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Abstract (100-150 words) 

Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid 

crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to 

monodomain programming, has not previously been examined with respect to thermomechanical properties in 

these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or 

variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain 

LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers 

from 2 mol.% to 45 mol.% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the 

isotropic transition temperature by 44°C using identical starting monomers. In contrast to expectations, low 

amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not 

hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear 
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elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft 

elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing 

from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of 

excess acrylate on mechanical properties of LCE actuators.  

 

1. Introduction 

Liquid crystal elastomers (LCEs) are soft elastomeric networks comprised of mesogenic molecules, which give 

rise to a unique set of thermomechancial properties (Warner and Terentjev 2007; Dey et al. 2013). LCEs can be 

synthesized in the polydomain conformation in which mesogen alignment varies over the macroscopic scale, or 

in the monodomain conformation defined by a uniform director indicating the direction of mesogen alignment 

throughout the material. These arrangements generate isotropic and anisotropic mechanical properties, 

respectively, on the bulk scale. Inducing a liquid crystalline phase change under thermal (Kularatne et al. 2017), 

chemical (Boothby, Kim, and Ware 2017), electromagnetic (White 2018; Liu et al. 2017; M. Wang, Lin, and 

Yang 2016; M. Wang et al. 2016), or other stimulus disrupts the domain conformation through widespread 

mesogen reorganization to a highly disordered configuration designated as the isotropic phase. This phase 

transformation results in an associated change in mechanical properties. In the case of monodomain LCEs, the 

phase change causes a large, reversible change in sample dimensions, observed to be as high as 400% strain 

(Wermter and Finkelmann 2001). This phenomenon, known as two-way shape-memory, shape-switching, or 

shape-actuation, has been proposed for a variety of applications. Several recent reviews and investigative 

articles indicate applications for dynamic surfaces (Babakhanova et al. 2018; Torras et al. 2013), biomimetic 

materials (Prévôt, Ustunel, and Hegmann 2018; Gelebart et al. 2016; Schuhladen et al. 2014), cell scaffolds 

(Gao et al. 2016; Bera et al. 2015), soft robotics (Yuan et al. 2017), additive manufacturing (Ambulo et al. 

2017; Kotikian et al. 2018), and optical coatings (Kragt, Broer, and Schenning 2018). 

 

Page 2 of 37Soft Matter



3 

 

The mechanisms responsible for monodomain actuation and unique thermomechanical properties have been an 

emphasis of  LCE research over the last 35 years. In particular, research has spotlighted the influences of 

chemical composition and structure on material response, which are outlined in recent reviews (Kularatne et al. 

2017; White and Broer 2015). Yet the approach to synthesizing monodomain LCEs reliably and repeatably is 

not straightforward (Ohm, Brehmer, and Zentel 2010). Mesogen alignment techniques such as surface and 

photo-alignment produce excellent results (Kowalski, Guin, et al. 2017), offering unmatched spacial control of 

monodomain programming (Kowalski, Tondiglia, et al. 2017; Ware et al. 2016; Mostajeran, Ware, and White 

2015; Ware et al. 2015); however, these techniques rely on the natural propagation of mesogen alignment 

through the reaction mixture and are consequently restricted to microstructures (Hessberger, Braun, and Zentel 

2016; Urbanski et al. 2017; Fleischmann et al. 2013; Hong et al. 2009) or thin LCE films of about 100 µm or 

less. Alternatively, mechanical alignment techniques that are more suitable for bulk production of monodomain 

LCEs can be difficult to reproduce as the strategies are dependent on reliable reaction kinetics and adequate 

gelation before aligning forces can be applied (Donnio, Wermter, and Finkelmann 2000; Küpfer and 

Finkelmann 1991). Thiol-based chemical approaches have shown more repeatable results owing to selective 

reaction schemes (Yang et al. 2013; L. Wang et al. 2017). 

 

Recently, Yakacki et al. introduced a highly reproducable two-stage thiol-acrylate Michael addition and 

photopolymerization procedure that has greatly increased the accessibility of LCEs to scientists and engineers 

(Yakacki et al. 2015). The approach uses off-the-shelf chemicals requiring no further modification and a simple 

one-pot reaction scheme. High conversion and repeatability result from the orthogonal nature of the initial thiol-

acrylate Michael addition reaction and secondary photochemical acrylate homopolymerization (Hoyle and 

Bowman 2010; Nair et al. 2014); this is specifically advantageous for synthesizing monodomain LCEs at bulk 

scale with uniform director alignment and tunable thermomechanical properties. With appropriate chemical 

design, the initial reaction results in a polydomain LCE with reactive acrylates remaining in the elastomer. The 

monodomain can then be formed by mechanical elongation owing to a direct coupling between sample 
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extension and director orientation. Subsequent photopolymerization of the remaining acrylate fixes the 

configuration to a permament monodomain LCE capable of shape-actuation in response to thermal stimulus. 

Complex actuation can be achieved by non-uniform elongation prior to photopolymerization (Ahn, Liang, and 

Cai 2015). Additionally, the approach can be scaled up indefinitely, allowing facile synthesis of large quanties 

without loss of sample quality. This unique combination allows for unmatched control over director alignment 

in bulk monodomain LCEs.  However, the monodomain cannot be fixed by a secondary reaction if there is no 

excess acrylate in the original mixture. 

