Environmental Science Processes & Impacts

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China

Jian Cui,^{*ab} Jing Zhou, ^{*a} Ying Peng,^c Andrew Chan,^d and Jingdong Mao^e

6 Abstract

A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a ¹⁵N tracer technique and an *in-situ* soil solution sampler. Results show that solution pH values decline regardless of the increase of NH_4^+/NO_3^- ratio in ADN composition or ADN flux, while exchangeable Al^{3+} , Ca^{2+} , Mg^{2+} , and K^+ concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg ha⁻¹ yr⁻¹ N, NH₄⁺/NO₃⁻ ratio of 2:1) decreases solution pH values, increases solution concentrations of $NO_3^{-}N$, Al^{3+} , Ca^{2+} and Mg^{2+} at the middle and lower soil depths, and promotes their removal. NH₄⁺-N was not detected in red soil solutions of all the three soil layers, which might be attribute to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO₃-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L^{-1} , especially when ADN flux is beyond 60 kg ha⁻¹ N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

Environmental Science: Processes & Impacts Accepted Manuscript

21 Keywords: atmospheric nitrogen deposition, flux/composition, soil solution chemistry, agricultural

^a Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Email: <u>zhoujing@issas.ac.cn</u>; cuijian@cigit.ac.cn

^b Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China

^c Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China

^d Division of Environment, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, 43500, Malaysia

^e Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529-0126, USA

& Impacts Accepted Manuscript

Environmental Science: Processes

22 red soil, column-leaching experiment

1 Introduction

Human activity has significantly altered the global nitrogen (N) cycling in the last several decades, resulting in increased atmospheric N deposition (ADN) worldwide.¹⁻³ China is the third highest ADN flux region in the world.⁴ However, related ADN research concerning the substantial use of fertilizer N in farmlands, especially in agricultural ecosystems, is still in its infancy.^{5, 6}

Existing research mainly focuses on the quantification of ADN flux in agroecosystems, and the negative effects of ADN on soil acidification and ecological degeneration, especially in forest ecosystems.⁷⁻⁹ In fact, due to several control programs including the adjustment of energy structure and current agricultural fertilizer N,⁸⁻¹¹ ADN composition has changed, for example the $NH_4^+/NO_3^$ ratio in wet ADN has declined since 1980.^{12,13} As there is a lack of continuity in previous research on ADN, with study periods limited to one to two years, the ecological effects of ADN composition changes have not been comprehensively investigated. ^{6,7,13}

Soil acidification (decrease in soil pH) is one of the most important consequences of dramatic increases in anthropogenic acid deposition, including ADN.^{2,14} When acid deposition was a major concern, ADN was often ignored as a contributing factor.^{15,16} In fact, the effects of ADN in Chinese agro-ecosystems are quite significant,^{6,12} and preliminary studies report that more ADN is associated with higher acidification of farmland soils.^{17,18}

Usually, researchers equate the effect of ADN with that of fertilizer N on agricultural soil acidifications. It was deduced that the overuse of fertilizer N contributed substantially to regional soil acidification, but ADN made a small contribution to the acidification of agricultural soils across China, based on nationwide survey data and related theories and processes of N cycling.¹⁹ Although the different sources concern the same element, there are significant differences between fertilizer N and ADN.

Firstly, the different applications mean that fertilizer N is usually applied at seeding times or is added at critical moments for crops, while ADN affects field soils at all times. Secondly, the different N components mean that usually one type of N fertilizer is applied and its N component is fixed, while the composition of ADN is unfixed and its NH_4^+/NO_3^- ratio exceeds unity. Hence, it is interesting to investigate whether ADN and fertilizer N produce the same effect on farmland acidification. However, it is difficult to evaluate the contribution of different N sources from soil, fertilizer and atmospheric deposition using traditional methods, such as the control experiment of no N addition.^{16,20}

In China, soil acidification is a major problem in agricultural soils, especially in (sub-) tropical regions.¹⁹ Red soils are widely distributed, accounting for over 20% of the country's total land area.²¹ The red soils of China are highly weathered, inherently infertile, generally acidic, and deficient in most essential nutrients.²² Large amounts of organic matter and nutrients are lost from the cultivated land,²³ making the agro-ecosystems fragile. It has also been observed that ADN is higher and ADN composition also changing in the red soil regions,^{6,24} indicating the necessity to evaluate the effects of ADN on soil acidification in red soil fields. & Impacts Accepted Manuscript

Environmental Science: Processes

A dynamic content of soil solution chemistry could typify the key progress of soil chemical changes. Usually, a soil column leaching stimulation is used to discuss progresses of soil acidification, nitrification and so on.²⁵⁻²⁸ The key factors are the method of adding the solution, and the operability of the leaching setup. Most researchers add their solutions with the same quantity and the same speed during the whole experimental process,^{26,28} meaning that real environmental information, such as precipitation, cannot be simulated. As for the leaching setup, soil chemistry is often studied in different soil depths while soil solution chemistry focuses on the leachate.^{25,26,28} However, a multistage soil solution and its chemistry are rare for the limit of the leaching setup. An *in-situ* soil solution sampler is feasible in field,^{29,30} which helps to overcome the limit.

¹⁵N isotope-labeling is the best way to explore N source and distribution.^{12,31} This technique can be applied to soil columns and plots for a short-time scale for research into ADN on the soil acidification of farmland.¹⁶ The advantage of ¹⁵N isotope-labeling is that it can be used to calculate the amounts of acid produced by marked N to work out the proportion of the acidification attributed to ADN. In order to identify the major processes driving the solution chemical responses of a red soil field in under pressure from ADN and its composition, a soil column leaching experiment has been done with an improved leaching setup and the application of the ¹⁵N isotope-labeling technology in this study. This information is important for future modelling and assessment ofecological critical loads of ADN and its effects in red soil farmlands.

2 Materials and methods

2.1 Materials

2.1.1 Experimental soil

Representative soil samples from the Yingtan station, developed from the quaternary red earth, were collected sequentially from the upper 0-20 cm, middle 20-40 cm and lower 40-60 cm soil layers in farmland for the experiments. The soils were collected using a plat shovel by a cross-section method in three fields. The samples were air dried under shade, ground, mixed thoroughly, and sieved through a 2-mm mesh. The soil samples were analyzed for basic soil properties including soil pH value, soil bulk density (SBD), water holding capacity (SWC), organic matter (SOM), available nutrients including N, phosphorous (P) and potassium (K), base cations (BCs) including K, sodium (Na), calcium (Ca) and magnesium (Mg), total exchangeable bases (TEB, sum of BCs), cation exchange capacity (CEC) and base saturation (BS).³² The details are shown in Table 1.

