This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Impact of Fluorine Substitution upon the Photovoltaic Properties of Benzothiadiazole-Fluorene Alternate Copolymers

Luke Cartwright, a Ahmed Iraqi, a,b Yiwei Zhang, b Tao Wang, c David. G. Lidzey a,b

The effect of fluorine substitution on the ubiquitously-studied, moderate band gap polymer, poly(2,7-fluorene-alt-dithienylbenzothiadiazole) (PFO-DBT) has been investigated by substituting the hydrogen atoms at the 5,6-positions of benzothiadiazole to yield the polymer, PFO-DffBT. An analogous polymer, PFDf-DffBT, with longer chains on the 9H-positions of the fluorene moiety, was synthesised to rectify the low Mw of PFO-DffBT. In thin film, both fluorinated polymers display absorption bands with well-defined shoulders, giving optical band gaps of 1.91 and 1.89 eV, respectively. The optical band gap of PFDf-DBT is identical to that of PFDf-DffBT, despite the former having a significantly larger Mw. However, PFDf-DffBT displayed a blue-shifted HOMO level relative to its non-fluorinated counterpart. The HOMO levels of PFO-DffBT and PFDf-DffBT are lower than their non-fluorinated analogues, owing to the incorporation of electron withdrawing substituents on the benzothiadiazole moiety. The photovoltaic properties of all polymers were investigated by fabricating bulk heterojunction (BHJ) polymer solar cells using PCBM as the electron acceptor. PFO-DffBT displayed the highest efficiency with a PCE of 4.4% despite having the lowest Mw of all polymers studied.

Introduction

Numerous energy resources are currently available, however, solar energy is believed to be the largest carbon-neutral energy source with the sun producing an estimated 3.86 x 10^26 J of energy every second. The first commercial crystalline silicon p-n junction solar cell was produced by Bell laboratories in 1954. The efficiency of such devices has improved remarkably, going from 6%, to modern era wafer-size single-junction crystalline silicon solar cells that have efficiencies of 25%. The current inorganic monocrystalline photovoltaic devices available are highly efficient at harvesting solar energy. However, they are fragile, have poor performance in low light intensities, their performance varies with temperature and they are produced using energy intensive manufacturing techniques. Thus, research into alternative, cost-efficient photovoltaic device that can efficiently harvest solar energy has resulted in research on so-called third generation PV devices (organic photovoltaic devices). These have potential advantages over their inorganic counterparts including reduced embodied energy, increased flexibility, abundant materials for fabrication and better operation at lower light intensity. Despite skeptics within the solar community who have challenged the viability of organic photovoltaic devices, the successful commercialization of organic light emitting diodes gives confidence that organic photovoltaics may complement traditional inorganic photovoltaic devices.

The most commonly used architecture for the active layer of polymer solar cells is the bulk heterojunction (BHJ). A conjugated polymer (electron donor) and a fullerene derivative (electron acceptor) are blended together to form an interpenetrating network that forms the active layer of the BHJ cell. High efficiencies in polymer solar cells can be achieved by designing conjugated polymers with a low band gap, extended absorption in the visible and infrared region, high charge carrier mobilities, high absorption coefficients and high molecular weights. The length and flexibility of the side chains attached to the rigid polymer backbone are central in determining the solubility of the conjugated polymer.

Previous literature has shown that the easiest way to fulfil these criteria is to synthesise a conjugated polymer that comprises alternating donor-acceptor (D-A) repeat units along polymer chains. The internal charge transfer between the donor and acceptor moieties enables control of the band gap of the polymer. The HOMO and LUMO levels of D-A polymers can be finely tuned using various approaches. For example, a small band gap can be obtained when a more electron rich donor monomer is copolymerised with a more electron deficient acceptor monomer.
Further adjustment of the HOMO and LUMO levels can be achieved through the introduction of electron withdrawing or electron donating substituents and the attachment of solubilising side chains.15,16,19

A growing body of literature now addresses the incorporation of substituents and the effect they have on the resulting polymer system.11,18,22 Arguably, the most interesting substituent is fluorine; the smallest electron withdrawing group with a Pauling electronegativity of 4.0.15 Li \textit{et al} was the first to design and synthesise a fluorine-functionalised benzothiadiazole-acceptor moiety that was polymerised with an electron rich benzothiophene unit.20 An analogous, non-fluorinated polymer was also synthesised to help establish the effects of fluorine-substitution. The fluorinated polymer showed a dramatic increase in photovoltaic performance which was attributed to the lower optical band gap and deeper HOMO level. Other groups have reported the use of fluorinated-acceptors and have found a similar increase in performance.19,22,24 However, other groups have discovered that incorporation of the fluorinated benzothiadiazole unit does not always yield an improved photovoltaic performance.18,25

Figure 1. Structures of PFO-DfIBT, PFDo-DBT and PFDo-DffBT.

