Environmental Science Processes & Impacts

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

Graphical Abstract

Humic acid alleviated nickel and deltamethrin toxicity in earthworms (*Eisenia foetida*), preventing (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes.

Impacts Accepted Manuscript

త

Environmental Science: Processes

Environmental impact

Ni and deltamethrin is potentially detrimental to human and animal health because of its high toxicity and mobility in soil, especially in cultivated soils. Humic acids (HAs), one of the most important components in soil, are also common used to improve the soil structure. This study provide evidences to figure out whether HAs can influence the bio-availability of Ni and deltamethrin due to its variation of molecular structures which can provide adsorption sites, thus relieve the toxic effect. The results show that HAs could alleviate toxicity caused by Ni and deltamenthrin (like Gene toxicity and Biochemical toxicity).

Environmental Science Process & Impacts

ARTICLE

Received 27th June 2015, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (*Eisenia foetida*)?

Chen-chao Shen^a, Dong-sheng Shen^a, Jia-li Shentu^{*a}, Mei-zhen Wang^a, Ming-yang Wan^a

Humic acid alleviated nickel and deltamethrin toxicity in earthworms (*Eisenia foetida*), preventing (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes.

The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (*Eisenia foetida*) exposed to nickel and deltamethrin (at 100 and 1 mg kg⁻¹, respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in the earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5–1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in the earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA.

1 1. Introduction

Rapid industrial development and the widespread use pesticides has caused serious problems with heavy metaf pollution¹ and pesticide pollution² in agricultural environments. Ni and deltamethrin are two of the main contaminants $\frac{14}{15}$ agricultural soils. A survey of soil contamination in China agricultural soils. A survey of soil contamination in China in 2014 showed that 19.4% of cultivated land is polluted, and that 4.8% of land has Ni concentrations higher than the acceptable

^{a.} Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, 20 School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012, China. limit.³ Approximately 40% of vegetable fields in the Pearl River Delta region were found to contain heavy metal concentrations higher than the acceptable limits. Of the heavy metals, Ni (for which the acceptable limit is 50 mg kg⁻¹) was found to be the main pollutant.⁴ Ni concentrations of 139–1099 mg kg⁻¹ have been found in soil on which wheat is grown in northwest China.⁵ Deltamethrin, which is the most toxic pyrethroid,⁶ has been widely used in Chinese agricultural areas. Deltamethrin has been found to have a half-life in soil of between 14 and 291 d, depending on the soil properties,⁷ but it is likely to have accumulated in many soils because it has been repeatedly applied. Deltamethrin concentrations of 0.03–1.16 mg kg⁻¹ have recently been found in Chinese agricultural soils.⁸

Journal Name

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

9 Plant growth may be stunted and invertebrates such 66 10 earthworms, nematodes, and springtails can be threaten 67 11 because of Ni and deltamethrin accumulated in soil. Ni is68 12 calcium-channel blocker,9 and can enter cells and cause free radicals to be produced,10 inducing oxidative stress and both 13 double- and single-stranded DNA damage.¹¹ Deltamethrin has 14 15 been found to be neurotoxic, acting by activating voltaged sensitive sodium channels¹² and affecting the activities of 16 antioxidant enzymes.¹³ Earthworms, which are some of th 17 most widespread invertebrates in soil ecosystems, plaz 18 important roles in improving soil structure and fertility.¹⁴ The 19 direct contact between earthworms and soil and the way in 20 21 which earthworms feed make them important model organism 22 in environmental monitoring studies. The physiological 23 cellular, and molecular characteristics of earthworms change significantly when the earthworms are stressed because of the 24 presence of contaminants.¹⁵ These changes have been used for a 25 number of years to study the sub-acute toxic effects of sal 26 contaminants in earthworms caused through oxidati 27 stress.^{16,17} Contaminants entering an earthworm may cause the 28 earthworm to accumulate reactive oxygen species,¹⁸ which may 29 cause the oxidation and anti-oxidation systems to become 30 31 imbalanced. Malondialdehyde (MDA) is one of the ma 32 products of the peroxidation of polyunsaturated fatty acids, and it can be used as an indicator of lipid peroxidation.¹⁹ Protein 33 34 carbonyls are chemically stable oxidized groups on prote 35 chains. It is relatively easy to store protein samples and 36 detect protein carbonyls, making protein carbonyls convenier markers of damage.²⁰ Exposure to pollutants can cause DNA 37 38 chains to become broken, negatively affecting gene replication? 39 and expression. These effects can be detected using the comp 40 assay, which is a single-cell gel electrophoresis method.²¹ The actual toxic effects of a pollutant in soil cannot be determined 41 42 from the total concentration of the pollutant in the soil because 43 the pollutant could become modified or the availability of the 44 pollutant could change over time (because of the processes of complexation, metabolism, precipitation, solubilization, and 45 46 sorption). 100 47 Humic acid (HA), one of the most important components

