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Self-propelled colloids (swimmers) in confining geometries
follow trajectories determined by hydrodynamic interac-
tions with the bounding surfaces. However, typically these
interactions are ignored or truncated to lowest order. We
demonstrate that higher-order hydrodynamic moments
cause rod-like swimmers to follow oscillatory trajectories
in quiescent fluid between two parallel plates, using a
combination of lattice-Boltzmann simulations and far-field
calculations. This behavior occurs even far from the confin-
ing walls and does not require lubrication results. We show
that a swimmer’s hydrodynamic quadrupole moment is cru-
cial to the onset of the oscillatory trajectories. This insight
allows us to develop a simple model for the dynamics near
the channel center based on these higher hydrodynamic
moments, and suggests opportunities for trajectory-based
experimental characterization of swimmers’ hydrodynamic
properties.

The locomotion of self-propelled particles (swimmers) typically
occurs at boundaries or under confinement. Accurately describing
the effect of confinement on swimmers is therefore of significant
interest to understanding the behavior of microorganisms and ar-
tificial swimmers. In modelling these systems, hydrodynamic in-
teractions (HIs) are often ignored, which is a valid approximation
in some cases, such as when microbial swimmers’ run-and-tumble
dynamics dominate!. However, HIs can play an important role,
e.g., see Refs.2® and therefore cannot be a priori ignored in
modelling. Recent experiments on self-phoretic colloidal swim-
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mers have shown that their orientation is strongly influenced by
HIs due to the presence of a wall”. However, there is ongoing de-
bate on the importance of near-wall effects and the level at which

to truncate the hydrodynamic moment expansion8.

A specific example of this are the helical and oscillatory tra-
jectories of single swimmers in confining geometries as observed
experimentally by Jana et al.> and in simulations®1!. Such os-
cillatory trajectories appear to be common place, having been
reproduced by many models, and independent of specific swim-
mer type. However, a physical understanding of these oscillations
remains wanting. It is indisputable that the oscillations do not
arise simply from the lowest order hydrodynamics, which result
in direct attraction to surfaces!?, while the inclusion of higher-
order modes can lead to more complex behavior®13. Although
observed in confined quiescent fluids, these oscillatory trajecto-
ries are reminiscent of those observed in the rheotaxis of swim-
mers subjected to external flows !4, which result primarily from
the interplay between the flow and persistent particle motion due
to self-propulsion. Z6ttl and Stark indicate that near-field lubrica-
tion theory can be used when there is no externally applied flow
to describe such trajectories 116, Yet, the observations of Zhu et
al. demonstrate that oscillatory trajectories arise in a channel that
is three times as wide as the self-propelled particle. Additionally,
the trajectories of squirmers close to single walls in quiescent fluid
show oscillations 17, which have been explained by the competi-
tion between far-field HIs and short-ranged wall-swimmer poten-
tials!8. Thus, there is a clear need to establish to what extent
the observation of oscillatory trajectories in systems with confine-
ment originate from a near- or far-field effect and, in conjunction,
to assess the importance of higher-order hydrodynamic modes.

In this manuscript, we demonstrate that the onset of time-
varying oscillatory trajectories in systems confined within a chan-
nel and without external flow can be well-understood using far-
field theoryl®. We investigate the specific case of two parallel
infinite plates that enclose the fluid and a single rod-shaped swim-
mer, using our lattice-Boltzmann (LB) ‘raspberry’ force/counter-
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Fig. 1 The trajectory of swimmers between two parallel plates with
separation H. The horizontal displacement x and vertical position z are
given for a swimmer that is initially oriented parallel to the walls and at
z = lo, with o the MD unit of length (LB lattice size) and z = 0 the center
of the channel. (a) The results for pushers: rod for H = 13 (red, solid),
cylinder for H = 400 (blue, dashed), and rod for H = 500 (green, dots).
The inset shows a schematic representation of the raspberry
rod-swimmer (scaled for H = 130), the force is indicated in red and
counter force in blue. (b) The results for pullers, otherwise the systems
are the same. The ESI contains a companion figure showing the
evolution of the angle ¢ for these swimmers.