 

The selectivity of the initial thiol-acrylate reaction gives excellent control over the molecular structure of the 

LCE network, which can be designed to elicit specific thermomechanical properties. Crosslink density, 

mesogen concentration, and main-chain characteristics can be controlled by modulating relative concentrations 

and species of the constituent monomers. Previously, Saed et al. investigated the influence of crosslinker 

species and concentration on polydomain LCE properties (Saed, Torbati, et al. 2017) as well as the effects of 

spacing between mesogens (Saed, Volpe, et al. 2017). Exchangable bonding has also been achieved by 

designing excess thiol or other receptive moiety into the chemical formulation (Z. Wang et al. 2017; Hanzon et 

al. 2018; McBride et al. 2017; Pei et al. 2014). There have been a few studies on monodomain LCEs made by 

the thiol-acrylate and photopolymerization approach (Yakacki et al. 2015; Frick et al. 2016; Saed et al. 2016), 

however, the influence of excess acrylate concentration on thermomechanical and shape-actuation properties in 

LCEs of this type has not previously been explored. 

 

This article investigates the influence of excess acrylate concentration on thermomechanical and actuation 

properties of monodomain nematic LCEs produced by the two-stage thiol-acrylate procedure. The reaction 

scheme requires some amount of excess acrylate to fix the monodomain conformation by the photochemical 

reaction; yet, the influence of varying excess acrylate content on monodomain fixity, thermomechanical 

properties, and actuation performance has not previously been explored. In this study, glass and isotropic 
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transition temperatures along with dynamic mechanical properties were investigated for compositions with up 

to 45 mol.% excess acrylate groups. Anisotropic mechanical properties were tested by quasistatic tensile tests 

with the liquid crystal director aligned parallel or perpendicular to the tensile axis. Shape-actuation strain and 

actuation rate resulting from the phase transition were investigated throughout the glassy, rubbery nematic, and 

isotropic thermal regimes. The results demonstrate a technique to tune the isotropic transition temperature, 

tensile properties, and actuation rate of LCE actuators without sacrificing mechanical properties or total 

actuation strain. 

 

2. Materials and Methods 

2.1. Materials 

Monomers and the general fabrication procedure are shown in Figure 1. 4-bis-[4-(3-

acryloyloxypropypropyloxy) benzoyloxy]-2-methylbenzene (CAS: 174063-87-7) (RM257) was purchased from 

Wilshire Technologies, Inc. (Princeton, NJ, USA). Pentaerythritol tetra (3-mercaptopropionate) (PETMP), 2,2-

(ethylenedioxy) diethanethiol (EDDET), 2,6-di-tert-butyl-4-methylphenol (BHT), 2-hydroxy-4'-(2-

hydroxyethoxy)-2-methylpropiophenone) (HHMP), dipropylamine (DPA), and toluene were purchased from 

Sigma-Aldrich, Inc. (St. Louis, MO, USA). All materials were used as-received without further purification. 
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Figure 1: Monomers RM 257, EDDET, and PETMP polymerized via Michael addition, forming a polydomain 

elastomer with unreacted excess acrylate functional groups. The polydomain was elongated to form a 

monodomain, followed by photochemical reaction between the remaining acrylate groups. This programmed 

the monodomain and allowed reversible shape-actuation by heating/cooling through the isotropic transition 

temperature. 

 

2.2. Liquid crystal elastomer fabrication 

Main-chain liquid crystal elastomers were synthesized by a method adapted from a previous publication by one 

of the authors (Yakacki et al. 2015). The stoichiometry of the monomer mixture was systematically varied 

utilizing the concepts of thiol-acrylate click chemistry. The purpose was to produce tailored LCEs that 

contained between 0 and 45 mol.% excess acrylate functional groups (contributed by diacrylate mesogen RM 

257) relative to thiol functional groups (contributed by tetrathiol PETMP and dithiol EDDET). The amount of 

crosslinker (PETMP) (10 mol.%) was calculated by the number of thiol functional groups contributed by the 

crosslinker relative to the total number of thiol groups contributed by the crosslinker and spacer (EDDET).  

 

RM 257 and inhibitor BHT (200 ppm) were dissolved at 80°C in 30 wt.% toluene and mixed with EDDET and 

PETMP thiol monomers. Photo-initiator (HHMP) was added to the mixture (0.5 wt.%) and reheated to 80°C to 

dissolve. Catalyst (DPA) was diluted 1:50 by weight with toluene and mixed. The DPA/toluene solution was 

added to the reaction mixture (0.5 mol.%) to initiate a thiol-acrylate Michael addition reaction of equal parts 

thiol and acrylate functional groups. The solution was degassed under 21 in-Hg vacuum and cast between two 

glass slides with 1 mm polytetrafluoroethylene spacers between slides. The mixture polymerized overnight, 

forming a clear elastomer swollen with toluene. Toluene was extracted under 21 in-Hg vacuum at 80°C until the 

material reached a stable weight. Elastomers were opaque white at room temperature indicating a liquid 

crystalline phase in the polydomain conformation. 
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Monodomain LCEs were formed by uniaxial stretching to the strain at which the material transitioned from 

opaque white to optically transparent, often called the clearing strain. The monodomain could be programmed 

by photochemical reaction when excess acrylate was designed into the initial reaction mixture. Likewise, 

unstrained LCEs could be programmed in the opaque white polydomain. The photochemical reaction was 

initiated by exposure to 365 nm wavelength ultraviolet light (Blackray B-100A/R, UVP, Upland, CA, USA) for 

up to 1 hr. during which excess acrylate groups reacted to form new bonds in the network. Previous studies 

demonstrated high acrylate conversion within 10 minutes of starting the photochemical reaction in 2 mm thick 

LCEs (Yakacki et al. 2015) and 1 mm thick thiol-acrylate polymer networks with up to 100 mol.% excess 

acrylate (Nair et al. 2012). By comparison, the samples used in this study were 1 mm thick at most. This 

procedure had no apparent influence on LCEs that did not contain excess acrylate.  