48 of soil, is a relatively stable group of organic compounds that have a range of structural features (including alkylaromatigg 49 50 carbonyl, carboxyl, phenyl, and quinoid moieties)²² that canjaga 51 as adsorption sites. It has been found that HA can mitigate the toxicities of contaminants by affecting the forms of 106 52 53 contaminants that are present.²³ The soil structure can also by improved by HA, and this can make the soil a better 54 environment for earthworms to grow in. However, adding Hog 55 56 can have negative effects, such as decreasing the soil pH, which 57 can increase the availabilities (and therefore the acute and chronic toxicities) of certain heavy metals.²⁴ It is still not cheap 58 if adding HA to soil will decrease the toxicities of Ni and 59 60 deltamethrin in the soil. The effects on earthworms of adding 61 HA to soil are also unclear. 115

The earthworm *Eisenia foetida* was used as a mothet
terrestrial organism in the study presented here. The aim of 11/9
study was to determine whether HA could decrease 11/8
combined toxic effects of Ni and deltamethrin on earthworms.

The MDA and protein carbonyl concentrations and the comet assay Tail DNA% were used to indicate the cellular- and molecular-level toxic responses.

Environmental Science Process & Impacts

2. Experimental

2.1 Materials and chemicals

The *E. foetida* used in the study were supplied by an earthworm breeding farm in Suzhou, Jiangsu Province, China. Healthy earthworms aged 60 d, each weighing 200–300 mg and having an obvious clitellum, were kept under the experimental conditions for 14 d before the exposure experiments were started. Surface soil (0–20 cm depth) was collected from an agricultural field in Hangzhou, China. The main physical and chemical properties of the test soil were: pH 6.51; organic matter content 23.54 g kg⁻¹; cation exchange capacity 17.5 cmol kg⁻¹; texture 28.2% clay, 40.3% silt, and 31.5% sand. The As, Cd, Cr, Cu, Hg, Pb, and Zn concentrations in the soil were 3.86±0.04, 0.16±0.01, 28.2±0.8, 18.6±0.64, 0.20±0.01, 11.8±0.37, and 46.8±1.01 mg kg⁻¹, respectively. Deltamethrin was not detected in the soil. The soil samples were dried in air, then passed through a sieve with a 2 mm mesh before use.

Deltamethrin (>99.5%) was obtained from the Shanghai Jingchun Biochemical Technology Co. (Shanghai, China), and Ni(NO₃)₂ (>98%) was obtained from the Shanghai Lingfeng Chemical Reagent Co. (Shanghai, China). The HA that was used (fulvic acid >90%) was purchased from the Nanjing Chemical Reagent Co. (Nanjing, China).