2.1.2 Simulated ADN solution

Based on regional long-term monitored data by our group,^{10,24} the average values of annual rainfall, pH in precipitation, ADN and its NH_4^+/NO_3^- ratio were 1785 mm, 4.5, 31 kg ha⁻¹ yr⁻¹ N and 2.5, respectively for the 2004–2012 period. Considering atmospheric dry inorganic nitrogen deposition, the bulk inorganic deposition flux reached 92 kg ha⁻¹ yr⁻¹ N.³³ Thus, two group experiments were conducted: 1) simulated ADN composition change with a stable flux (90 kg ha⁻¹ vr^{-1} N): with NH₄⁺/NO₃⁻ ratio 1:2, 1:1, 2:1 and 4:1 (four treatments in total); and 2) simulated ADN flux increase with stable composition (NH_4^+/NO_3^- ratio 2:1): 30, 60, 90 and 120 kg ha⁻¹ vr⁻¹ N (four treatments in total). Every treatment above was carried out in triplicate. All simulated ADN solutions were set at pH 4.5 and made from ¹⁵NH₄Cl, ¹⁵NH₄¹⁵NO₃, Na¹⁵NO₃, NaCl, HCl and deionized water. The ¹⁵N enrichment is 10% in all three of the ¹⁵N-labelled chemicals. In addition, a control treatment (0 kg ha⁻¹ yr⁻¹ N) was also set at pH 4.5 and made from NaCl, HCl and deionized

water.

1

2	
3	
Δ	
5	
6	
2	
1	
8	
~	
9	
10	
11	
12	
40	
13	
14	
1 5	
15	
16	
17	
17	
18	
10	
19	
20	
21	
<u> </u>	
22	
23	
20	
24	
25	
20	
26	
27	
~ ~	
28	
29	
20	
30	
31	
20	
32	
33	
24	
34	
35	
26	
30	
37	
20	
30	
39	
10	
40	
41	
42	
42	
42 43	
42 43 44	
42 43 44	
42 43 44 45	
42 43 44 45 46	
42 43 44 45 46	
42 43 44 45 46 47	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48 49	
42 43 44 45 46 47 48 49 50	
42 43 44 45 46 47 48 49 50	
42 43 44 45 46 47 48 49 50 51	
42 43 44 45 46 47 48 49 50 51 52	
42 43 44 45 46 47 48 49 50 51 52 52	
42 43 44 45 46 47 48 49 50 51 52 53	
42 43 44 45 46 47 48 49 50 51 52 53 54	
42 43 44 45 46 47 48 49 50 51 52 53 54 55	
42 43 44 45 46 47 48 49 50 51 52 53 54 55	
42 43 44 45 46 47 48 49 51 52 55 55 55	
42 43 44 45 46 47 48 49 51 52 55 55 55 55 57	
42 43 44 45 46 47 48 95 51 53 55 55 55 55 57	
42 43 44 45 46 47 48 95 51 53 55 55 55 55 55 55 55 55	

60

107 **2.1.3 Soil column setup**

The improved column setup is shown in Fig.1. The detailed setup was as follow: a total of 27 108 109 PVC pipes (15 cm inner diameter, 65 cm length) were used to contain three-layer prepared agricultural red soil samples. A porous plate was fixed at the bottom end of each pipe. Five layers of 110 111 filtering materials (silica sand in the middle and two pieces of paper filters both on top and bottom) 112 were placed on a porous plate to filter the effluents and to prevent soil leakage. The prepared three-layer soil samples were poured into the pipe in the order of the same layer in the farmland. At 113 114 the same time, two *in-situ* soil solution samplers were placed between two soil layers (between 0-20 115 cm and 20-40 cm, and between 20-40 cm and 40-60 cm).

116 **2.2Methods**

117 **2.2.1 Simulated ADN Progress**

Before the ADN progress, the prepared soil columns were placed into a pool with deionized water for ten days to ensure adequate soil condensation. The total ADN solution of 29.14 L in a year, converted into 1665 mm annual rainfall, was added with a sprayer at the end of each month for each soil column. The detailed simulated ADN contents are shown in Table 2. The monthly simulated ADN solution lasted 24 h each time. A protective film with small punctures was applied to the top of the PVC pipes to prevent the rapid evaporation of water from the soil columns. Both sets of experiments began on January 30th 2013 and lasted for 12 months.

125 2

2.2.2 Sampling and analysis

126 Soil solutions at depths of 20 and 40 cm in the soil columns were collected using the *in-situ* soil solution samplers, and soil solutions at depths of 60 cm were collected by Erlenmeyer flasks once 127 the simulated N deposition solution was finished every month. The soil solution pH value was 128 measured using an IQ 150 pH meter (Spectrum Technologies, INC., USA) immediately. 129 130 Exchangeable aluminum (Al) and BCs were analyzed using an inductively-coupled plasma spectrometer (Optima 8000, PerkinElmer Inc., USA). NH₄⁺-N and NO₃⁻-N were determined using a 131 continuous flow analyzer, AutoAnalyzer 3 (Bran-Luebbe Inc., Germany). The samples with ¹⁵N 132 isotopic were from these soil solutions in the depth of 60cm. The ¹⁵N atom enrichments (%) of soil 133

solutions were detected using a stable isotope mass spectrometer (Elementar Isoprime 100,