The objective of this work is to incorporate fluorine substituents into the commonly studied benzothiadiazole acceptor. This was then copolymerised with the electron rich 9,9-dioctyfluorene monomer flanked by two thiethyl repeat units to afford a new copolymer poly[2,7-(9,9-dioctyfluorene)-alt-4,7-bis(thiophen-2-yl)-5,6-difluorobenz-2,1,3-thiadiazole] (PFO-DfIBT, Figure 1). In view of the low molecular weight of PFO-DfIBT larger solubilising alkyl chains were attached to the fluorene moiety to yield poly[2,7-(9,9-didodecylfluorene)-alt-4,7-bis(thiophen-2-yl)-5,6-difluorobenz-2,1,3-thiadiazole] (PFDo-DfIBT). To ascertain the effects of fluorination, its non-fluorinated analogue, poly[2,7-(9,9-didodecylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFDo-DBT), was also synthesised. The optical, thermal and electrochemical properties of these polymers were investigated and their performance in BHIJ polymer solar cell devices were evaluated. We demonstrate that incorporation of fluorine blue-shifts the peak absorption wavelength (λ_{max}). However, the optical band gaps of fluorinated polymers when cast into thin films were identical to their non-fluorinated analogues owing to improved molecular ordering. We fabricate photovoltaic devices from all polymers synthesized and optimize the solvent system and solvent additives used to cast the polymer: fullerene active-layer. We find that despite the fact that PFO-DfIBT and PFDo-DfIBT both display deeper HOMO levels relative to their non-fluorinated analogue, this does not apparently translate into a higher open circuit voltage (V_{OC}). Nevertheless we show that OPVs based on PFO-DfIBT, PFDo-DBT and PFDo-DfIBT have power conversion efficiencies (PCEs) of 4.4, 2.4 and 3.6 \%, respectively.

Results and Discussion

Polymer Synthesis: PFO-DfIBT was prepared via Suzuki coupling using Pd(OAc)$_2$ and tri(o-tolyl)phosphine as the catalyst and tetraethylammonium hydroxide as the base. The polymerisation proceeded rapidly, with large quantities of purple precipitate forming after 1 hour. Consequently, only a portion (20\%) of the resulting polymer was soluble in common organic solvents and able to be processed into films for BHIJ devices. The number-average molecular weight (M_n) and weight-average molecular weight (M_w) were estimated to be 6,800 and of 9,600 Da, respectively (Table 1). It is well documented that attaining a high M_n is imperative for photovoltaic performance as it facilitates the bicontinuous phase formation with fullerene derivatives and promotes efficient charge transportation.22 It was hypothesised that incorporating fluorine atoms on the benzothiadiazole moiety resulted in stronger π-π stacking and aggregation of polymer chains. Thus, the product precipitates out of solution quickly during the polymerisation, which limits the final molecular weight of the product. Attaching alkyl chains to the polymer backbones disrupts the π-π stacking. However, it was clear that larger alkyl chains needed to be attached to the donor-moieties in order to the overcome the aggregation that is brought about by incorporating fluorine onto the benzothiadiazole moiety.