2.2 Exposure of the earthworms to Ni and deltamethrin

The Ni and deltamethrin test concentrations were set at 100 and 1 mg kg⁻¹, respectively, because similar concentrations have been found in real soil samples. We also used similar concentrations in toxicity tests performed before the exposure experiments were performed. Ni was dissolved in deionized water and spiked into the soil to give a final concentration of 100 mg kg⁻¹. Water was then added to the contaminated soil to bring the soil to 70% of its water-holding capacity. The soil was then allowed to equilibrate for 2 weeks. Deltamethrin was dissolved in a small amount of acetone, and the solution was sprayed onto the soil to give a final concentration of 1 mg kg^{-1} once the soil had equilibrated. The soil was then placed in a fume hood until the acetone had completely evaporated. HA was then added directly to the soil samples to give final HA contents of 0%, 0.5%, 1%, and 3% (these samples are called THA-0, THA-0.5, THA-1, and THA-3, respectively, later), then the soil samples were mixed thoroughly. Soil with only Ni added (called TNi) and only deltamethrin added (called TDel), and no HA added, were prepared for use in single-contaminant tests. Soil without any Ni, deltamethrin, or HA added was prepared for use in clean soil control tests. Each treatment was performed in triplicate. Earthworms (with an average total wet weight of 0.30-0.50 g) were then added to each test sample after 2 days. The gut contents of the earthworms were voided before the earthworms were used in the experiments. Each test sample contained 80 earthworms. Each sample container was

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

57 58 59

60

Journal Name

then covered with plastic wrap to limit the loss of water.1A9 66 suggested by Lin et al.,²⁵ 5 g of dry cow dung was added to 120 67 68 surface of each soil sample each week to feed the earthworh21 69 Dry cow dung was considered to be an appropriate fall 70 because it will not have contained any chlortetracycline or ofh2B 71 medication that could have adversely affected the earthwoil 24 72 during the tests. The sample containers were stored unli25 73 controlled conditions (at 20±1 °C, with a 16 h: 8 h light: da26 74 regime) for 48 d. None of the earthworms died during the 1237 75 period. After the exposure period, 15 live earthworms where where where the earthworms where the earthworm whe 76 collected from each test sample for analysis. The earthwoil 29 77 from each sample were carefully washed in normal saline 180 78 then placed in a glass culture dish containing damp filter paper 79 overnight, to void their gut contents, then the earthworms where where where where the earthworms where the earthworm where th 80 rinsed with normal saline three times before being analysed. 133 134 81

2.3 Lipid peroxidation

135

Six live earthworms that had been used in a test were mixed 82 with iced phosphate-buffered saline (PBS) (at pH 7.5) to give 83 an earthworm weight: buffer volume ratio of 1:9. The worms 84 were homogenized in the buffer, then the mixture was centrifuged at 3500 rpm (at 4 $^{\circ}$ C) for 10 min. The supernatant 85 86 87 was kept at below 4 °C for the remainder of the analysis, while 88 was performed on the same day. The MDA content of 144 extract was determined using the thiobarbituric ald 89 technique.²⁶ Briefly, the extract was incubated with 143 90 91 thiobarbituric acid in an acetate buffer, then the mixture 1/44 92 heated in a boiling water bath for 1 h. The mixture was that 93 cooled and centrifuged at 3500 rpm for 15 min, then 146 94 absorbance at 532 nm was measured. 147 148

95 2.4 Oxidative damage to proteins

149 The total protein content of each extract was determined using 96 the method described by Dalle et al.,¹⁸ and the protein carbony 97 98 concentration was determined using the ₽**5**2 colourimetry method.²⁷ 99 dinitrophenylhydrazine A 4,43 100 dinitrophenylhydrazine solution (10 mmol L^{-1} 454 dinitrophenylhydrazine and 2 mol L^{-1} HCl) was added to 5a 101 protein pellet produced from a sample, and only HCl (2 mol 456102 was added to a reagent blank sample. Each mixture was then 103 104 kept in the dark for 1 h and vortexed every 10 min. The mixture 105 was then centrifuged, the supernatant discarded, and the protein pellet was washed with 1 mL of a 1:1 (v/v) mixture of ethapped 106 and ethylacetate three times. The sample was then resuspended 107 in guanidine hydrochloride at 37 °C for 15 min before 108 109 absorbance at 370 nm was measured. 163

110 2.5 DNA damage

Earthworm coelomocytes were collected using the method 49 111 described by Dong et al.²⁸ Three earthworms were washed with 50 112 physiological saline, then they were subjected to an irritating 113 51 chilled extraction using a mixture of 5% ethanol and 95% satisfied 114 52 containing 2.5 mg mL⁻¹ EDTA and 10 mg mL⁻¹ guaideo 115 53 glyceryl ether (at pH 7.3) for 3 min. The extrusion medium was $\frac{1/1}{2}$ 116 54 then centrifuged (at 4 °C) at 9000 rpm for 10 min. TR2 117 55 118 coelomocytes were washed with PBS three times, centrifuging 56

Environmental Science Process & Impacts

between washes. All of the steps were conducted at 4 °C. More than 90% of the cells were required to remain viable throughout the procedure.