Isoprime Ltd., UK) at the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences. Before that, solution NO₃-N was converted into gaseous N₂O by Cadmium particles which were coated with copper under the condition of solution pH=4.7.³⁴ 2.2.3 Calculation The values of main irons in the depth of 60cm were defined as their removals, which were calculated by the formula (1): (1) $R_i = C_{it}V_{it} - C_{i0}V_{i0}$ Where R_i is the removal of the i iron of the t treatment (mg column⁻¹ N), C_{it} and C_{i0} were the i concentrations of the t and the control treatments (mg $L^{-1}N$), V_{it} and V_{i0} was the solution volumes of the t and the control treatments (L column⁻¹), respectively. The loss of ¹⁵NO₃-N (¹⁵ R_i) was calculated by the formula (2): ${}^{15}R_i = E_i C_i V_i$ (2)where ${}^{15}R_j$ was the ${}^{15}NO_3$ -N loss (mg column⁻¹ N), E_j , C_j and V_j were the ${}^{15}N$ atom enrichments (%),_NO₃⁻-N concentrations (mg L⁻¹ N) and the solution volumes (L column⁻¹) of the j treatments, respectively. 2.2.4 Statistical analysis The statistical program SAS 9.0 was performed for all data analyses. A one-way analysis of variance (ANOVA) was used to test for differences (p<0.05) in soil solution pH, NO₃⁻-N, Al³⁺, BCs, TEB and molar ratios of Al³⁺/TEB across different ADN fluxes and compositions. **3 Results** 3.1 pH value With the increase of ADN flux (0-120 kg ha⁻¹ yr⁻¹ N) when the NH_4^+/NO_3^- ratio was kept stable (2:1) and NH₄⁺/NO₃⁻ ratio when its flux was 90 kg ha⁻¹ yr⁻¹ N, solution pH values declined at every soil depth (Figs.2a, 2c). Fig.2a also shows that in all three soil depths, pH values declined

significantly (p<0.05) when ADN flux was beyond 60 kg ha⁻¹ yr⁻¹ N. When NH_4^+/NO_3^- ratio ranged

from 1:2 to 4:1, pH values also declined significantly (p<0.05) at the upper soil depths (20 and 40cm) while the same variation was found at the 60cm depth when NH_4^+/NO_3^- ratio ranged from 2:1 to 4:1 (Fig.2c). As for different soil depths of the two experiments, there were no differences for solution pH values between the two shallower depths (20 and 40 cm), which were obviously lower than those at the 60 cm depth.

3.2 Inorganic N

 NH_4^+ -N was not detected in all of soil solution samples throughout the whole experiment. With the increase of ADN flux (0-120 kg ha⁻¹ yr⁻¹ N) when the NH_4^+/NO_3^- ratio was kept stable (2:1), solution NO₃-N values increased in all soil depths (Figs.2b). Moreover, when ADN fluxes were beyond 60 kg ha⁻¹ yr⁻¹ N, there had significant differences (p < 0.05) between the ADN flux treatment and the control. Though the similar difference was found between the NH₄⁺/NO₃⁻ ratio treatment and the control, there had no significant differences among the four treatments of NH_4^+/NO_3^- ratio (Fig. 2d). Additionally, NO_3^--N concentration at the 60 cm depth ranged from 2.14–14.47 mg L⁻¹ N (Figs. 2b and 2d), so some of the samples exceed the drinking level of 10 mg L^{-1} N, especially when ADN flux is beyond 60 kg ha⁻¹ yr⁻¹ N. This indicates that ADN might create a risk to human health.

As for NO₃⁻N removals and ¹⁵NO₃⁻N loss, they increased linearly (p<0.05) with the increase of ADN flux (Figs. 3a and 3b; Table 3) while the increase of NH_4^+/NO_3^- ratio increased them a little (Figs. 3c and 3d; Table 3). During the whole ADN flux experiment, NO_3 -N removals were in the range of 33.54-157.27 mg column⁻¹ N, accounting for 63.28%-74.85% of total N additions from the simulated ADN solution (53.01-157.27 mg column⁻¹ N). ¹⁵NO₃-N loss ranged from 3.25-14.92 mg column⁻¹ N, accounting for 9.48%-10.40% of total ¹⁵N addition from the simulated ADN solution. During the whole experiment of NH_4^+/NO_3^- ratio, NO_3^-N removals and $^{15}NO_3^-N$ loss were in ranges of 116.28-125.76 and 11.35-12.27 mg column⁻¹ N, accounting for 73.11%-79.09% and 9.71%-10.31% of total N and ¹⁵N addition from the simulated ADN solution, respectively.

3.3 Al³⁺ and BCs

3.3.1 Concentrations

Environmental Science: Processes & Impacts Accepted Manuscript

With the increase of simulated ADN flux when the NH_4^+/NO_3^- ratio was kept stable (2:1), there were increased trends for solution $A1^{3+}$, BCs and TEB concentrations at the three soil depths (20, 40 and 60 cm, Table 4). Al^{3+} concentrations under the ADN flux treatment (60 kg ha⁻¹ yr⁻¹ N) averaged 18.58 and 29.67 mg L⁻¹ at the two depths of 20cm and 40cm, respectively, which significantly higher (p<0.05) than those under the control. Similarly, at both 20cm and 40cm depths, Ca²⁺, Mg²⁺, K^+ and TEB concentrations under the ADN flux treatment (60 kg ha⁻¹ yr⁻¹ N) were significantly higher (p<0.05) than those under the control. At the 60cm depth, there had significant differences for Al^{3+} , Mg^{2+} and K^{+} concentrations between treatments of the ADN flux (90 kg ha⁻¹ yr⁻¹ N) and the control and those for Ca²⁺ and TEB concentrations between treatments of the ADN flux (60 kg ha^{-1} yr⁻¹ N). At all three depths, Na^+ concentrations under the ADN flux (120 kg ha^{-1} yr⁻¹ N) were significantly larger (p<0.05) than other four treatments and there had no difference among the four treatments.

In the experiment of ADN composition (NH_4^+/NO_3^-) ratio ranged from 1:2 to 4:1, ADN kept 90 kg ha⁻¹ yr⁻¹ N), the increase of NH_4^+/NO_3^- ratio raised solution concentrations of Al^{3+} , BCs and TEB at all the three soil depths (Table 5). Al^{3+} concentrations under the NH_4^+/NO_3^- ratio (2:1) averaged 23.95, 34.33 and 19.09 mg L⁻¹ at the 20cm, 40cm and 60cm depths, respectively, which significantly higher (p<0.05) than those under the NH_4^+/NO_3^- ratio (1:2). At the 20cm and 60cm depths, Ca^{2+} , Mg^{2+} , K^+ and TEB concentrations under the NH_4^+/NO_3^- ratio (2:1) were significantly larger (p<0.05) than those under the NH_4^+/NO_3^- ratio (1:2) while significantly lower (p<0.05) than those under the NH_4^+/NO_3^- ratio (4:1), which was similar to concentrations of K⁺ and TEB at the 40cm depth.