force formalism2° (Fig. 1; insets). We have previously shown that
the rod-shaped LB swimmers have well-defined higher-order hy-
drodynamic moments2?; see Table 1 for representations of the
first five moments. These simulations conclusively show that a
puller-type rod that starts far from the wall but off-center follows
a damped oscillatory trajectory towards the middle of the chan-
nel, whereas a pusher-type rod moves between the walls along a
sinusoidal path with increasing amplitude. Surprisingly, the os-
cillations are observable even for plate separations as great as
ten times the length of the rod. We explain these observations
within the framework of our far-field hydrodynamic theory: the
dipole and octupole moments induce hydrodynamic forces to-
wards the center (puller) or towards the walls (pusher), while
the quadrupole moment causes pure oscillatory motion. The os-
cillatory trajectories within plate confinement thus provides an
indirect means to characterize the hydrodynamic properties of
swimmers, which would grant access to moments beyond those
that can be obtained from lattice swimming?! or tracer paths2°.
We consider two raspberry swimmers (rod and cylinder) in
the main text to study the movement of shape-anisotropic swim-
mers under confinement using our ESPResSo LB implementa-
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tion2%-22, Their construction and characterization in terms of hy-
drodynamic moments, as well as the fluid and coupling param-
eters, are introduced in Refs.20-23 and detailed in the ESI. Our
swimming model’s essential aspect is that a force is applied to the
body, consisting of many fluid-particle coupling points, and the
system is made force free by applying an equal and opposite force
to the fluid, see the insets in Fig. 1. This coupling gives rise to a
series of hydrodynamic modes for anisotropic particles2°.

These raspberry particles are placed in an LB fluid between two
parallel (no-slip) bounce-back plates, with normals in the Z direc-
tion, separated by a distance H. The fluid domain is periodic in
the other two (xy) directions. The vertical position of the swim-
mer’s center of mass (CM) is indicated using z € [-H/2,H /2], with
z =0 the middle of the channel. Lateral displacement is given by
x and measured from the swimmer’s initial position (x =0) —
our trajectories are straight in the xy-plane. Finally, the angle
of the swimmer’s director p (which points along the main axis)
with the plate normal Z is given by ¢ € [-n/2,7/2], with ¢ =0
swimming parallel to the plates. To prevent the swimmers from
penetrating the wall, we imposed a short-ranged (almost hard)
Weeks-Chandler-Anderson (WCA) interaction between the rasp-
berry swimmers and the walls (ESI). This wall-swimmer interac-
tion is necessary as our LB algorithm does not explicitly account
for near-wall lubrication corrections23. All of the results shown in
the main text employ a WCA diameter d = o, with o the LB lattice
size. We limit the swimming speed to ensure the low Reynolds
number regime, Re < 0.01.

Figure 1 and the supplemental movies (ESI) demonstrate the
onset of oscillatory trajectories. These are representative sample
swimmer trajectories, where the swimmers start off-center and
oriented parallel to the plates. Both the rod and cylinder models
of pushers and pullers display time-varying oscillatory behavior.
In the specific case of our rods, the wavelength of the oscillations
is A ~ 4H. All pushers move towards the wall and the pullers
move towards the center of the plates. After only a few peri-
ods, these pullers move along the centreline of the channel and
these pushers have arrived in the near-wall region, where swim-
mer specific details and lubrication corrections would be required
to accurately predict dynamics. Oscillations are observed for all
cylinder and rod swimmers in plate separations that we could
simulate (50 < H < 500). The rod is ~ 50 in length, thus the
oscillatory trajectories arise in systems with a channel height to
particle size ratio up to at least 10.