The comet assay described by Dong et al.¹⁹ was used with slight modifications. Briefly, a clear glass slide was coated with 100 μL of 0.8% normal-melting agar in PBS. A 25 μL aliquot of a cell extract, as described above, was suspended in 75 µL of warm (37 °C) 0.8% low-melting agar in PBS. A 100 µL aliquot of this mixture was added to the glass slide covered with normal-melting agar. Once the sample had solidified, the slide was immersed in a lysis solution (100 mmol L^{-1} , 2.5 mol L^{-1} NaCl, 10 mmol L⁻¹ Tris-HCl, 1% Trion X-100, and 10% dimethyl sulfoxide, at pH 10) for 2 h. The slide was then placed in an electrophoresis tank containing iced electrophoresis buffer (300 mmol L⁻¹ NaOH and 1 mmol L⁻¹ Na₂EDTA) for 30 min, to despiralize the DNA, then electrophoresis was performed for 20 min at 25 V and 300 mA. The slide was then immersed in buffer (0.4 mol L⁻¹ Tris-HCl, at pH 7.5) for 15 min, and then stained by adding 40 μ L ethidium bromide (2 μ g mL⁻¹) before being analysed by fluorescence microscopy.

2.6 Total Ni and deltamethrin contents of the soil samples

A 0.1 g aliquot of each air-dried soil sample that had been passed through a sieve with a 0.149 mm mesh was digested in a 5:3 mixture of HNO₃ and HF using a microwave accelerated digestion system (MARS 5; CEM, Matthews, NC, USA). The Ni concentration in the digested solution was determined by graphite furnace atomic absorption spectrophotometry (ZEEnit 700 p; Analytik Jena, Jena, Germany). Blanks and reference material (Chinese National Standard Soil Reference Material GBW07417; Chinese CRM/RM Information Center, Beijing, China) samples were included to allow the quality of the results to be assessed. The measured concentrations were never more than 10% different from the nominal concentrations in the spiked soil samples or the certified concentrations in the reference materials.

The deltamethrin concentrations in the soil samples were determined using the method described by You et al.²⁹ The soil samples were extracted, and the deltamethrin concentrations in the extracts were determined using a gas chromatograph equipped with an electron capture detector (GC-ECD 7890A; Agilent Technologies, Santa Clara, CA, USA). The gas chromatograph was fitted with an HP-5 (30 m long, 0.25 mm internal diameter, 0.5 µm film thickness) capillary column (Agilent Technologies). The oven temperature program started at 65 °C (held for 1 min), and increased at 20 °C min⁻¹ to 280 °C (held for 2 min). A 1 µL aliquot of each extract was injected, and split injection mode (with a split ratio of 1: 10) was used. The injector and detector temperatures were 250 and 300 °C, respectively. A deltamethrin recovery test was performed in each batch of samples. The deltamethrin recovery was determined by analysing triplicate dried soil samples that had been spiked with a deltamethrin standard. The deltamethrin recovery was always within the range 90-110%.