Al³⁺/TEB ratio was a comprehensive and important index for red soil solution chemistry. In the control, the ratios were 2.3%, 4.3% and 1.8% at the 20cm, 40cm and 60cm depths, respectively. Whatever the increase of ADN flux and NH_4^+/NO_3^- ratio, the Al³⁺/TEB ratios increased (Tables 4 and 5). Moreover, Al³⁺/TEB ratios were higher significantly (p<0.05) than that under the control at the three depths when ADN flux was beyond 60 kg ha⁻¹ yr⁻¹ N. When NH_4^+/NO_3^- ratio ranged from 2:1 and 4:1, Al³⁺/TEB ratios were larger significantly (p<0.05) than that under the control at the

three depths.

3.3.2 Removals

Al³⁺ removal was significant (Fig. 4 and Table 3). When ADN flux ranged from 30 to120 kg ha⁻¹ yr⁻¹ with the stable NH_4^+/NO_3^- ratio (2:1), Al^{3+} removals were in the range of 0.9-11.0 mg/column. There had significant differences (p<0.05) among the three treatments (30, 60 and 120 kg ha⁻¹ yr⁻¹ N) while the treatment (90 kg ha⁻¹ yr⁻¹ N) had no differences with the two treatments (60 and 120 kg ha⁻¹ yr⁻¹ N), respectively (Fig.4a and Table 3). When ADN kept 90 kg ha⁻¹ yr⁻¹ N, high NH_4^+/NO_3^- ratio treatments (2:1 and 4:1) significantly (p<0.05) mobilized Al³⁺ in the soil, but Al³⁺ removal was similar between the two treatments (Fig.4b and Table 3). In the whole process, their Al^{3+} removals are 8.9 and 9.6 mg column⁻¹, respectively, higher than (p<0.05) those under the other two NH_4^+/NO_3^- ratio treatments.

Extractable BCs removal was dominated by Ca^{2+} (Figs. 5 and Table 3). In the ADN flux experiment, Ca²⁺ removals were in the range of 27.5–146.8 mg column⁻¹, accounting for 68.9%-75.6% of the corresponding TEB, while K⁺ removal is the lowest (from 1.0 to 9.0 mg column⁻¹, only accounting for 2.6%-5.6% of the corresponding TEB). Compared with the control, Ca^{2+} removals increased by 17.11%, 38.51%, 52.96% and 91.17% in the 30, 60, 90 and 120 kg ha⁻¹ vr^{-1} N treatments, respectively. When the flux was beyond 60 kg ha⁻¹ vr^{-1} N, both Mg²⁺ and K⁺ removals increased significantly, and showed obvious differences (p<0.05) to the other two treatments (30 and 60 kg ha⁻¹ yr⁻¹ N, Table 3). Na⁺ removal in the 120 kg ha⁻¹ yr⁻¹ N treatment was higher (p<0.05) than those in the other three treatments, which showed little variation amongst themselves (Figs. 5a-5d; Table 3).

Environmental Science: Processes & Impacts Accepted Manuscript

Similar to the ADN flux experiment, extractable BCs removal was dominated by Ca^{2+} in the ADN composition experiment (Figs. 5e-5h; Table 3). Over the whole process, Ca^{2+} removals were in range of 49.6–124.3 mg, accounting for 68.9%-80.8% of the corresponding TEB, while K⁺ removals were the lowest (1.3-10.8 mg, accounting for 2.1%-6.2% of the corresponding TEB). Difference analysis showed that all the Mg²⁺, Na⁺ and TEB removals in the treatment (NH₄⁺/NO₃⁻

& Impacts Accepted Manuscript

Environmental Science: Processes

ratio 1:2) were significantly lower (p<0.05) than those in the other three treatments, while both Ca^{2+} and K⁺ removals in the treatment (NH₄⁺/NO₃⁻ ratio 1:2) were also significantly lower (p<0.05) than those in the 2:1 and 4:1 NH₄⁺/NO₃⁻ ratio treatments.

245 4 Discussion

The ¹⁵N isotope-labeling technique was used to distinguish the N elements from the ADN and soil N. From the ¹⁵N abundances, NO₃-N concentrations, and solution volumes at the 60 cm soil depth, ¹⁵NO₃-N loss account 9.76%-10.31% for the corresponding NO₃-N removals. In the simulated ADN composition experiment it accounts for 9.49%-10.40% of the corresponding NO₃-N leaching (Figs. 3b and 3d), which is similar to the ¹⁵N abundance (10%) of the ADN solutions. This result indicates that ¹⁵N isotope-labeling is a feasible tool in the column-leaching experiments. However, the ¹⁵N price, including the sampling and analysis fee, is ~20-30 times than that of unlabeled N, which may be the main reason that ¹⁵N isotope-labeling is not widely used. Another important reason for underuse of the technique is that most researches focus on forest and grass soils.²⁵⁻²⁸ For these soils, ADN is the exogenous N, so it is easy to distinguish the two N sources from ADN and soil N using a conventional experiment. However, in farmland soils, exogenous N includes ADN, fertilizer N and irrigation N, so is difficult to identify the exogenous N using a conventional experiment. Thus, it is necessary to apply the ¹⁵N isotope-labeling technology into studies of agricultural soils.

Soil NH_4^+ -N absorption and leaching depend on cation exchange, the fixing capacity of soil, the concentration of other cations in solution and so on.^{27,35,36} In our study, solution NH_4^+ -N concentrations were not detected in the two experiments, which was in agreement with other findings in red soil, China.^{26,35} The possible reasons were as follows:

1) Soil adsorption. Generally, red soil is clay and a variable charge soil. The surface of the clay minerals is negatively charged, which absorbs NH_4^+ -N to the surface and further to make it immobilized from soil solution. Chang et al.³⁷ found it was remarkable that red soil absorbed NH_4^+ -N and the rate of absorption was quick (only 30min).

2) Other cations. BCs especially for Na^+ and Ca^{2+} leaching benefited to NH_4^+ -N fixation in

Environmental Science: Processes & Impacts

soil.^{36,38} In the study, Na⁺ was one of balance cations in simulated ADN solution. Moreover, Ca²⁺ concentrations under treatments of ADN flux and its NH_4^+/NO_3^- ratio were higher than those under the control (Tables 4 and 5). Both Na⁺ and Ca²⁺ trended to increase distances of crystal layers, ^{36,38} which benefited to NH_4^+ -N fixation and reduce concentrations of red soil solution NH_4^+ -N.