Umeyama and coworkers demonstrated that the additional incorporation of solubilising 3-hexylthiophene repeat units yields higher molecular weight polymers. However, this negates the positive effects of fluorine substitution.18 Therefore, we have avoided this approach and consequently, redesigned the polymer to bear larger solubilising dodecyl chains on the fluorene moiety at the 9\textit{H} position. Previous work by Inganäs and coworkers demonstrated that this approach was successful in attaining higher molecular weight polymers.26 Both PFO-DfIBT and PFDo-DBT were hence prepared in this work using a similar method to that outlined above. Both polymerisations were conducted until precipitation of the polymers was first observed, which occurred around 48 hours after the start of polymerisations. Only small amounts of polymer precipitated out of solution in these reactions; a finding in contrast to the polymerisation of PFO-DfIBT, PFDo-DfIBT and its non-fluorinated analogue PFDo-DBT displayed excellent solubility in common organic solvents, permitting the formation of films for photovoltaic devices. GPC analysis estimated the M_n and M_w of PFDo-DBT to be 20,500 and 35,700 Da, respectively. In contrast, the M_n and M_w of PFO-DfIBT were estimated to be 9,700 and 15,900 Da, respectively (Table 1). The fluorinated analogue clearly displays a lower molecular weight. This data supports our earlier hypothesis that incorporation of fluorine on the benzothiadiazole moiety results in stronger π-π stacking and aggregation of polymer backbones, which limits the final molecular weight.
Table 1. A summary of the GPC, optical and electrochemical data for PFO-DffBT, PFDo-DBT and PFDo-DffBT.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n (Da)a</th>
<th>M_w (Da)a</th>
<th>λ_{max} Solution (nm)</th>
<th>ε (M$^{-1}$ cm$^{-1}$)b</th>
<th>λ_{max} Film (nm)</th>
<th>$E_{g,\text{opt}}$ (eV)c</th>
<th>HOMO (eV)d</th>
<th>LUMO (eV)d</th>
<th>$E_{g,\text{elec}}$ (eV)e</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFO-DffBT</td>
<td>6,800</td>
<td>9,600</td>
<td>518</td>
<td>41,600</td>
<td>549</td>
<td>1.91</td>
<td>-5.38</td>
<td>-3.32</td>
<td>2.05</td>
</tr>
<tr>
<td>PFDo-DBT</td>
<td>20,500</td>
<td>35,700</td>
<td>548</td>
<td>40,200</td>
<td>578</td>
<td>1.89</td>
<td>-5.44</td>
<td>-3.49</td>
<td>1.95</td>
</tr>
<tr>
<td>PFDo-DffBT</td>
<td>9,700</td>
<td>15,900</td>
<td>527</td>
<td>40,600</td>
<td>556</td>
<td>1.89</td>
<td>-5.51</td>
<td>-3.48</td>
<td>2.03</td>
</tr>
</tbody>
</table>

aMeasurements conducted on the toluene fractions of polymers using a differential refractive index (DRI) detection method. bAbsorption coefficient measured at λ_{max} in CHCl$_3$. cOptical energy gap determined from the onset of the absorption band in thin film. dHOMO position (vs vacuum) determined from the onset of oxidation. eLUMO position (vs vacuum) determined from the onset of reduction. fElectrochemical energy gap.

Optical Properties: The optical properties of all polymers were investigated by UV-vis absorption spectroscopy on dilute chloroform solutions and drop-cast films cast on quartz substrates (Figure 2). The optical properties of PFO-DffBT, PFDo-DffBT and PFDo-DBT are summarised in Table 1.

Dilute solutions of PFO-DffBT revealed absorption bands in the visible region at 383 and 518 nm. When cast into a thin-film, the absorption spectra of PFO-DffBT displays red-shifted absorption maxima at 394 and 549 nm, relative to that in solution. The bathochromic shift that is observed can be ascribed to stronger π-π interchain stacking and a more coplanar structure in the solid state. Furthermore, PFO-DffBT displays a peak at ~590 nm which we attribute to the purely electronic transition of the polymer; a result that indicates that inhomogeneous broadening within the molecular ensemble has been reduced as a result of improved molecular ordering in the solid state. We speculate that such enhanced molecular ordering is a direct result of interactions between fluorine atoms and components on adjacent aromatics. This yields a more planar polymer backbone which promotes π-π stacking in solid state. The optical band gap of PFO-DffBT was calculated to be 1.91 eV. The non-fluorinated analogue of this polymer, PFO-DBT, has previously been prepared by the Iraqi group and displays an absorption maximum at 549 nm in chloroform solution. When fabricated into a film, the absorption maximum was located at 592 nm; a wavelength red shifted relative to that of PFO-DffBT. This phenomenon has been reported by previous groups. However, PFO-DBT did not display any improved resolution in solid state indicating that the material has a higher degree of structural and electronic disorder.

PFDo-DBT, displayed an optical band gap of 1.89 eV and absorption maxima at 397 and 578 nm in films. Clearly, the introduction of longer alkyl chains on the fluorene moiety facilitates the formation of higher molecular weights, lowering the band gap and increasing the λ_{max} of the resulting polymer when compared to PFO-DBT. The absorption maxima of PFDo-DffBT (at 556 nm), is red shifted relative to that of PFO-DffBT but blue shifted relative to that of PFO-DffBT. However, the absorption spectra of PFDo-DffBT, like PFO-DffBT, is broader and clearly displays a peak at 595 nm, which is again indicative of increased ordering in the solid state. Interestingly this peak is completely absent in PFDo-DBT suggesting that fluorination of the benzothiadiazole moiety does not hinder backbone planarization and in actuality improves polymer-chain stacking in the solid state. Previous literature has reported the same phenomenon. We speculate that the non-covalent interaction between fluorine atoms and components on adjacent aromatics are responsible for this phenomenon. It is possible that the high planarity of PFO-DffBT may introduce efficient interchain interactions, thereby resulting in an optical band gap that is identical to that of PFDo-DffBT (1.89 eV), despite the lower molecular weight and blue-shifted absorption maxima.