2.7 Nickel fractions in the soil

This journal is C The Royal Society of Chemistry 20xx

164

Journal Name

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

119 Fig. 1 Effects of the presence of humic acid on the peroxidation of memba56 120 lipids in *Eisenia foetida* exposed to Ni and deltamethrin. The ratio157121 malondialdehyde concentration in samples and controls different expo158122 times are shown. 0%HA+Del means the TDel samples, 0%HA+Ni means the 159123 samples, 0%HA+Del+Ni means the THA-0 samples, 0.5%HA+Del+Ni means 124 THA-0.5 samples, 1%HA+Del+Ni means the THA-1 samples, and 3%HA+Del-61 125 means the THA-3 samples. The means are shown, and the bars show 162126 standard deviations (n=3). Values significantly different from the controls 127 indicated with asterisks, * = P<0.05, ** = P<0.01, and *** = P<0.001. 164 128 165 The nickel fractions in the soil were determined using a revised 129

Bureau Communautaire de Référence extraction procedure³⁰ 130 131 Briefly, 40 mL of acetic acid was added to a 1 g aliquot of an air-dried soil sample, then the mixture was shaken overnight 132 remove the acid-extractable Ni. A 40 mL aliquot 190 133 134 hydroxylammonium chloride (0.5 mol L⁻¹, at pH 1.5) was then 135 added to the residue to remove the reducible Ni. The residue 136 was then washed twice with hydrogen peroxide (8.8 mol 473) 137 and then dried. A 50 mL aliquot of nitric acid (pH 2) was then 138 added to the residue to extract the oxidizable Ni. The residual 139 Ni was then determined by digesting the residue as described in subsection 2.6, using the MARS 5 microwave accelerated 140 141 extraction system. 178

142 3. Results and discussion

1433.1 Effects of HA on the peroxidation of membrane lipids in \$2144foetida exposed to Ni and deltamethrin183

185 The ratios between the MDA concentrations in the samples \overline{ab} 145 controls were used to evaluate whether HA prevented 146 earthworm cell membrane lipids being damaged 188 147 peroxidation caused by Ni and deltamethrin. Both Ni and 148 deltamethrin were found to cause toxic effects in the 149 earthworms, but Ni was found to be the most toxic, as is shown 150 151 in Fig. 1. Ni caused significant (P<0.01) oxidative damage to the lipid membranes, and the presence of Ni caused the MBA 152 concentration to increase. The MDA sample/control ratio 193 153 154 1.10 in the TDel samples but 1.35 in the TNi samples on day 14. 155 Ni and deltamethrin appeared to have simple additive effects on

Environmental Science Process & Impacts

Fig. 2 Effects of the presence of humic acid on protein damage in *Eisenia foetida* exposed to Ni and deltamethrin. The ratios of protein carbonyl concentration in samples and controls after different exposure times are shown. 0%HA+Del = TDel, 0%HA+Ni = TNi, 0%HA+Del+Ni = THA-0, 0.5%HA+Del+Ni = THA-0.5, 1%HA+Del+Ni = THA-1, and 3%HA+Del+Ni = THA-3. The means are shown, and the bars show the standard deviations (n=3). Values significantly different from the controls are indicated with asterisks, * = P<0.05 and ** = P<0.01.

the lipid membranes. Divalent heavy metals have been found to make the membranes of lysosomes in earthworm coelomocytes unstable and to cause lipid peroxidation in a number of studies.^{31,32} Deltamethrin can cause oxidative stress by affecting the activities of antioxidant enzymes.³³ Less peroxidation of membranes was found to be caused by Ni and deltamethrin when HA was present, but more membrane peroxidation occurred when the HA concentration was high than when the HA concentration was low. The highest MDA concentration in the THA-0 samples was found on day 28 (when the sample/control ratio was 1.41), but the THA-0.5 and THA-1 samples had sample/control ratios of only 1.05 and 1.06, respectively, on day 28. The sample/control ratio for the THA-3 samples was significantly higher (P<0.01), at 1.21, on day 28 than the ratios in the THA-0.5 and THA-1 samples. Deltamethrin is degraded slowly in soil, but the toxic effects of Ni and deltamethrin increased with time. Adding HA was found to decrease the damage caused to the lipid membranes by Ni and deltamethrin, but oxidative stress has been found to be induced by high HA concentrations. The superoxide dismutase (an enzyme that destroys oxygen free radicals) activity has been found to be increased by the presence of HA.³⁴ However, high HA concentrations have been found to damage lipid membranes by inhibiting glutathione activity.^{35,36} The results of the studies just mentioned explain why HA prevented Ni and delta deltamethrin damaging the lipid membranes less effectively at high HA concentrations than at lower HA concentrations.