3) Nitrification. Ammonium and soil pH are the most important environmental factors that influence soil nitrification.^{39,40} Some studies showed that nitrification was rather weak in acidic soil with lower pH.^{40,41} However, recent studies found that nitrification still affected in acidic farmlands with pH values of 4.4-4.9.^{38,42} It indicated that there were still ammonia-oxidizing archaea communities or higher pH values in parts of soils though the averaged pH values (the measured values) were low in the soils.³⁸ In the present study, NO₃-N removal under the conditions of ADN flux (90 kg ha⁻¹ yr⁻¹ N) and the NH_4^+/NO_3^- ratio (1:1) was 118.6 mg column⁻¹ N (Table 3), accounting for 74.57% of total N addition (NH₄NO₃, 159.04 mg column⁻¹ N). In theory, NO₃⁻-N removal was 79.52 mg column⁻¹ N, which was lower than the measured value (118.6 mg column⁻¹ N). This indicates that the nitrification might affect ~ 29.52 mg column⁻¹ N, accounting for 18.56% of total N addition (NH₄NO₃, 159.04 mg column⁻¹ N) in the progress. The detailed and real mechanism still need to discuss for the red soil nitrification in the further.

At present, related ADN critical load has mostly focused on ADN flux⁴³⁻⁴⁶ while effects of ADN composition have been ignored. It was evaluated that the ADN critical load was 40 kg ha⁻¹ yr⁻¹ N for soil acidification in south China.^{45,47} In this paper, the key NH_4^+/NO_3^- ratio was found to be 2:1 and the key ADN flux was 60 kg ha⁻¹ yr⁻¹ N for the red soil solution chemistry. This suggests that these two key indices could be the ADN thresholds for farmland acidification. The $NH_4^+/NO_3^$ ratio also declined in China,¹² hence ADN composition should be an important index for ecological critical load models in future research.

Though soil solution chemistry is a significant index for evaluating soil acidification, there is still a need for more information from soil chemistry including pH value, Al^{3+} , BCs, CEC, soil buffering capacity, N status and plant growth. Some research in forest and grass soils has shown that ADN, especially for NH_4^+ -N addition, appears to promote the speed of nitrification, increase soil net N mineralization, and consequently decrease soil pH value, and increase BCs removal and Al³⁺ concentration to further accelerate the process of soil acidification.^{16, 48,49} Related research in farmland red soil will be published in due course.

299 5 Conclusion

Leaching experiments with an improved setup were done for discussing effects of ADN on agricultural red soil solution chemistry. In the experiment, different precipitation intensities were simulated, which is more representative of the real situation. Moreover, the ¹⁵N isotope-labeling technique was used to distinguish the N elements from the ADN and soil N. The results showed that there are decreased trends for solution pH values, and increased trends for solution NO₃⁻-N, Al³⁺, BCs and TEB concentrations at the three soil depths (20, 40 and 60 cm) when ADN fluxes or NH4⁺/NO3⁻ ratios in ADN composition increased. ¹⁵NO3⁻-N loss account 9.76%-10.31% for the corresponding NO₃⁻N removals, which is similar to the ¹⁵N abundance (10%) of the ADN solutions. As for iron removals, Al³⁺ removal was significant. Extractable BCs removal was dominated by Ca^{2+} , which accounting for 68.9%–80.8% of the corresponding TEB. In general, the key points were 60 kg ha⁻¹ yr⁻¹ N for ADN flux with the stable NH_4^+/NO_3^- ratio (2:1) and 2:1 for NH_4^+/NO_3^- ratio in ADN composition with the kept flux (90 kg ha⁻¹ yr⁻¹ N), respectively. That's to say, the possible ADN critical load for red soil acidification were 60 kg ha⁻¹ yr⁻¹ N for ADN flux and 2:1 for NH_4^+/NO_3^- ratio in ADN composition in the farmland, separately.

314 Acknowledgments

This work is supported by the National Natural Science Foundation of China (41201206, 41173094). Especial thanks are given to the anonymous reviewers for their constructive comments, which have greatly improved the manuscript.