 

2.3. Fixity 

Fixity (i.e., the relative length to which the monodomain was programmed) was quantitatively defined as the 

ratio of the fixed strain to the strain applied during the photopolymerization reaction (Equation 1). Polydomain 

LCEs were thermally cycled through the isotropic transition and measured at room temperature to obtain an 

initial length. The LCEs were then elongated to the monodomain, indicated by optical clearing of the material, 

and measured to obtain an applied strain (εapplied). Elongated LCEs were held at the applied strain for the 

duration of the photochemical reaction to program the monodomain. The programmed samples were again 

thermally cycled through the isotropic transition then measured at room temperature to obtain the fixed strain 

(εfixed).  

 

������ = ��	
��/�����	��       (Eq. 1) 

 

2.4. Gel fraction 
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The degree of network formation in monodomain LCEs was evaluated by gel fraction (Equation 2). After 

photochemical reaction, LCEs were weighed to obtain an initial mass (minitial). The LCEs were swelled in 

toluene at room temperature on a shaker table at 200 rpm until an equilibrium swollen mass was obtained. 

Toluene was extracted in a vacuum oven at 100°C and 21 in-Hg until an equilibrium final mass (mfinal) was 

obtained. Gel fraction was calculated from the ratio of final mass to initial mass. 

 

���	�������� = ��	���/�	�	�	��    (Eq. 2) 

 

2.5. Dynamic mechanical properties 

Dynamic mechanical properties including storage modulus (E’) and loss tangent (tan δ) were investigated with 

a dynamic mechanical analyzer (DMA Q800, TA Instruments, New Castle, DE, USA) in DMA strain control 

mode using tensile grips. LCEs approximately 7 mm wide and 0.7 mm thick were clamped with 10 mm 

between grips, thermally cycled through the isotropic phase, cooled to sub-ambient temperature, and allowed to 

reach thermal equilibrium for 10 minutes prior to starting each test. All tests were performed at 0.2% strain 

amplitude, 0.01 N preload force, and 1 Hz oscillating frequency. Temperature was ramped up at 0.5°C/min to 

maintain uniform temperature through the thickness of each sample. Monodomain samples contracted in length 

with increasing temperature due to temperature dependence of nematic order and a phase transition at high 

temperature. 

 

The glass transition temperature (Tg) was determined as the peak of the tan δ curve while the isotropic transition 

temperature (Ti) was taken as the minimum of the E’ curve. A reduced temperature (Treduced) was calculated 

such that thermal properties of the various LCE compositions tested in this study could be more easily 

compared with respect to the characteristic Tg and Ti of each composition. This was accomplished by requiring 

Treduced = 0 at Tg and Treduced = 1 at Ti for each composition. Thus, Treduced is defined by Equation 3. This approach 

is conceptually different than the reduced temperature commonly found in literature that investigated 

Page 8 of 37Soft Matter



9 

 

phenomena near Ti. For example, see references (Krause et al. 2009; Sánchez-Ferrer and Finkelmann 2010; 

Giamberini et al. 2005) that use a simple normalization to Ti and reference (Petridis and Terentjev 2006) that 

normalizes to the temperature (T*) below which the isotropic phase is completely unstable. 

 

���� !�� = (� − �$) (�	 − �$)⁄      (Eq. 3) 

 

2.6. Tensile testing 

Monodomain LCEs measuring 10 mm wide by 0.7 mm thick were clamped in the Q800 DMA with the liquid 

crystalline director aligned parallel to or perpendicular to the tensile axis. Samples were uniaxially extended in 

controlled strain mode at 6% strain/min. Engineering stress and strain were calculated using room temperature 

dimensions as the initial values. Tests were performed at a temperature corresponding to Treduced = 0.55 for each 

composition, which was an intermediate temperature within the nematic rubbery regime for each composition. 

This was chosen to demonstrate mechanical properties of the rubbery nematic regime without influence of the 

glass transition. Elastic modulus parallel to the director (E∥) was evaluated as the slope of the loading curve at 

10% strain. Elastic modulus perpendicular to the director (E⊥) was evaluated as the slope of the loading curve at 

1% strain. The threshold stress (σth) was taken as the maximum stress observed prior to formation of the stress 

plateau. 

 

2.7. Actuation 

Shape-actuation was evaluated in DMA controlled force mode with zero bias stress using tensile grips. LCEs 

were clamped with the director aligned to the strain axis, cooled to -25°C, and allowed to thermally equilibrate 

for 10 minutes prior to starting each test. A 0 N preload force was maintained while the samples were heated at 

0.5°C/min until an equilibrium isotropic length was obtained before cooling at the same rate to the equilibrium 

nematic length. Sample length was measured throughout the test. Engineering strain was calculated by 

normalizing sample length to the equilibrium isotropic sample length, which was the shortest observed length 

for each sample. 
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2.8. Wide-angle X-ray scattering 

In-situ wide-angle X-ray scattering (WAXS) experiments were performed using a Forvis Technologies X-ray 

instrument. The instrument was equipped with a 30 W Genix 3D X-ray generator with a copper anode 

(wavelength = 1.5405 Å and energy = 8.05092 keV) and Dectris Eiger R 1M detector with pixel size of 75 x75 

µm2. A flux of 4 x 107 X-ray photons/s was achieved with a beam size of 0.8 x 0.8 mm2 at the sample position. 