3.2 Effects of HA on protein damage in *E. foetida* exposed to Ni and deltamethrin

179

180

181

3

4

5

6

7

8

9

60

increased significantly when the earthworms were exposed to The amounts of DNA damage in E. foetida caused by exposure to Ni and deltamethrin for 14, 28, and 42 d were determined using the comet assay, and the results are shown in Fig. 3. Less DNA damage was found in the earthworms exposed to deltamethrin than in the earthworms exposed to Ni. Most of the DNA damage occurred at the beginning of the deltamethrin exposure tests, and further damage did not occur with time. In contrast, much more DNA damage was caused by Ni, and the amount of damage caused increased with time. For example, the tail DNA% sample/control ratios in the TDel and TNi samples were 1.33 and 2.99, respectively, on day 42. DNA is an important target of environmental stress in terrestrial organisms.³⁸ DNA damage can be directly caused by chemicals such as H₂O₂ and reactive oxygen species.³⁹ We found a positive response between the HA concentrations and the tail DNA% values. In previous studies, it has been found that many substances, such as free radicals and bases that are contaminant metabolites, can directly break DNA chains.²⁸ Ni can bind to enzymes that repair DNA and generate oxygen free radicals that can cause protein damage in situ.¹⁷. We found that adding HA decreased the amount of DNA damage that occurred, and adding more HA caused less DNA damage to occur. For example, the tail DNA% sample/control ratios in the THA-0, THA-0.5, THA-1, and THA-3 samples were 3.29, 2.37, 2.22, and 1.49, respectively, on day 42. The tail DNA% in the THA-0, THA-0.5, and THA-1 samples increased as the exposure time increased but varied little in the THA-3 samples.

As is shown in Fig. 2, the total protein carbonyl concentration

Lipid peroxidation, protein damage, and DNA damage were analysed in this study, and DNA damage was found to be the more sensitive indicator of the toxic effects of Ni and deltamethrin. More lipid peroxidation occurred when the HA dose was high (in the THA-3 samples) than when lower HA doses were used (in the THA-0.5 and THA-1 samples). There is an optimum amount of HA that should be added to prevent as much protein damage as is possible. However, more DNA damage was prevented at the highest HA dose (THA-3) than at the lower doses. Lipid peroxidation, protein damage, and DNA damage have previously been used widely to indicate the ecotoxicities of contaminants. It has previously been found that Ni is a calcium-channel blocker⁹ but that deltamethrin is neurotoxic¹² because it can activate voltage-sensitive sodium channels. With this in mind, we will choose biomarkers relevant to these effects to evaluate the toxic effects of Ni and deltamethrin in earthworms in future studies.

3.4 Effects of HA on the soil pH

The pH decreased as the HA dose increased and with time, as is shown in Table 1. The soil pH values in the control and THA-3 samples were 6.50 and 6.27, respectively, on day 0. The soil pH values in the control and THA-3 samples had decreased to 6.15 and 5.94, respectively, on day 42.

The components of HA contain a great range of structural moieties, such as carboxyl and hydroxyl groups, that can cause acid hydrolysis. Organic acids (such as carboxylic and carbonyl

Environmental Science Process & Impacts

ARTICLE

Table 1. Soil pH during the exposure tests

Time (d)	Control	TNi	TDel	THA-0	ТНА-0.5	THA-1	THA-3
0	6.50±0.01	6.52±0.01	6.49±0.02	6.58±0.04	6.51±0.07	6.44±0.04	$6.27 \pm 0.02^*$
14	6.28±0.01	6.22±0.01	6.21±0.04	6.22±0.01	6.28±0.07	6.21±0.03	$5.95 \pm 0.02^*$
28	6.21±0.05	6.20±0.02	6.22±0.03	6.18±0.06	6.12±0.04	6.09±0.04*	$5.93 \pm 0.02^*$
42	6.15±0.03	6.10±0.04	6.12±0.07	613±0.05	6.16±0.07	6.09±0.02	5.94±0.08*

Results are expressed as the mean \pm the standard deviation (n=3). Statistical significance versus control group; *p < 0.05.