To verify the generality of the initial oscillations, we considered
several initial positions z and orientations ¢ for rod pusher and
puller swimmers. We found that depending on the type of swim-
mer and its initial position/orientation, several oscillations in the
physical regime can be observed, before near-wall effects cannot
be ignored. We further showed that oscillations for rod-like swim-
mers appear for a large range in rod aspect ratios (ESI). At long
times the LB pusher rods display a limit cycle, whereas the pusher
cylinder does not. To what extent such a limit cycle (Fig. 1a; solid
red curve) or sliding dynamics (Fig. 1a; dashed blue curve) might
be physical is not considered here, as algorithmic artifacts close to
the walls impact the near-wall dynamics. The ESI provides a dis-
cussion of these limitations and this work does not confirm their
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physical nature!!. However, our results establish that the initial
oscillations before the rod comes close to the wall (a proximity of
~ 20) are physical. It is this onset of oscillatory trajectories that
we concern ourselves with here and subject to theoretical analysis
in the following.

We model the raspberry swimmers theoretically as ellipsoids
with aspect ratio y, position 7 and orientation p = (cos¢,0,sin¢).
Due to its motion, the swimmer generates a flow field i, which
we define in terms of a multipole expansion of the Stokeslet flow
solution. Spagnolie et al. argue that far-field HIs give surprisingly
accurate results, when compared to theory that includes a finite-
size correction to more accurately account for near-field effects,
even for small swimmer-wall separations8. Hence, the flow at
position ¥ generated by the force-free and torque-free swimmer is

i (X,7, p) = Kilp + viig + piisp + oyilo, +o0ziip, +... (1)

Here, iip is the Stokes dipole that models the force balance be-
tween propulsion and drag, g is the quadrupole that represents
the fore-aft asymmetry of the propulsion mechanism, #gp is the
quadrupolar source doublet that is associated with the finite size
of the swimmer, and iip, and iip, are the two octupolar terms
(ESD). The shape of these moments in bulk is shown in Table 1.
Note that this is a point-based expansion, which should not be
confused with the squirmer expansion for finite-sized spheres; in
the far-field these expansions can be mapped onto each other.

The effect of the confining walls (two parallel no-slip plates)
is now accounted for by the method of images, where we trun-
cate the approximation after four image systems on each side of
the microchannel. Subsequently, the flow wall-induced flow ad-
vects and reorients the swimmer according to the Faxén relations,
resulting in the translational and angular velocities vy and Qo
(ESD). In Ref.1® details are given of the procedure by which to
obtain these velocities in terms of the multipole coefficients. The
swimmer’s equations of motion are given by

F=vp+V, = Qm x P, (2)

where vy is the autonomous swimming speed, and the velocities
V¥ and Qg are functions of the multipole coefficients.

To predict the swimmer dynamics of Fig. 1 theoretically, we
integrate the equations of motion (2). Here, we use the same
swimming speed and initial conditions as in the LB simulations,
but we allow the multipole coefficients to vary about their mea-
sured values. We can thus fit the multipole coefficients via a least-
squares method. To obtain the best agreement with the measured
trajectory, we used the four initial oscillations (ESI). The 3" and
5% columns of Table 1 show the multipole coefficients found in
this manner for swimmers of the rod and cylinder type, respec-
tively. Using only a single oscillation leads to a change in the
fitted values of ~ 20%, showing our method to be robust and
requiring only fragments of a trajectory to be effective. In addi-
tion, we verified that the result of the fitting was independent of
the height H of the channel, eliminating the possibility of bound-
ary artifacts. In our previous work??, we obtained the multipole
coefficients directly from the flow field of the swimmers in our
LB simulations by means of projection via a Legendre-Fourier de-
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Rod Cylinder
1 Coefficient LB | theory LB | Theory
K 4+0.013 | £+0.0153 +0.027 +0.0312
1% 0.038 0.0294 0.21 0.194
u 0.0 0.0 0.0 0.0
0] 0.0 0.0 0.0 0.0
0y +0.113 | +0.1256 +2.11 +2.176
Vs 0.0025 0.0025 0.0010 0.0010

04 0,

Table 1 Multipole moments of the swimmer-generated flow field for the
two swimmer types: the rod and the cylinder. The columns labelled ‘LB’
provide the values measured in our previous study by means of
Legendre-Fourier decomposition in a close-to-bulk system with periodic
boundary conditions2°. The columns labelled ‘theory’ provide the
moments fitted from the trajectory in our confining geometry by using
the theoretical model (2). Values are given in LB simulation units, and
the positive/negative signs correspond to pusher and puller swimmers,
respectively. The bottom row shows representations of the flow field of
the first five hydrodynamic moments in bulk: dipole k, quadrupole v,
source dipole u, source octupole 0y, and octupole o0,. The arrows are
stream lines and the colors indicate flow away from (red) or towards
(blue) the swimmer.