All measurements were taken in transmission mode at temperatures equivalent to Treduced = 0.5 and Treduced = 

1.25 corresponding to the nematic and isotropic thermal regimes for each composition. The 0 mol.% excess 

sample was strained by hand until optically clear to achieve a temporary monodomain and verify a nematic 

structure at 31°C. The remaining samples were tested without any applied strain or constraints. 

 

3. Results 

3.1. Liquid crystal elastomer fabrication and fixity 

Monodomain nematic main-chain LCEs were fabricated using a the two-stage chemical reaction consisting of 

an initial thiol-acrylate base-catalyzed Michael addition reaction followed by a secondary photochemical radical 

reaction between remaining acrylate groups. For the first-stage reaction, thiol-acrylate stoichiometry was 

adjusted to produce polydomain LCEs with up to 45 mol.% excess unreacted acrylate functional groups relative 

to thiol groups after the initial Michael addition reaction. Further increasing the acrylate content produced LCEs 

of poor constitution that were easily damaged during manual handling. Thus, compositions with greater than 45 

mol.% excess acrylate were not studied. The chemical composition, which was made up of mesogenic 

diacrylates (RM 257), flexible dithiol spacers (EDDET), and flexible tetrathiol crosslinkers (PETMP), 

assembled into a network of mesogens and spacers composing a main-chain with few crosslinks throughout the 

network. Reaction mixtures with 0 mol.% excess acrylate (i.e. stoichiometric balance of thiol and acrylate 

groups) formed polydomain LCEs with no unreacted acrylate groups remaining after the initial Michael 

addition reaction, and consequently were not receptive to the subsequent photochemical reaction. Increasing the 
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acrylate content resulted in an equivalent increase in mesogen concentration with concurrent decrease in spacer 

concentration (Figure 2). Crosslinker concentration remained relatively constant between compositions, 

although a slight decrease was observed with increased acrylate. The effect of increasing the acrylate 

concentration from 0 mol.% to 45 mol.% excess acrylate relative to the total thiol corresponded to a decrease in 

crosslinker concentration from 2.6 mol.% to 2.1 mol.% crosslinker relative to the LCE network, decrease in 

spacer concentration of 46.6 mol.% to 37.9 mol.%, and an increase in mesogen concentration from 50.8 mol.% 

to 60.0 mol.%. Thus, the effect of variation in crosslinker concentration on network properties was expected to 

be negligible compared to the influences of varied spacer and mesogen concentrations.  

 

Figure 2: Monomer concentrations relative the total network compositions. Increase in diacrylate mesogen 

resulted in a proportional decrease in spacer concentration with negligible change in crosslinker concentration. 

 

Prior to the secondary reaction, the monodomain was formed by elongating polydomain LCEs with unreacted 

acrylate groups to an applied mechanical strain that was just beyond optical clearing of the sample (Figure 3a). 

The presence of unreacted acrylate groups after Michael addition strongly influenced the mechanical viability of 

the polymerized networks and limited the concentration of acrylate allowable in the chemical formulation. 

Applied strain to observe clearing varied between compositions from 85% strain for the 2 mol.% composition to 

128% for the 45 mol.% composition. LCEs with acrylate content greater than 45 mol.% in excess of thiol 

ruptured before completing the polydomain-monodomain transition and were unsuitable for this study. The 
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applied strain was held constant during the subsequent photochemical reaction between remaining acrylate 

groups, which formed new network links and changed the equilibrium state of the LCE. 

 

Figure 3: (a) After Michael addition, strain was applied to the clearing point of the LCEs for subsequent 

photochemical reaction of the remaining acrylate groups to program the monodomain. (b) All compositions 

with excess acrylate achieved monodomain fixity (Eq. 1) greater than 85% after the secondary reaction. 

 

All compositions with excess acrylate achieved over 85% fixity after the photochemical reaction (Figure 3b), 

demonstrating efficient programming of the monodomain even with low concentration of excess acrylate. As 

expected, fixity of the 0 mol.% excess acrylate composition was near zero and the polydomain resumed after 

thermal cycling through the isotropic phase. Gel fraction varied between 92% and 97% for all compositions 
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after photochemical reaction indicating efficient network formation with low soluble content (Supplementary 

Figure 1). This was comparable to a previous study (Yakacki et al. 2015). 

 

3.2. Transition temperatures and dynamic mechanical properties 

Experimental measurements of tan δ and E’ were used to define Tg and Ti, respectively (Figure 4). Tg was 

similar for low excess acrylate compositions (0 mol.%, 2 mol.%, and 5 mol.%) and increased from 2°C to 14°C 

as excess acrylate increased to 45 mol.%. Ti increased more dramatically with acrylate content, broadening the 

rubbery nematic range. The 0 mol.% composition demonstrated the lowest Ti at 58°C, which increased to 113°C 

for the 45 mol.% composition. Accordingly, the breadth of nematic rubber region broadened from 55°C to 99°C 

as excess acrylate increased from 0 mol.% to 45 mol.%. 

 

Figure 4: Increasing acrylate content resulted in disproportionate increases of glass and isotropic transition 

temperature, which effectively broadened the rubbery nematic regime. 