All polymers displayed similar absorption coefficients suggesting that neither the incorporation of fluorine substituents nor the change of alkyl groups on the fluorene moiety has any significant effect on the light harvesting qualities of the polymer.

Electrochemical Properties: The HOMO and LUMO energy levels (vs vacuum) of the polymers were determined from the onsets of oxidation and reduction (Table 1). The onsets were determined via cyclic voltammetry measurements, which were conducted on drop-cast polymer films in acetonitrile with tetrabutylammonium perchlorate as the electrolyte (Figure 3). PFO-DffBT displayed a HOMO level of -5.38 eV, which is deeper than its non-fluorinated analogue, PFO-DBT. This is consistent with literature concerning the effects of fluorine
substitution and the impact it has on the HOMO levels of the resulting polymer.18–22,29 It should be noted that the limited solubility of PFO-DffBT hindered the formation of films on the working electrode. Consequently, such thin films degraded after several sweeps. It is possible therefore that the results obtained for the energy levels of PFO-DffBT do not fully represent their true value. Indeed, we speculate that the true HOMO level may be deeper still. The LUMO level of PFO-DffBT was estimated to be -3.32 eV. This corresponds to an electrochemical band gap of 2.05 eV for PFO-DffBT.

The onset potentials of the first oxidation wave of PFD0-DBT and PFD0-DffBT appeared at 0.72 and 0.79 V vs Ag/Ag\(^+\), corresponding to HOMO energy levels of -5.44 and -5.51 eV respectively. The onset potentials of the first reduction wave of PFD0-DBT and PFD0-DffBT appeared at -1.23 and -1.24 V, corresponding to LUMO energy levels of -3.49 and -3.48 eV, respectively. This corresponds to an electrochemical band gap of 1.95 and 2.03 eV for PFD0-DBT and PFD0-DffBT, respectively. Incorporation of fluorene does not significantly alter the LUMO levels of the resulting polymer. However, it does lower the HOMO level of the resulting polymer which is consistent with previous literature.18–22,29 The lower HOMO levels of PFO-DffBT and PFD0-DffBT should result in better oxidative stability in ambient conditions and yield a higher open-circuit voltage (\(V_{oc}\)) in photovoltaic devices.

Thermal Properties and XRD Studies: The thermal stabilities of the polymers were investigated by thermogravimetric analysis (TGA) (Figure 4). All polymers were determined to be thermally stable with decomposition temperatures (5% weight loss) higher than 400\(^\circ\)C in a nitrogen atmosphere. The initial onset of decomposition temperatures for PFO-DffBT, PFD0-DffBT and PFD0-DBT were estimated to be 417, 432 and 419\(^\circ\)C, respectively. All of these initial weight loss peaks can be attributed to loss of alkyl chains from the fluorene donor moiety. The results indicate that the fluorinated polymer, PFD0-DffBT, undergoes decomposition at a slightly higher temperature relative to its non-fluorinated analogue. Unfortunately, no comparison can be drawn between PFO-DffBT and PFD0-DBT owing to a lack of thermal analysis reported. Li and Iyer also demonstrated a marginal increase in decomposition temperature, indicating that this phenomenon occurs more generally.20,29

![Figure 3. Cyclic voltammograms of PFO-DffBT, PFD0-DBT and PFD0-DffBT on platinum disc electrodes (area 0.031 cm\(^2\)) at a scan rate of 100 mV s\(^{-1}\) in acetonitrile/tetrabutyl ammonium perchlorate (0.1 mol dm\(^{-3}\))](image)

![Figure 4. TGA plots of PFO-DffBT, PFD0-DBT, and PFD0-DffBT with a heating rate of 10\(^\circ\)C min\(^{-1}\) under an inert atmosphere of nitrogen.](image)

![Figure 5. Powder X-ray diffraction (XRD) patterns of PFO-DffBT, PFD0-DBT and PFD0-DffBT.](image)