2		
3	319	References
5	320	1.S. C. Doney N. Mahowald I. Lima, R. A. Feely, F. T. Mackenzie, I. Lamarque and P. I. Rasch, PNAS 2007, 104(37).
6 7	321	14580-14585.
8	322	2 N. Gruber and J. N. Galloway, Nature, 2008, 451:293-296.
9	323	3 D. S. Reay, F. Dentener, P. Smith, J. Grace and R. A. Feely, Nature Geoscience, 2008, 1: 430-437.
10	324	4 A. Richter, J. P. Burrows, H. Nub, C. Granier and U. Niemeier, <i>Nature</i> , 2005, 437 : 129-132.
11 12	325	5 X Y Liu K Koba C O Liu X D Li and M Yoh Environ Sci Technol 2012 46(22): 12557–12566
13	326	6 I. Cui, I. Zhou, H. Vang and Y. O. He. Soils, 2015, $47(2)$: 245-251 (in Chinese)
14	320	7 C M Clark and D Tilman <i>Nature</i> 2008 451 : 712-715
15	327	8 T Larssen L Duan and L Mulder Environ Sci Technol 2011 45 : 1102-1108
16 17	220	0 D. Zhao, S. Y. Wang, J. D. Wang, J. S. Fu, T. H. Lin, J. Y. Yu, Y. Fu, and J. M. Hao, Atmos. Empiron, 2012, 77:
18	529	9 B. Zhao, S. A. wang, J. D. wang, J. S. Fu, I. H. Liu, J. I. Au, A. Fu and J. M. Hao, Aimos. Environ., 2015, 77.
19	330	
20	331	10 J. Cui, J. Zhou, Y. Peng, Y. Q. He, H. Yang, J. D. Mao, M. L. Zhang, Y. H. Wang and S. W. Wang, Atmos. Environ.,
21	332	2014, 89 :102-108.
23	333	11 H. Kros, M. M. Bakker, P. Reidsma, A. Kanellopoulos, S. J. Alam and W. Vries, <i>Landscape Ecol.</i> , 2014, 30 (5): 1-15.
24	334	12 X. J. Liu, Y. Zhang, W. X. Han, A. H. Tang, J. L. Shen, Z. L. Cui, P. Vitousek, J. W. Erisman, K. Goulding, P.
25	335	Christrie, A. Fangmeier and F. S. Zhang, Nature, 2013, 494: 459-463.
26 27	336	13 Y. L. Jia, G. R. Yu, N. P. He, X. Y. Zhan, H. J. Fang and W. P. Sheng, Sci. Rep., 2014, 4: 3763.
28	337	14 T. L. Greaver, T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. Cosby, M. E. Deerhake, R. L. Dennis, J. B.
29	338	Dubois, C. L. Goodale, A. T. Herlihy, G. B. Lawrence, L. L. Liu, J. A. Lynch and K. J. Novak, Front. Ecol. Environ.,
30	339	2012, 10 (7):365-372.
31 32	340	15 X. Chen, J. Mulder, Y. Wang, D. Zhao and R. Xiang, Environ. Geochem. Health, 2004 26: 179-186.
33	341	16 J. Huang, J. M. Mo, W. Zhang and X. K. Lu, Acta Ecologica Sinica, 2014, 34:302-310.
34	342	17 J. D. Wang, X. M. Gao, D. Y. Chen, Y. C. Zhang, X. J. Xu, Y. W. Ning and Y. H. Hu, J. Soil Water Conserv., 2009,
35	343	23 (4):118-122 (in Chinese).
36 37	344	18 J Cui J Zhou Y Peng Y O He H Yang and J D Mao Atmos Environ 2014 82: 121-129
38	345	19 I H Guo X I Liu Y Zhang I L Shen W X Han W F Zhang P Christie K W T Goulding P M Vitousek
39	346	and F. S. Zhang. Science, 2010, 327 : 1008-1010
40	347	$20 \times K$ Xu I Han and X B Luo Climatic Environ Res. 2012 17(5): 628-638 (in Chinese)
41 42	2/10	20 X , \mathbf{X} ,
43	240	21 F. Q. Frey, Sci. Fress, Beijing, 2006 (in Chinese).
44	349	22 G. Q. Chen, W. L. Fu, T. C. Luo, W. L. Gao, S. G. Li and H. Tang, <i>Environ. Sci.</i> , 2014, 35 (12), 4080-4094 (In
45	250	Chinese).
46 47	351	23 Z. L. He, X. E. Yang and V. C. Baligar, <i>Commun. Soil Sci. Plan.</i> , 2001, 32 (7-8): 1251-1263.
48	352	24 J. Cui, J. Zhou, Y. Peng, Y. Q. He and A. Chan, <i>Plant Soil</i> , 2012, 359 : 387-395.
49	353	25 M. E. Hodson and S. J. Langan, Environ. Pollut., 1999, 104: 11-19.
50	354	26 B. H. Sun, Z. Y. Hu, J. L. Lv, L. N. Zhou and C. K. Xu, Acta Ecologica Sinica, 2006, 26(6): 1872-1881 (in Chinese).
51 52	355	27 M. Zarabi and M. Jalali, Environ. Monit. Assess., 2012, 184: 7607-7622.
53	356	28 X. J. Wen, X. Q. Duan and D. C. Zhang, Environ. Earth Sci., 2013, 69: 843-853
54	357	29 X.S. Luo, L. Cang, X.Z. Hao, L.Z. Li and D.M. Zhou, Soils, 2007, 39(6):943-947 (In Chinese).
55	358	30 X. Wang, J. Cui and J. Zhou, Soils, 2011, 43(3):382-387 (in Chinese).
56 57	359	31 H. G. Zechmeister, A. Richter, S. Smidt, D. Hohenwallner, I. Roder, S. Maringer and W. Wanek, Environ. Sci.
58	360	Technol., 2008, 42 : 8661-8667.
59		13
60		

Environmental Science: Processes & Impacts Accepted Manuscript

Environmental Science: Processes & Impacts

1		
2	261	22 P. K. Lu, Chinaca Agricultural Scientach Press: Baijing, 2000 (In Chinace)
4	262	32 K. K. Eu, Chinese Agricultural Sciencent (1955: Berjing, 2000 (in Chinese).
5	302	35 J. Cui, J. Zhou, H. Yang, J. N. Liang and X. L. Liu, <i>Environ. Sci.</i> , 2009, 30 (8). 2221-2220 (in Chinese).
6	303	34 F. C. Cao, F. Han, H. F. Tao, X. Wang, D. L. Sun, F. F. Sun and X. L. Sun, <i>Acta Pedologica Sinica</i> , 2015, $52(1)$.
7 8	364	212-219 (in Chinese). 25 P. K. Ly, 7 V. Shi and O. W. Lai, <i>Chinese I. Sail Sci.</i> 2000 21 (4): 156 158(in Chinese).
9	202	26 V. H. Sun and V. Z. Zhang, <i>L. Human April Univ. (Net. Sci.)</i> 2002, 28 (2):171–176 (in Chinese)
10	300	30 Y. H. Sun and Y. Z. Zhang, J. Hunan Agri. Univ. (Nat. Sci.), 2002, $28(2)$.171-176 (in Chinese).
11 12	367	37 K. Chang, S. Q. Sun and F. C. Yin, <i>J. Annui Agri. Sci.</i> , 2014, 42 (3):728,745 (in Chinese).
13	368	38 D. L. Tong and R. K. Xu, <i>Plant Nutrit. Fertil. Sci.</i> , 2012, 18 (4):853-859 (in Chinese)
14	369	39 J. P. Shen, L. M. Zhang and J. Z. He, J. Soils Sediment., 2014, 14:1861-1868.
15	370	40 K. L. Sahrawat, <i>Plant Soil</i> , 1982, 65 (2):281-286.
16 17	371	41 H. X. Li, F. Hu, M. Q. Liu, G. X. Cai and X. H. Fan, Soils, 2000, 32 (4):194-197, 214 (in Chinese)
18	372	42 B. Z. Wang, Y. Zheng, R. Huang, X. Zhou, D. M. Wang, Y. Q. He and Z. J. Jia, Appl. Environ. Microb., 2014,
19	373	80 (5):1684-1691.
20	374	43 L. Duan, J. M. Hao, S. D. Xie and Z. P. Zhou, Environ. Sci., 2002, 23(2): 7-12 (in Chinese)
21	375	44 A. Nordin, J. Strengbom, J. Witzell, T. Nasholm and L. Ericson, Ambio, 2005, 34(1): 20-24.
23	376	45 H. B. Fan and Y. Z. Huang, J. Plant Physiol. Mol. Biol., 2006, 32(4):395-402 (in Chinese).
24	377	46 G. Linder, W. Brumbaugh, P. Neitlich and E. Little, Open J. Air Pollut., 2013, 2:76-99.
25	378	47 J. Y. Kim, Y. S. Ghim, S. B. Lee, K. C. Moon, S. G. Shim, G. N. Bae and S. C. Yoon, Water Air Soil Poll., 2009,
26 27	379	205 (1-4):259-272.
28	380	48 B. Hu, Y. Q. Wang, Y. J. Wang, B. Wang, H. L. Zhang, P. Guo and C. X. Liu, Res. Environ. Sci., 2015, 8(3): 418-424
29	381	(in Chinese).
30 31	382	49 B. Z. Houlton and S. L. Morford, Soil, 2015, 1: 381-397.
32	383	
33	505	
34 25	384	
36		
37		
38		
39		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
51		
52		
53 54		
J4		