 

Representative E’ and tan δ curves for each composition are shown in Figure 5a using Treduced for the horizontal 

axis, calculated by Equation 3 for each composition. Treduced = 0 corresponds to Tg and Treduced = 1 corresponds 

to Ti for each composition. This normalization caused the glassy, rubbery nematic, and isotropic regimes to 

overlay one-another, simplifying comparisons between compositions. Dynamic mechanical properties relative 

Page 13 of 37 Soft Matter



14 

 

to a true temperature scale are shown in Supplementary Figure 2a. In general, monodomain compositions did 

not demonstrate significant variation in E’ in each regime except for a distinct trend at Ti. The E’ in the glassy 

plateau was 103-104 MPa for all compositions. Heating beyond Tg caused several orders of magnitude decrease 

in E’ into the rubbery nematic regime, reaching a magnitude of 2-3 MPa for the monodomain compositions. E’ 

decreased dramatically at Ti due to dynamic soft elasticity. The magnitude of E’ and the sharpness of the dip 

was strongly dependent on composition. Low acrylate compositions demonstrated acute dips at Ti with the 

lowest magnitude of E’ reaching 0.2 MPa for the 2 mol.% composition. Higher acrylate compositions showed 

less acute E’ dips with a maximum of 1.1 MPa for the 45 mol.% composition. Further heating beyond Ti caused 

E’ to increase continuously and resume similar magnitude for all monodomain compositions. E’ of the 

polydomain 0 mol.% composition was significantly less than the monodomain compositions over all thermal 

regimes (Figure 6a). 
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Figure 5: (a) Storage modulus of monodomain compositions did not vary significantly with changes to 

composition, except for the softening at the isotropic transition (Treduced = 1). (b) Damping properties were 

significant throughout the rubbery nematic regime (0 < Treduced < 1) for low acrylate monodomain LCEs. High 

acrylate LCEs (15 – 45 mol%) demonstrated significant damping only in vicinity of the glass transition (Treduced 

= 0). A reduced temperature scale normalized to the glass and isotropic transition temperatures simplified 

comparison of glassy, rubbery nematic, and isotropic regimes.  

 

Figure 6: (a) Storage modulus of polydomain compositions. (b) Damping properties were significant throughout 

the rubbery nematic regime (0 < Treduced < 1). A reduced temperature scale normalized to the glass and isotropic 

transition temperatures simplified comparison of glassy, rubbery nematic, and isotropic regimes. 
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To better illustrate the influence of mesogen alignment, a 15 mol.% excess acrylate composition was 

photopolymerized in the polydomain conformation. The 15 mol.% excess acrylate polydomain demonstrated a 

Tg of 12°C, 4° higher than that of the 15 mol.% monodomain and showed no change in Ti. Nominal values for 

E’ in the glassy regime were similar for both materials indicating that mesogen alignment had little influence 

(Figure 6a). Heating the polydomain into the rubbery nematic regime caused a continuous decrease in E’ until 

Ti was reached, whereas the monodomain approached a plateau in E’ above Treduced = 0.5. E’ of the polydomain 

was approximately 1.5 orders of magnitude less than that of the monodomain near Ti, demonstrating a 

significant influence of mesogen alignment in the rubbery nematic range. The dip in E’ at Ti reached a 

minimum of 0.2 MPa for the polydomain compared to 0.5 MPa for the monodomain. Further heating into the 

isotropic regime caused E’ to increase continuously; however, E’ of the polydomain remained approximately 

2.5 MPa less than that of the monodomain. A direct comparison between dynamic properties of polydomain and 

monodomain is shown in Supplementary Figure 2b. Dimensional change as the samples entered the isotropic 

state were not considered when calculating E’; however, a large increase in cross-sectional area consistent with 

phase transition of the monodomain sample would indicate a decrease in E’ compared to the polydomain 

sample that exhibited a negligible shape change when heated into the isotropic regime. This is in contrast to the 

E’ observations indicating that the result is not in error due to the measurement technique. 

 

Tan δ of monodomain compositions demonstrated maximum damping properties at Tg and a decay in magnitude 

with further heating that was strongly dependent on composition (Figure 5b). In general, low acrylate 

compositions showed greater damping throughout the rubbery nematic regime, maintaining elevated magnitude 

up to Ti. At Tg, maximum tan δ was highest for the 2 mol.% composition at 1.15 and decreased to 0.97 for both 

the 30 mol.% and 45 mol.% compositions. At temperatures beyond Tg, monodomain compositions 

demonstrated secondary peaks, shoulders, or continuous decay depending on composition. A secondary peak of 

magnitude 0.71 developed in the 2 mol.% composition while the 5 mol.% composition demonstrated a 

prominent shoulder of magnitude 0.61 at Treduced = 0.3. Both compositions assumed similar magnitudes with 
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further heating, approaching equal magnitudes of 0.22 at temperature just below Ti. The 15 mol.% and 30 

mol.% compositions also developed shoulders of magnitude 0.51 and 0.57, respectively at Treduced = 0.2 while 

the 45 mol.% compositions demonstrated a continuous decay from the Tg peak. The three high acrylate 

compositions approached similar magnitude at Treduced = 0.3 and decayed uniformly to near-zero magnitude just 

below Ti. Tan δ peaks developed at Ti with peak magnitude dependent on composition, reaching a maximum 

0.41 for the 2 mol.% composition and a minimum of 0.05 for the 30 mol.% composition. No peak was 

detectable for the 45 mol.% composition.  

 

The 0 mol.% polydomain composition demonstrated significantly greater tan δ compared to the monodomain 

compositions, reaching peak magnitude of 1.40 at Tg (Figure 6b). Tan δ remained elevated throughout the 

rubber nematic regime, reaching a secondary peak of magnitude 0.79 at Treduced = 0.4, and a minimum of 0.56 at 

Ti. Further increase in temperature beyond Ti returned tan δ to near zero magnitude for all compositions. Tan δ 

of a 15 mol.% excess acrylate polydomain LCE showed improved damping characteristics over the 

monodomain of the same composition (Supplementary Figure 2b). The prominent peak at Tg reached 1.26 

compared to 1.07 for the monodomain. Tan δ maintained magnitude greater than 0.2 throughout the rubbery 

nematic regime, producing a secondary maximum of 0.47 at Treduced = 0.5 before an abrupt decrease toward zero 

at the isotropic transition.  