Powder X-ray diffraction (XRD) studies were conducted on the three polymers (Figure 5). The broad features of the PFD0-DBT are consistent with an incoherent scatter from an amorphous solid. The presence of several sharp peaks in the XRD of PFO-DffBT and PFD0-DffBT suggest the polymers adopt a microcrystalline arrangement in the solid state. PFO-DffBT and PFD0-DBT display peaks at 20 values of 6.5 and 5, respectively. This corresponds to distances of ~13 Å for PFO-DffBT and ~16 Å for PFD0-DffBT. Previous literature reports have shown that this value corresponds to the distance between polymer main chains, where alkyl chains on the fluorene moiety self-organise into an interdigitated manner.30,31 A sharp, narrow peak appeared at 20 values of 25.32 and 25.65 for PFO-DffBT and PFD0-DffBT, respectively, corresponding to small coplanar stacking distances of 3.52 and 3.48 Å, respectively. It is assumed that the smaller stacking distances are a result of enhanced \(\pi-\pi\) stacking and intermolecular interactions brought about by the...
incorporation of fluorine. The XRD of PFDo-DBT does not show any peak in this area. Evidently, incorporation of fluorine improves the packing of polymer chains by promoting stronger coplanar interactions. This further suggests that PFDo-DffBT has improved organisation in solid state compared to PFDo-DBT; a finding consistent with the reduced inhomogeneous broadening observed in the solid-state absorption spectra.

Photovoltaic Properties: Photovoltaic measurements were made on a series of Glass/ITO/PEDOT:PSS/Polymer:PC70BM/Ca/Al devices using blends of polymers:PC70BM in weight ratios from 1:1 to 1:4. A detailed device-fabrication process is described in the Experimental section. Photovoltaic measurements revealed that devices with the active layer cast from 1:4 polymer:PC70BM (w:w ratio) gave the optimum performance. The influence of solvents used to cast the active layer was then investigated (Table 2). Chloroform was found as the best solvent for PFDo-DffBT whilst chlorobenzene with a 3.0 % diiodooctane (DIO) additive yielded the best results for PFO-DffBT and PFDo-DffBT. It is known that the addition of DIO decreases the size of fullerene domains and facilitates the formation of a bicontinuous interpenetrating donor:acceptor network.\(^d\) The J-V characteristic curves for the best performing devices are shown in Figure 6. Measurements of the external quantum efficiency (EQE) were made, with the integrated photocurrent being consistent with the short circuit current density \((J_{sc}) \) values quoted here.

A comparison of the performance of the best devices from the polymers indicates that all three materials exhibit moderate efficiencies with PCEs of 4.4, 2.4 and 3.6% for PFO-DffBT, PFDo-DBT and PFDo-DffBT, respectively. Optimised photovoltaic devices based on PFO-DffBT demonstrated an open-circuit voltage \((V_{oc}) \) of 0.95 V, a \(J_{sc} \) of 7.97 mA cm\(^{-2}\) and a fill-factor \((FF)\) of 58.3 %. In contrast, PFDo-DBT synthesised by Iraqi et al. demonstrated a \(V_{oc} \) of 1.03 V, a \(J_{sc} \) of 9.66 mA cm\(^{-2}\) and a \(FF \) of 54.7 %.\(^{27}\) The polymer displayed a moderate PCE of 5.4 %, which is higher than the fluorinated-analogue synthesised within this report. The optimised photovoltaic device based on PFDo-DBT demonstrated a \(V_{oc} \) of 0.97 V, a \(J_{sc} \) of 4.16 mA cm\(^{-2}\) and a \(FF \) of 59.7 %. In contrast, optimised devices fabricated the fluorinated polymer PFDo-DffBT demonstrated a \(V_{oc} \) of 0.86 V, a \(J_{sc} \) of 8.06 mA cm\(^{-2}\) and a \(FF \) of 51.3 %.

PFO-DffBT demonstrated the best performance in this series of polymers, despite it having the lowest molecular weight. We speculate that the shorter alkyl chains on the fluorene moiety facilitate the packing of polymer chains in the solid state, resulting in a material having improved molecular order and thus enhanced charge-carrier mobility resulting in higher PCE values. However, further studies are required to elucidate whether this is the case. In spite of this, PFO-DffBT still displays lower \(V_{oc}, J_{sc} \) and PCE values relative to its non-fluorinated analogue. Additionally, PFDo-DffBT displayed lower \(V_{oc} \) values when compared to its non-fluorinated analogue, PFDo-DBT. It is well documented that the \(V_{oc} \) is closely related to the energy difference between the HOMO of the donor and the LUMO of the acceptor.\(^{25}\) Interestingly, the lower HOMO levels of PFO-DffBT and PFDo-DffBT did not translate into higher \(V_{oc} \) values. Previous groups have found that the discrepancy can be explained in terms of the morphology of the blended active layer.\(^{18,20,34}\) The fluorinated polymer PFDo-DffBT provided a better PCE than that of PFDo-DBT when the best devices were compared. This was chiefly as a result of the better \(J_{sc} \) values of the fluorinated polymer.

