. 4. Contour plots of k0x0, the state-selected contribution to the low-pressure-limit thermal rate 

constant, for HO2 (+M) at 1000 K. The plot for M = Ar (black) is overlaid on the plots for 

the other baths (blue). The red line shows EJ, the rotational-state-dependent dissociation 

threshold. A consistent set of evenly spaced contour lines were used in all four panels, with 

2, 4, 5, and 7 contours appearing for M = Ar, N2, CO2, and H2O, respectively.
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Figure 5

Fig. 5. (a) Microcanonical rate constants k0(E,J) for HO2 (+M), J = 10, 25, and 40 ħ, and M = Ar, 
N2, CO2, and H2O shown relative to the rotationally-adiabatic dissociation threshold EJ. (b) 
Collisional activation probabilities F(E,J) = k0(E,J)/Z scaled to the collision rates Z given 
in the figure and described in the text. (c) Microcanonical collision efficiencies relative to 
those for Ar. The horizontal lines show the relative thermal collision efficiencies from 
Table 1.
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