 

3.3. Tensile testing 

When loaded monotonically in tension at Treduced = 0.55, rubbery nematic monodomain LCEs demonstrated 

traditional elastomeric response parallel to the director with E∥ influenced by composition (Figure 7a). Low 

acrylate 2 mol.% and 5 mol.% compositions exhibited comparable E∥ of about 1.4 MPa. Increasing acrylate 

content to 15 mol.% and 30 mol.% increased E∥ to 2.3 MPa. The 45 mol.% composition demonstrated the 

highest E∥ of 6.1 MPa. Deformation parallel to the director did not produce necking (Figure 7b). Perpendicular 

to the director, LCEs demonstrated an initial elastic region and threshold stress associated with a soft elastic 
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stress plateau followed by a final elastic region (Figure 7c). E⊥ of the initial elastic region and σth marking the 

onset of widespread mesogen rotation increased with excess acrylate from 0.6 MPa to 2.6 MPa and from 14 kPa 

to 208 kPa, respectively, as excess acrylate content increased from 2 mol.% to 45 mol.%. The onset of mesogen 

rotation resulted in necking, which spread through the gauge length (Figure 7d). 

 

Figure 7: (a) Tensile modulus parallel to the director (E∥) of monodomain LCEs increased with acrylate content. 

(b) LCE before (left) and after (right) tensile loading along the director demonstrating elastic recovery. (c) 

Tensile modulus perpendicular to the director (E⊥) and threshold stress (σth) of monodomain LCEs increased 

with acrylate content. (d) LCE before (left) and after (right) tensile loading perpendicular to the original director 

demonstrating residual deformation due to mesogen reorientation. Small arrow indicates initial director 

orientation. 

 

3.4. Actuation 
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Monodomain LCEs demonstrated large contraction along the liquid crystalline director when heated into the 

isotropic regime and extension upon cooling back to the nematic regime (Figure 8a). No mechanical bias was 

necessary to produce actuation. Sample dimensions were stable below Tg. Heating through the rubbery nematic 

regime induced dimensional contraction along the liquid crystalline director with concurrent expansion in width 

and thickness. The total actuation strain did not depend strongly on acrylate content and ranged from 84% 

actuation strain for the 15 mol.% composition to 90% actuation strain for the 45 mol% composition. The rate of 

actuation in the rubbery nematic regime did not vary significantly between compositions; however, near Ti, 

actuation rate was dependent on composition with low acrylate concentration producing higher change in strain 

per degree Celsius compared to high acrylate compositions (Figure 8b). Although actuation rates observed 

during heating and cooling were similar for each composition, actuation rate during cooling was repeatedly 

higher and is reported here. The 2 mol.% composition produced the highest actuation rate of 10.8% strain/°C 

during cooling and the 30 mol.% and 45 mol.% composition showed the lowest actuation rate of 1.8%/°C. Low 

excess acrylate compositions (2 mol.%, 5 mol.%, and 15 mol.%) did not shown significant strain actuation after 

heating beyond Ti; however, the high excess acrylate compositions continued to contract well into the isotropic 

regime. 
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Figure 8: (a) LCE expansion upon cooling from the isotropic regime (Treduced > 1) to the rubbery nematic regime 

(Treduced < 1). All compositions demonstrated comparable total actuation strain. High acrylate compositions 

actuated significantly in the isotropic regime while low acrylate compositions demonstrated negligible actuation 

in the isotropic regime. (b) Maximum actuation rate near the isotropic transition (Treduced = 1) decreased against 

acrylate content. 

 

The actuation stroke observed during heating (not shown) did not overlap the stroke observed during cooling 

and is attributed to thermal lag despite the use of slow heating/cooling rate of 0.5°C/min. A residual loss in 

sample length of less than 2% was evident for all samples and compounded with repeated thermal cycling 

(Supplementary Figure 4). Polydomain LCEs demonstrated negligible actuation behavior when heated into 
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the isotropic regime (not shown), although a phase change from the opaque white nematic phase to the optically 

clear isotropic phase was obvious. 

 

 3.5 Wide angle X-ray scattering 

WAXS results showed that all LCE compositions, from 0 mol.% to 45 mol.% excess acrylate were in a nematic 

state when measured at Treduced = 0.5, which was below Ti for each composition (Figure 9a). The nematic order 

was retained in the LCEs while the amount of excess acrylate concentration in the networks was varied. This is 

illustrated by the diffraction patterns revealing two bright spots separated by 180°, which is associated with 

nematic order. All LCE compositions became isotropic when heated to Treduced = 1.25, represented by a diffuse 

halo pattern (Figure 9b). These results help verify the Ti found by DMA testing. The 2 mol.%, 5 mol.%, and 45 

mol.% had reduced intensity compared to the other samples due to the thickness of the samples tested. 

 

Figure 9: 2D images of WAXS (a) at Treduced = 0.5 demonstrated the nematic phase. The 0 mol.% sample was 

strained to clearing while the remaining compositions were not constrained. The mesogens in all compositions 

were in a nematic state. (b) Treduced = 1.25 demonstrating the isotropic phase.  