Table 2. Performance of annealed Glass/ITO/PEDOT:PSS/Polymer:PC70BM/Ca/Al BHJ polymer solar cells under a simulated photovoltaic light with 1000 W m\(^{-2}\) illumination (AM 1.5). PCE values given represent the highest and average values obtained.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Polymer:PC70BM (w:w)(^a)</th>
<th>Solvent</th>
<th>(J_{sc}) (mA cm(^{-2}))</th>
<th>(V_{oc}) (V)</th>
<th>(FF)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFO-DffBT</td>
<td>1:4</td>
<td>CF(^b)</td>
<td>4.16</td>
<td>0.92</td>
<td>58.4</td>
<td>2.2 (2.2±0.1)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>CB(^c)</td>
<td>5.00</td>
<td>0.96</td>
<td>55.4</td>
<td>2.7 (2.5±0.1)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>CB + DIO(^d)</td>
<td>7.97</td>
<td>0.95</td>
<td>58.3</td>
<td>4.4 (4.2±0.2)</td>
</tr>
<tr>
<td>PFDo-DBT</td>
<td>1:4</td>
<td>CF(^b)</td>
<td>4.16</td>
<td>0.97</td>
<td>59.7</td>
<td>2.4 (2.4±0.1)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>CB(^c)</td>
<td>3.75</td>
<td>0.99</td>
<td>48.2</td>
<td>1.8 (1.8±0.05)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>CB + DIO(^d)</td>
<td>2.47</td>
<td>0.88</td>
<td>54.1</td>
<td>1.2 (1.1±0.2)</td>
</tr>
<tr>
<td>PFDo-DffBT</td>
<td>1:4</td>
<td>CF(^b)</td>
<td>3.49</td>
<td>0.82</td>
<td>50.2</td>
<td>1.4 (1.4±0.1)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>CB(^c)</td>
<td>6.69</td>
<td>0.88</td>
<td>58.3</td>
<td>3.4 (3.3±0.2)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>CB + DIO(^d)</td>
<td>8.06</td>
<td>0.86</td>
<td>51.3</td>
<td>3.6 (3.4±0.1)</td>
</tr>
</tbody>
</table>

\(^a\)Polymer:PC70BM weight ratio. \(^b\)CF = chloroform. \(^c\)CB = chlorobenzene. \(^d\)CB + DIO = chlorobenzene + diiodooctane (3% additive).
Figure 7. Tapping-mode atomic force microscopy topography (a, b, c) and phase images (d, e, f) of \(\text{PFDo-DffBT:PC}_{70}\text{BM} (1:4 \text{ w/w, 3}\% \text{ DIO})\) (a, d); \(\text{PFDo-DBT:PC}_{70}\text{BM} (1:1 \text{ w/w})\) (b, e); and \(\text{PFDo-DffBT:PC}_{70}\text{BM} (1:4 \text{ w/w, 3}\% \text{ DIO})\) (c, f).

Atomic Force Microscopy (AFM) Images: To explore the origin of the varied photovoltaic performances, we have used atomic force microscopy (AFM) in tapping mode to image the surface morphologies of polymer:PC\(_{70}\)BM blends thin films (as shown in Figure 7). It can be seen that both \(\text{PFDo-DffBT:PC}_{70}\text{BM}\) and \(\text{PFDo-DffBT:PC}_{70}\text{BM}\) blends display films characterized by morphology that we interpret as fine-scale phase separation and photocharge generation. Previous work suggests that the lower surface energy of fluorinated polymers drives such materials to the surface during film-casting (so-called surface-enrichment); a process that can result in an unfavourable geometry for charge extraction and the accumulation of space charge within the device.\(^{26}\) Such a process is consistent with the reduced \(V_{oc}\) observed in \(\text{PFDo-DffBT:PC}_{70}\text{BM}\) based devices, although further work is necessary to characterize the morphology of such films in a direction normal to the substrate. We find that \(\text{PFDo-DffBT:PC}_{70}\text{BM}\) blends display a distinctive morphology having features that are coarser compared to those observed in blends based on \(\text{PFDo-DffBT:PC}_{70}\text{BM}\). In contrast, \(\text{PFDo-DBT:PC}_{70}\text{BM}\) blend films are characterized by a series of significantly larger (micron-sized) features that we speculate may be fullerene-rich. Phase-separation at such micron length-scales invariably results in inefficient exciton dissociation; a result consistent with the low \(J_{sc}\) and FF associated with photovoltaic devices fabricated from \(\text{PFDo-DBT}\).\(^{20}\)