K \ u

composition. These values are listed in the 2" and 4™ columns
of Table 1, respectively. The projection was carried out in the
absence of confinement, using a large simulation box with peri-
odic boundary conditions, for which the finite-size effects differ
strongly from those of the confining geometry. There is excellent
correspondence between the two measurements of the hydrody-
namic moments for both swimmer shapes. This demonstrates the
applicability of far-field theory to describe the onset of the ob-
served oscillatory trajectories. The far-field result is accurate until
the swimmer-wall distance becomes too small.

Let us now focus on the general features of the theoretical
model and analyze the impact of the various hydrodynamic mo-
ments on the motion of the swimmer. Firstly, our calculations
confirm that the pusher swimmer (x > 0) undergoes oscillatory
trajectories that move away from the center of the channel, and
pullers (x < 0) converge towards the centerline. However, oscil-
lations about the center only occur if the quadrupolar terms are
included, and the oscillation wavelength decreases with the as-
sociated quadrupolar coefficients v and u. A spherical swimmer
with v = u = 029 does not display such oscillations. The octupo-
lar contributions further control the damping and growth of the
trajectories, where the positive signs of o; and o, correspond to
motion towards the boundaries. The aspect ratio y leads only to a
second-order correction in the theory. That is, the hydrodynamic
moments dominate the dynamics of the swimmer, therefore rods
with different aspect ratios still show similar oscillations (ESI).

The dynamical system can be understood further by consider-
ing the motion of the swimmer in phase space. Due to the transla-
tional invariance in the x and y coordinates, the equations of mo-
tion can be reduced to two coupled first-order PDEs in (¢,z) space,
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Fig. 2 Trajectories of swimmers in (¢,z) phase space, for a rod-type
pusher (a) and puller (b) with a wall separation of H = 130. The LB
simulation data are shown as thick, dashed, blue and red lines. The
theoretical predictions are superimposed as black arrows.

next to the uncoupled equation for the x coordinate. Figure 2
shows the LB swimmer trajectories in phase space, superimposed
with the theoretical model, where the fitted multipole moments
in Table 1 have been used. The dipolar term leads to a star-type
fixed point (curves radiating from a point) at the origin, that is
stable for pullers and unstable for pushers. The oscillatory motion
due to the quadrupolar contributions corresponds to a circle-type
phase-space trajectory (closed loops around a point) centered on
the origin. Together the dipole and quadrupole produce a spi-
ral. For pushers, the trajectories spiral outwards (Fig. 2a), and
inwards for pullers (Fig. 2b). The theoretical predictions do not
show a limit cycle in Fig. 2. Both the far-field framework and
the LB method are unable to adequately capture hydrodynamic
interactions in the near-wall region and further study of this re-
gion, where both lubrication corrections !> and short-ranged po-
tentials 18 can play a role, is required.

Our result shows that movement of a swimmer under confine-
ment can in principle be used to quantitatively determine the hy-
drodynamic moments, even up to the octupolar moment as shown
here. Specifically, about one period is the minimum path length
required to fit these modes to within 20%. This suggests that our
method has applicability to experimental systems where thermal
noise and tumbling can effect the trajectory. The presence of these
sources of noise would require ensemble averaging trajectories in
(¢,2) space, which can then be fitted using our procedure. Noise
also implies that parts of the trajectory will occur many times
during measurements, meaning the near-wall dynamics in which
we observed a limit cycle, does not play an important role. One
simply averages many different trajectories away from the wall to
improve the fitting statistics.