 

4. Discussion 

The purpose of this study was to investigate the thermomechanical and actuation behavior of monodomain 

nematic main-chain LCEs produced by the two-stage thiol-acrylate procedure. The nature of this reaction 

scheme requires an excess amount of acrylate to fix the monodomain conformation by the photochemical 

reaction in the second stage; however, no previous study has quantified how the amount of excess acrylate 
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influences fixity, thermomechanical properties, or actuation performance. Intuitively, one would expect 

increasing excess acrylate above 0 mol.% would increasingly improve fixity of the monodomain and reduce 

actuation performance due increased bonding in the second stage. Yet, the results of this study show several 

variables have disproportionate influence on thermomechanical behavior. 

 

The polydomain LCEs produced by the initial Michael addition reaction were required to withstand mechanical 

load throughout the polydomain-monodomain transition and subsequent photochemical reaction. To facilitate 

this requirement, an isotropic genesis technique was used in which Michael addition was carried out in the 

presence of a solvent (toluene), forcing the isotropic phase throughout the duration of the Michael addition 

reaction. The polydomain nematic phase formed only after removing solvent by forced evaporation. It was 

previously shown by several studies that polydomain LCEs synthesized in the isotropic phase, referred to as 

iPNEs in the literature (Traugutt et al. 2017) require relatively small amount of work to complete a 

mechanically-induced polydomain-monodomain transition, whereas a similar transition in LCEs synthesized in 

the nematic phase, commonly referred to as nPNEs, is significantly more demanding (Higaki, Urayama, and 

Takigawa 2012; Urayama et al. 2009; Traugutt et al. 2017). Thus, it is doubtful that some of the compositions 

included in this study could survive the mechanical demands of the polydomain-monodomain transition if the 

nematic polymerization technique were used; however, employing a nematic genesis approach could further 

stabilize the nematic phase, resulting in greater increase Ti with acrylate content or could result in paranematic 

behavior. This study showed that a change in excess acrylate concentration did not affect the nematic phase of 

the networks, unlike a previous study which showed a change in structure, specifically spacer length, could 

switch the networks from nematic to smectic (Saed, Volpe, et al. 2017). 

 

The mechanical properties of compositions with excess acrylate were relatively poor prior to the second-stage 

photochemical reaction. The introduction of excess acrylate produced ‘dangling ends’ within the network, 

which resulted in fewer covalent bonds throughout the network. Consequently, mechanical properties were 
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diminished, and coupling between deformation and mesogen alignment was reduced. Therefore, the applied 

strain required to complete the polydomain-monodomain transition increased from 85% strain for the 2 mol.% 

composition to 128% strain for the 45 mol.% composition (Figure 3a).  

 

Surprisingly, varying excess acrylate had very little effect on monodomain programming, which was measured 

by fixity (Figure 3b). Increasing excess acrylate content from 0 mol.% to 2 mol.% increased fixity from 0% to 

approximately 85% due to the introduction of photochemical bonds in the 2 mol.% composition. Increasing 

excess acrylate content beyond 2 mol.%, which was consistent with an increase in the number of bonds formed 

in the photochemical reaction, did not improve fixity indicating that relatively few bonds were required to 

maintain the monodomain conformation. In contrast, the increase in bonds stabilized the nematic phase (Warner 

and Terentjev 2007; Melchert et al. 2012) and increased Ti by 55°C with increasing acrylate content, increasing 

Ti from 58°C to 113°C as excess acrylate increased from 0 mol.% to 45 mol.% (Figure 4).  

 

Increasing acrylate content also modified molecular regularity along the network main-chain. A stoichiometric 

balance of thiol and acrylate groups (0 mol.%) resulted in regularly alternating mesogenic network components 

and spacers along the main-chain with relatively few crosslinks (originating from tetrathiol monomer) dispersed 

throughout the network. Increasing excess acrylate content displaced spacers with direct links between 

mesogenic components, which decreased the mobility of the network (Donald, Windle, and Hanna 2006; Farren 

et al. 2001). This increased Tg from 2°C to 14°C as acrylate increased from 0 mol.% to 45 mol.% (Figure 4), 

which compares to a previous study The disproportionate increase in Tg relative to Ti broadened the rubbery 

nematic regime by 44°C. Since E’ was invariable in each thermal regime with respect to composition, varying 

excess acrylate content provides a technique to tailor Ti and/or dynamic properties without requiring a change of 

monomers or synthetic approach.  
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Damping properties in the rubbery nematic regime decreased with increasing acrylate (Figure 5). Low acrylate 

compositions demonstrated elevated tan δ (Figure 5b), suggesting relatively high mesogen mobility and 

moderate damping properties; however, the increase of stabilizing bonds in high acrylate compositions 

decreased damping performance severely. The dynamic soft elastic dip in E’ at Ti (Figure 5a) became less 

dramatic and broadened with increasing acrylate content as mesogen mobility became more restricted by the 

increasing number of photochemical bonds. This was coincident with the tan δ peak at Ti that was present in 

low acrylate compositions but vanished with increasing acrylate content. This is suggestive of paranematic 

behavior in high acrylate compositions; however, paranematicism is typically associated with an absence of 

dynamic soft elasticity and Ti that is difficult or impossible to detect by thermomechanical techniques (Lebar et 

al. 2012; Traugutt et al. 2017; Kim et al. 2017; Domenici 2012). Rather, increased inhomogeneity along the 

main-chain with increasing acrylate content is more likely to be responsible for broadening the isotropic 

transition. The WAXS results at Treduced = 1.25 (Figure 9a) did not indicate paranematic behavior for any 

composition at that temperature. 