1
ว
2
3
4
5
6
7
1
8
9
10
44
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
32
32
33
34
35
36
07
37
38
39
40
40
41
42
43
44
15
45
46
47
48
10
49
50
51
52
52
55
54
55
56
57
51
58
50

5	TABLES	5														
5	Table 1 F	Table 1 Red soil chemical properties														
	Soil laye	r mII	SBI	O SW	C S	SOM	AN	(mg k	(g ⁻¹)	BCs	s (cn	nol (+)	kg ⁻¹)	CEC	TEB	BS
	(cm)	рн	(g cm	-1) (%) (§	g kg ⁻¹)	N	Р	K	K^+	Na	$^{+}$ Mg ²⁻	$^{+}$ Ca ²⁺	(cmol	kg ⁻¹)	(%)
	0-20	4.56	1.34	4 23.0	5	9.32	46.87	14.27	195.0	0.35	0.1	6 2.21	0.52	18.82	3.24	17.2
	20-40	4.67	1.4	26.2	8	3.76	18.03	0.80	82.5	0.22	0.1	6 2.14	0.36	18.41	2.88	15.6
	40-60	4.75	1.4	5 31.3	0	3.66	21.63	1.32	57.5	0.18	0.1	3 2.17	0.35	19.69	2.83	14.4
7																
3	Table 2 A	Additi	on of	ADN e	very	y mon	th in 2	013 (u	nit: kg	ha ⁻¹	mon	th ⁻¹ N)			
	Treatment	^{a)} Ja	ın ^{b)}	Feb	Ma	r A	Apr	May	Jun	Ju	1.	Aug	Sep	Oct	Nov	Dec
	0		0	0	0		0	0	0	0		0	0	0	0	0
	30	1	.45	2.36	3.30	6 4.	.27	5.09	5.09	1.6	64	2.18	1.09	0.82	1.45	1.18
	60	2	.91	4.73	6.73	3 8.	.55	10.18	10.18	3.2	27	4.36	2.18	1.64	2.91	2.36
	90 ^{c)}	4	.36	7.09	10.0)9 12	2.82	15.27	15.27	4.9	01	6.55	3.27	2.45	4.36	3.55
	120	5	.82	9.45	13.4	5 17	7.09 2	20.36	20.36	6.5	5	8.73	4.36	3.27	5.82	4.73
Ð	Note: a)	The u	nit of	every t	reat	ment	was kg	g ha ⁻¹ y	r ⁻¹ N. '	The 1	N ra	tes of	these	five tre	atmen	its were
)	converted in	nto 53	8.01, 1	06.03,	159	.04, 2	12.05	mg/col	umn, r	espe	ctive	ely.				
L	b) Jan–D	ec we	ere the	abbrev	viati	ions fo	or 12 r	nonths	in one	e yea	r. Th	ne corr	espon	ding vo	olume	s of the
2	monthly so	lution	s wer	e 1.4, 2	2.3,	3.3, 4	4.2, 5.	0, 5.0,	1.6, 2	.1, 1	.1, ().8, 1.4	4 and	1.2 L,	respe	ctively
3	converted in	nto 79	9, 130,	187, 2	38, 1	283, 2	283, 91	, 119,	62, 45,	, 79 a	nd 6	58 mm	rainfa	all ever	y mor	ıth.
1	c) The n	nonth	ly AD	N addi	itior	ns wei	re per	formed	l for th	ne gr	oup	exper	iment	of sin	nulate	d ADN
5	composition	n char	nge wi	th NH4	+/N	O ₃ ⁻ rat	tios of	1:2, 1	1, 2:1	and 4	4:1.					
5																

& Impacts Accepted Manuscript

Environmental Science: Processes

397	Table 3 NO_3^-N ,	$^{15}NO_3$ -N, Al ³⁺	, and BCs	removals und	ler different	atmospheric	deposition N
-----	---------------------	----------------------------------	-----------	--------------	---------------	-------------	--------------

fluxes and its NH_4^+/NO_3^- ratios (Units: mg column⁻¹)

Treatments		NO ₃ ⁻ -N	¹⁵ NO ₃ ⁻ N	Al^{3+}	Ca ²⁺	Mg^{2+}	K^+	Na^+	TEB
	30	33.54c	3.25c	0.93 c	27.54 c	5.03 b	0.98 c	4.72 c	38.26 c
ADN flux	60	73.86 b	7.43b	2.35 b	61.99 b	7.92 b	2.93 bc	11.75 b	84.59 b
$(kg ha^{-1} yr^{-1} N)$	90	119.05ab	12.38a	8.95 ab	85.25 b	21.14 a	6.94 b	10.27 b	123.60 ab
	120	157.27 a	14.92a	11.00 a	146.76 a	23.37 a	9.05 a	43.18 a	222.35 a
	1:2	116.27 a	11.35a	-0.73 c	49.58 c	5.50 c	1.27 c	5.04 c	61.39 c
	1:1	118.64 a	12.16 a	4.81 b	65.28 bc	11.87 b	3.67 bc	9.18 b	90.01 b
NH ₄ /NO ₃ ratio	2:1	119.05 a	12.27 a	8.95 a	85.52 b	21.14 a	6.94 b	10.34 b	123.94 ab
	4:1	125.76 a	12.21 a	9.56 a	124.34 a	26.00 a	10.84 a	11.97 a	173.16 a

Note: CK indicates the control. Data followed by the same letter(s) in the same columns are not
significantly different at p<0.05. This also applies to Tables 4 and 5. The leachate amounts were 1.4,
2.3, 3.3, 4.2, 5.0, 5.0, 1.6, 2.1, 1.1, 0.8, 1.4 and 1.2 L columns⁻¹ during Jan–Dec, respectively.