A physical intuition for the onset of oscillatory swimming can
be distilled from the LB simulations and far-field hydrodynamic
description by considering the trajectory of a swimmer initially set
at zo near the centerline and oriented parallel to the walls (Fig. 3).
Since our raspberry swimmers have large quadrupolar moments
(v ~ 10~ 1), we first consider only the flow fields generated by the
positive quadrupole. This flow serves to rotate the swimmer away
from the nearest wall, as shown schematically in Fig. 3a. The con-
tinual rotation away from the nearest wall establishes the oscil-
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Fig. 3 lllustration of the mechanisms of oscillatory swimmer motion in
microchannels. (a) Quadrupolar moment only. The HI rotates the
swimmer away from the nearest wall resulting in an oscillatory trajectory.
(b) Quadrupole and puller-type dipole. The dipole pushes the swimmer
away from the nearest wall, decreasing the oscillation amplitude.

lations. By linearly expanding the equations of motion (2) about
the centerline, the micro-swimmer dynamics can be captured by
a linear system of coupled differential equations (ESI). Whenever
there is only a quadrupolar flow field, the trajectory is approxi-
mated to be simple oscillatory motion z () = zgcos () with an-
gular frequency o =4 (3 VVS/HS) 2 and wavelength A ~ 27v;/o.
Although u = 0 in this study, a source dipole moment also leads
to simple oscillations (ESI). This also theoretically explains the
observations of persistent oscillations for neutral squirmers made
by Zhu et al. °, even though there are differences in the confining
geometry. Next we add the dipolar term to the expansion

z(t) = zge™ cos (o) 3)

where o = 3x/H?, which is negative for pullers. The dipolar term
also modifies the frequency ® due the wall-induced rotation Qy,
but this effect is negligible if v > 81%?/ (48Hvy), which is the case
here. A pusher also obeys equation (3) but with a > 0 and expo-
nentially growing amplitudes, which leads to a rapid breakdown
of the near-centerline assumption. The sensitivity of oscillations
to channel height is unmistakable in the exp (H *3) -dependence of
(3) reflecting the fact that the essential hydrodynamic moments
are high order. Whereas higher order moments are required to
predict the oscillation wavelength and damping factor quantita-
tively, the dipolar and quadrupolar moments can be fit from the
dynamics using (3) with a error margin of ~ 40% compared to the
LB-measured values. Hence, (1)-(3) allow for characterization
of the swimmer’s hydrodynamic properties based on experimen-
tal trajectories and can be readily transferred to the observations
made by Zhu et al.®. Likewise, LB raspberry simulations can be
extended to more complex 3D geometries such as square channels
and round tubes, in which we observed helical motion (ESI).

In conclusion, we have studied the onset of oscillatory motion
of swimmers in microchannels without externally applied flow
and in an otherwise quiescent medium using both LB simulations
and hydrodynamic theory. The pusher-type swimmers follow a
sinusoidal trajectory with increasing amplitude, whereas pullers
perform a damped oscillation towards the center of the channel.
Our results and previous observations of such phenomena?
be explained by our theoretical model, which uses far-field hy-
drodynamics only. We conclude that the onset of oscillations
can be described without taking into account near-wall lubrica-
tion effects as has been previously presumed!® provided that a
quadrupole moment (or source-dipole) is accounted for in addi-

can
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tion to the primary dipole moment. To fully characterize parti-
cle trajectories in relatively wide channels, many hydrodynamic
moments are required, as high as the octupole in our case. How-
ever, the excellent match of our trajectory-fitted moments to those
measured in bulk suggests that similar experimental measure-
ments can be used to determine the hydrodynamic moment de-
composition of microorganisms or artificial swimmers. Our work
stresses the relevance of far-field hydrodynamics in confining ge-
ometries and thus opens the way for new studies that aim to ex-
ploit these insights in microfluidic environments. Future work
will focus on the analysis of more complex force/counter-force
swimmers to model the richness in shape and hydrodynamic mo-
ments of experimentally available swimmers.
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