 

E’ in the isotropic phase did not vary significantly with composition (Figure 5a). As with isotropic rubbers, 

LCEs in the isotropic regime show strong dependence of E’ on crosslink density (Martella et al. 2015; Burke 

and Mather 2010). The uniformity of E’ between compositions in this study suggests negligible branching of 

acrylate groups during the photochemical reaction. Thus, the crosslink density was dictated by the tetrathiol 

crosslinking monomer. 

 

In contrast to the monodomain conformation, the polydomain composition (0 mol.%) maintained lower E’ over 

the entire temperature range tested (Figure 6a) and an elevated tan δ within the rubbery nematic regime 

(Figure 6b). These observations are consistent with the relatively high mobility of individual domains 

throughout the polydomain conformation, indicating superior damping properties. The 15 mol.% polydomain 

demonstrated trends in E’ and tan δ similar to the 0 mol.% composition with the exception of significantly 
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reduced damping throughout the rubbery nematic regime as a result of the greater number of bonds fixing the 

nematic phase and an associated limitation on domain mobility. 

 

Tensile testing at Treduced = 0.55 demonstrated mechanical properties of the rubbery nematic regime at 

temperatures well above the glass transition for each composition. The linear responses parallel the director 

were consistent with traditional elastomeric extension of main-chain spacers and showed no evidence of 

mesogen rotation (Figure 7a).  Thus, permanent deformation was negligible after loading to high strain (Figure 

7b). This suggests a high degree of order was achieved by the fixing reaction, which agrees with the fixity 

results. The increase of E∥ with acrylate content from 1.4 MPa to 6.1 MPa was consistent with a reduction of 

flexible spacers along the main-chain and resulted in reduction of main-chain extensibility. Godman, et al 

(Godman et al. 2017) observed a similar trend in E parallel to the director in monodomain thiol-acrylate LCEs 

with varied main-chain length between mesogens. The broad plateau that developed in response to tensile 

loading perpendicular to the director (Figure 7c) agrees with classic soft elasticity exhibited during widespread 

mesogen rotation. This deformation mechanism produced distinct necking, which spread throughout the gauge 

length of each sample (Figure 7d). All monodomain compositions demonstrated the same characteristic plateau 

with variation in E⊥	 and	 σth. Similar to the parallel response to loading, E⊥ increased from 0.6 MPa to 2.6 MPa 

with acrylate content due to changes in main-chain composition. σth also increased from 14 kPa to 208 kPa as a 

result of the increase in bonds stabilizing mesogen alignment, although this trend was difficult to detect in low 

acrylate compositions. 

 

Monodomain composition had little influence on the total actuation strain (Figure 8a), which ranged from 84% 

to 90%, despite the increase in photochemical bonds with increasing acrylate. Thus, changing acrylate content 

allowed selectivity of the actuation temperature (Ti) without sacrificing actuation strain. The increase in 

photochemical bonds stabilizing the nematic phase produced a decrease in actuation rate near Ti from 10.8%/°C 

to 1.8%/°C as excess acrylate increased from 2 mol.% to 45 mol.% (Figure 8b). The 2 mol.% composition, 
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which had the fewest stabilizing bonds, showed actuation behavior approaching a discontinuous phase transition 

characterized by a jump in strain as the LCE transitioned between nematic and isotropic phases (Lebar et al. 

2012). On the other hand, the high acrylate compositions demonstrated gradual change in strain through the 

transition with significant actuation in the isotropic regime, which agrees with the broad isotropic transition 

shown by DMA.  

 

5. Conclusions 

This study investigated the influence of acrylate content on thermomechanical properties of monodomain main-

chain LCEs. The results demonstrate a technique to tune the thermal regimes without influencing total actuation 

strain or dynamic mechanical properties within each regime. Photochemical reaction of excess acrylate in the 

nematic monodomain conformation programmed the monodomain with greater than 85% fixity for all 

compositions. Increasing acrylate content resulted in more bonding during the photochemical reaction, which 

produced an increasingly more stable nematic phase. Consequently, Ti increased from 58°C to 113°C with an 

increase in excess acrylate from 2 mol.% to 45 mol.% and broadened the rubbery nematic regime by 44°C. E’ 

was invariant with composition in each thermal regime but the increase in photochemical bonding with acrylate 

content influenced dynamic soft elasticity at Ti. Low acrylate compositions demonstrated narrow transitions to 

the isotropic phase with dramatic decreases in E’ and peaks in tan δ resulting from high mesogen mobility. On 

the other hand, high acrylate compositions exhibited broader transitions without enhanced damping owing to 

the greater number of photochemical bonds and reduced mesogen mobility. Tensile mechanical properties 

perpendicular to the director demonstrated in increase in σth from 14 kPa to 208 kPa with excess acrylate owing 

to increased number of bonds fixing the monodomain. E∥ and E⊥, measured during the initial tensile loading 

parallel and perpendicular to the director, respectively, increased from 1.4 MPa to 6.1 MPa and from 0.6 MPa to 

2.6 MPa with excess acrylate due to structural changes along the main-chain. Total strain actuation did not vary 

significantly with composition, ranging between 84% and 90% along the director. Actuation rate at Ti decreased 
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against excess acrylate content, decreasing from 10.8% strain/°C for 2 mol.% excess acrylate to 1.8% strain/°C 

for 30 mol.% and 45 mol.% excess acrylate owing to the increase in photochemical bonds.  
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Actuation temperature was controlled without influencing total actuation performance in liquid crystal 

elastomers fabricated by a two-stage reaction scheme. 
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