Conclusions

The effect of fluorine substitution on the molecular, optical, electrochemical and photovoltaic properties of the well-studied poly(2,7-fluorene-alt-dithienylbenzothiadiazole) has been investigated. A fluorinated benzothiadiazole acceptor-moiety was synthesised and polymerised with 9,9-dioctylfluorene units to obtain \(\text{PFDo-DffBT}\). The low molecular weight of \(\text{PFDo-DffBT}\) resulted in a blue-shifted absorption maxima and a larger optical band gap relative to its non-fluorinated analogue \(\text{PFDo-DBT}\). The fluorinated benzothiadiazole unit was then polymerised with fluorene units that were functionalized with larger dodecyl chains (\(\text{PFDo-DffBT}\)). A non-fluorinated analogue, \(\text{PFDo-DBT}\) was also synthesised to help understand the effects of fluorination. UV-visible spectroscopy revealed that incorporation of fluorine results in a blue-shifted absorption maxima. However, the absorption band of \(\text{PFDo-DffBT}\), relative to \(\text{PFDo-DBT}\), is wider and displays electronic and vibrational structure, a result that we interpret in terms of improved molecular ordering in \(\text{PFDo-DffBT}\). We find that the band gap of \(\text{PFDo-DffBT}\) is identical to that of \(\text{PFDo-DffBT}\) (1.89 eV) although it displayed a deeper HOMO level relative to its non-fluorinated analogue. The LUMO levels of the polymers are however identical. BHJ polymer solar cell devices fabricated from \(\text{PFDo-DffBT:PC}_{70}\text{BM}\), \(\text{PFDo-DffBT:PC}_{70}\text{BM}\) and \(\text{PFDo-DBT:PC}_{70}\text{BM}\) gave efficiencies of 4.4, 3.6 and 2.4\%, respectively. The improved PCE values for the fluorinated polymers mainly result from increased \(J_{sc}\) values. However, the \(V_{oc}\) of devices made from \(\text{PFDo-DffBT}\) and \(\text{PFDo-DBT}\) were lower than devices made from non-fluorinated analogues despite both fluorinated analogues displaying deeper HOMO levels relative to their non-fluorinated analogues. We speculate that this may be attributed to the segregation of fluorinated polymer to the surface of the active layer. We find that when formed into a polymer-fullerene blend, films based on the fluorinated polymers are characterized by fine length-scale features; an observation consistent with improved exciton dissociation and charge-generation.