Environmental Science: Processes & Impacts

1
2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
42
42
11
44
45
46
47
48
49
50
51
52
52
55
04 55
55
56
57
58

404	Table 4 Eff	$\tilde{c}ects of ADN flux on Al^{3+},$	BCs and Al ³⁺ /TEB of red soil solution	ns at different	depths
	Soil	Al ³⁺	BCs (µmol L ⁻¹)	TED	A 1 ³⁺ /T

30	$\Delta DN $ flux	AI		DCS (µ	IIIOI L)		– TFR	$\Delta 1^{3+}/\text{TFR}$
lay (cn	$\begin{array}{c} \text{result} \\ \text{result} \\ \text{(kg ha^{-1} yr^{-1} N)} \\ \text{n)} \end{array}$	(µmol L ⁻¹)	Ca ²⁺	Mg^{2+}	K^+	Na ⁺	$(\mu mol L^{-1})$	(%)
	0	5.69 c	79.72 d	20.98 d	48.67 c	95.66 b	245.04 d	2.3 c
	30	11.17 c	122.30 c	35.68 c	69.04 b	99.74 b	326.75 c	3.4 b
20) 60	18.58 b	149.52 bc	50.93 b	92.08 a	108.53 b	401.06 b	4.6 a
	90	23.95 ab	176.48 ab	59.99 ab	96.85 a	110.93 b	444.25 b	5.4 a
	120	28.14 a	197.90 a	68.67 a	101.73 a	159.13 a	527.43 a	5.3 a
	0	15.04 c	151.02 c	46.69 c	32.81 d	118.32 b	348.84 c	4.3 b
	30	20.43 bc	200.38 bc	63.93bc	42.27 cd	129.55 b	436.13 bc	4.7 b
40) 60	29.67 b	247.62 b	75.14 b	46.62 bc	131.96 b	501.33 b	5.9 a
	90	35.15 ab	257.45 b	83.32 ab	57.05 b	125.63 b	523.46 b	6.7 a
	120	45.00 a	338.83 a	104.43 a	74.12 a	191.08 a	708.47 a	6.4 a
	0	7.20 b	202.10 d	52.14 b	21.73 b	119.57 b	395.55 d	1.8 b
	30	9.05 b	244.04 cd	61.94 b	23.24 b	125.04 b	454.27 cd	2.0 b
60) 60	10.19 b	275.48 bc	65.51 b	24.53 b	128.33 b	493.85 bc	2.1 b
	90	19.09 a	306.80 b	87.14 a	28.49 a	124.09 b	546.52 b	3.5 a
	120	20.32 a	371.62 a	97.01 a	30.16 a	173.58 a	672.37 a	3.0 a
-								

405

406

Environmental Science: Processes & Impacts Accepted Manuscript

a	NH4 ⁺ /NO3 ⁻	Al^{3+}		BCs (µr	nol L ⁻¹)		TEB	Al ³⁺ /TEB
Soil layer	ratio	(µmol L ⁻¹)	Ca ²⁺	Mg^{2+}	K^+	Na ⁺	(µmol L ⁻¹)	(%)
	СК	5.69 d	79.72 d	20.98 d	48.67 c	95.66 b	245.04 d	2.3 d
	1:2	16.56 c	147.74 c	42.16 c	78.31 c	113.33 a	381.54c	4.3 c
20 cm	1:1	16.84 c	146.80 c	50.27 bc	81.22 c	103.75a	382.04c	4.4 c
	2:1	23.95 b	176.48b	59.99 b	96.85b	110.93a	444.25b	5.4 b
	4:1	34.30 a	237.78a	80.22 a	106.78a	114.08a	538.86a	6.4 a
-	СК	15.04 d	151.02 c	46.69 c	32.81 d	118.32 b	348.84 c	4.3 c
	1:2	26.94 c	235.65b	72.78 b	45.39 c	130.71a	484.52b	5.6 b
40 cm	1:1	28.70 c	239.55b	77.17 b	49.13 c	122.50a	488.36b	5.9 b
	2:1	34.33 b	259.55b	83.32 b	57.05b	125.11a	525.04b	6.5 a
	4:1	41.46 a	329.79a	99.79 a	63.93 a	125.95a	619.45a	6.7 a
-	СК	7.20 c	202.10 d	52.14 c	21.73 c	119.57 b	395.55 d	1.8 bc
	1:2	6.43 c	265.96 c	62.27 c	23.52 c	117.60b	469.34c	1.4 c
60 cm	1:1	11.95 b	288.77bc	72.06 c	25.34 c	121.30ab	507.47bc	2.4 b
	2:1	19.09 a	307.51b	87.14 b	28.49b	124.32ab	547.46b	3.5 a
	4:1	20.29 a	361.74a	96.96 a	32.17 a	127.58a	618.45a	3.3 a

Table 5 Effects of ADN composition $(NH_4^+/NO_3^- \text{ ratio})$ on Al^{3+} , BCs and Al^{3+}/TEB of red soil solutions at different depths

Fig. 2 Atmospheric nitrogen deposition (ADN) on solution pH value and NO_3^- concentration at different red soil depths. a-b in the up-left were effects of ADN flux with a stable composition (NH_4^+/NO_3^- ratio was 2:1) and c-d were effects of ADN composition (NH_4^+/NO_3^- ratio) with a stable ADN flux (90 kg ha⁻¹ yr⁻¹ N), respectively. The vertical bars denote standard errors. These letters of a, b, c, d and e in the right of the vertical bars indicate the difference with 5% level (n=36).

Fig.3 Cumulative dynamics of NO_3^- -N and ${}^{15}NO_3^-$ -N removals. a and b showed effects of ADN fluxes while c and d showed effects of NH_4^+/NO_3^- ratio, respectively.

425 Continuted Fig.3

Environmental Science: Processes & Impacts Accepted Manuscript

Fig.4 Cumulative dynamics of Al^{3+} removals. a and b showed effects of ADN fluxes and NH₄⁺/NO₃⁻ ratio, respectively.

& Impacts Accepted Manuscript

Environmental Science: Processes

Human activity has significantly altered the global nitrogen (N) cycling in the last several decades, resulting in increased atmospheric deposition N (ADN) worldwide. Existing research focuses on the quantification of ADN flux in agroecosystems, and the negative effects of ADN on soil acidification and ecological degeneration in forest ecosystems. However, related ADN composition research, especially in agricultural ecosystems, is still in its infancy. This study manages to provide an improved experiment setup to study effects of effects of ADN and its composition on red soil solution chemistry of a farmland, which is useful for future modelling and assessment of ecological critical loads of ADN and its effects in red soil farmlands.