Experimental

Materials: 5,6-difluoro-4,7-bis(5-bromo-4,2-thienyl)-2,1,3-benzothiadiazole was prepared according to previous literature procedures.\(^{22,25}\) 4,7-bis(5-bromo-2-thienyl)-2,1,3-benzothiadiazole was prepared according to literature procedures.\(^{10}\) 9,9-Didodecylfluorene-2,7-diboronic acid (97\%) and 9,9-
Fabrication and testing of BHJ polymer solar cells: The polymers and PC_{70}BM were dissolved separately in either CF,
CB or CB with 3% DIO, and were then mixed at different polymer:fullerene blending ratios (1.5418 Å, rated as 1.6 kW). The scanning angle was conducted over 2θ - 30°. UV-visible absorption spectra were recorded at ambient temperature using a Hitachi U-2010 Double Beam UV/Visible Spectrophotometer. Polymer solutions were made using chloroform (spectrophotometric grade) and measured using quartz cuvettes (path length = 1 × 10⁻³ m). Thin films, used for absorption spectra, were prepared by drop casting solutions onto quartz plates using 1 mg cm⁻² polymer solutions that were made using chloroform (HPLC grade). AFM measurements were made using a Veeco Dimension 3100, operating in tapping mode. Cyclic voltammograms were recorded using a Princeton Applied Research Model 263A Potentiostat/Galvanostat. A three electrode system was employed with solvents in the order; methanol (250 cm³), chloroform (250 cm³). The resulting mixtures of PC_{60}BM solutions were concentrated (~ 50 cm³) and then poured into degassed methanol (500 cm³) and stirred overnight. The mixture was filtered through a membrane filter. The solids were cleaned using Soxhlet extraction with solvents in the order; methanol (250 cm³), acetone (250 cm³), hexane (250 cm³), toluene (250 cm³), chloroform (250 cm³) and chlorobenzene (250 cm³). The toluene, chloroform and chlorobenzene fractions were concentrated (~ 50 cm³) and then poured into degassed methanol (500 cm³). The resulting mixtures were stirred overnight and the polymers collected by filtration as purple powders. Toluene (143 mg, 20 %), chloroform (3 mg, 0.4 %) and chlorobenzene (110 mg, 16 %). GPC: toluene fraction, M_w = 15,400 g mol⁻¹, M_n = 6,800 g mol⁻¹, M_w/M_n = 2.2, PDI = 1.37; chloroform fraction, M_w = 8,800 g mol⁻¹, M_n = 11,900 g mol⁻¹, PDI = 1.35; chlorobenzene fraction, M_w = 11,900 g mol⁻¹, M_n = 15,400 g mol⁻¹, PDI = 1.29. 1H NMR (toluene fraction) (500 MHz, C_6D_6Cl_4, 100°C) (δ_g/ppm) 8.31 (m, 2H), 7.71 (m, 6H), 7.52 (m, 2H), 2.08 (br, 4H), 1.5 - 0.95 (m, 24H), 0.71 (m, 6H). 19F NMR (toluene fraction) (500 MHz, C_6D_6Cl_4, 100°C) (δ_g/ppm) -127.97. Anal. Calcd. for C_{39}H_{30}F_{26}N_{36}S_{2}C: C, 71.43; H, 6.13; N, 3.87; S, 13.30. Found: C, 72.25; H, 6.26; N, 3.54; S, 11.8.
to 90°C for 24 hours. The mixture was cooled to room temperature and bromobenzene (0.1 cm³, 0.94 mmol) was added. The mixture was degassed and heated at 90°C for 2 hours. The mixture was cooled to room temperature and phenylboronic acid (150 mg, 1.23 mmol) was added, degassed and heated to 90°C for 3 hours. After cooling to room temperature, the mixture was partially dissolved in CHCl₃ (300 cm³) and to this solution ammonia (200 cm³, 35%) was added, heated at reflux for 3 hours and then cooled to room temperature. The organic layer was separated. To the organic phase was added ethylenediaminetetraacetic acid disodium salt dihydrate (300 mg) and stirred overnight. The mixture was then filtered through a membrane filter and collected. The solids were cleaned using Soxhlet extraction with solvents in the order: methanol (250 cm³), acetone (250 cm³), hexane (250 cm³), toluene (250 cm³) and chlorobenzene (250 cm³). The toluene and chlorobenzene fractions were concentrated (~ 50 cm³) and then poured into degassed methanol/water (10:1, 500 cm³) and stirred overnight. The mixture was then filtered through a membrane filter and collected. The solids were cleaned using Soxhlet extraction with solvents in the order: methanol (250 cm³), acetone (250 cm³), hexane (250 cm³), toluene (250 cm³) and chlorobenzene (250 cm³). The toluene and chlorobenzene fractions were concentrated (~ 50 cm³) and then poured into degassed methanol/water (10:1, 500 cm³) and stirred overnight. The mixture was then filtered through a membrane filter and collected. The solids were cleaned using Soxhlet extraction with solvents in the order: methanol (250 cm³), acetone (250 cm³), hexane (250 cm³), toluene (250 cm³) and chlorobenzene (250 cm³). The toluene and chlorobenzene fractions were concentrated (~ 50 cm³) and then poured into degassed methanol (500 cm³). The resulting mixtures were stirred overnight and the polymers collected by filtration as purple powders. Toluene (213 mg, 26%), and chlorobenzene (173 mg, 21%). GPC: toluene fraction, Mn = 9,700 g mol⁻¹, PDI = 1.64; chlorobenzene fraction, Mn = 16,100 g mol⁻¹, Mw = 23,700 g mol⁻¹, PDI = 1.47. 1H NMR (toluene fraction) (500 MHz, CD₂Cl₂, 100°C) (δ/ppm) 8.37 (m, 2H), 7.71 (m, 6H), 7.52 (m, 2H), 2.09 (br, 4H), 1.40 (s, 4H), 1.15 (m, 36H), 0.82 (m, 6H). 19F NMR (toluene fraction) (500 MHz, CD₂Cl₂, 100°C) (δ/ppm) -127.32, -127.94. Anal. Calcd. for C₉H₇NO₂S₂: C, 73.34; H, 7.24; N, 3.51; S, 11.56. Found: C, 74.05; H, 7.30; N, 3.29; S, 10.81.

Acknowledgements
We would like to acknowledge EPSRC for financial support of this work via research grants EP/J013761/1 and EP/I028641/1. YZ thanks the University of Sheffield for the award of a scholarship.

References