Fig. 4 Effects of adding humic acid on nickel fractionation in the soil

196 compounds) that are produced by earthworms (through table 197 metabolic activities) could have decreased the control soil $pa0^4$ 198 Toxicity benchmarks were found to increase in soils 199 contaminated with pesticides and with relatively low pH values 200 in a previous study,⁴¹ and it was concluded that this was caused 201 by chemical hydrolysis and degradation processes. It has been 202 found that the EC₅₀ values and bioavailabilities of heavy

metals are significantly different (P<0.05) in soils with different pH values. 42,43

3.5 Effects of HA on Ni fractionation

The fractionation of Ni is strongly linked to the mobility and bioavailability of Ni. As is shown in Fig. 4a, the amounts of Ni in the different soil fractions decreased in the order acid-

3

4

5

6

7

8

9

35

36

37

38

39

41

47

48

49

50

51

55

60

ARTICLE

203 extractable Ni > reducible Ni > residual Ni > oxidizable Ni 204 after the pre-incubation period. The Ni fractions in the TNi 205 samples were similar to the Ni fractions in the THA-0 samples, 206 showing that deltamethrin did not affect Ni fractionation in the 207 soil. The oxidizable Ni fraction increased in size and the 208 residual Ni fraction decreased in size significantly (P<0.05) 209 when HA was added. For example, on day 42, the oxidizable Ni 210 fractions in the samples with HA contents of 0% and 3% were 10 10.17 and 21.74 mg kg⁻¹, respectively, and the residual Ni 211 11 fractions were 23.21 and 9.58 mg kg⁻¹, respectively. The 212 12 213 electronic structure of Ni and the total acidity, COOH content, 13 and phenolic OH group content²³ are generally the main factors 214 14 215 responsible for the binding of Ni to HA. These factors explain 15 216 why the oxidizable Ni fraction increased in size as the HA 16 content increased. The stability constants of metal complexes 217 17 218 are lower at acid pH values than at neutral and alkaline pH 18 219 values.⁴⁴ Adding HA caused the soil pH to decrease, as is shown in Table 1, and this slightly increased the size of 256 19 220 acid-extractable fraction over a short period and decreased the 20 221 size of the residual Ni fraction. The acid-extractable 288 21 222 fractions in the THA-0 and THA-3 samples were 39.72 250 22 223 41.65 mg kg⁻¹, respectively, on day 28, and the pH values were 23 224 261 225 6.18 and 5.93, respectively. 24

262 25 226 In this study, Ni was found to be more toxic than 26 deltamethrin to earthworms. Adding HA increased the size 93 227 27 the oxidizable Ni fraction, as is shown in Fig. 4. It has been 228 28 229 shown that the ingestion of metals attached to Fe and the 29 230 oxides is an important factor in determining the interfactor 30 231 concentrations of metals in earthworms.⁴⁵ HA has been for to be poorly bioavailabile³⁴ and might made the Ni combi**268** 31 232 32 233 with Has to be hardly absorbed by earthworms, meaning 269 234 adding HA can decrease the toxicity of Ni to earthworms. 33 270

34 235 3.6 Effects of HA on the degradation of deltamethrin

72 The deltamethrin content decreased with time in all of the $\underline{H}\dot{4}_{3}$ 236 treated soils. For example, the deltamethrin concentration 237 decreased from 0.95 mg kg⁻¹ on day 0 to 0.32 mg kg⁻¹ on $\frac{4}{495}$ 238 42 in the TDel samples, as is shown in Fig. 5. The deltamethring 239 degradation rates were similar to rates that were found $i\overline{\frac{1}{277}}$ 240 40 previous study.46 The half-life of deltamethrin in soil wij 241 depend on the soil type and the availability of oxygen. \overline{HA} 242 42 could decrease the rate at which deltamethrin is degraded 243 43 Adding HA caused the deltamethrin degradation rate 281 244 44 245 decrease slightly in our tests. The deltamethrin concentrations 45 246 in the THA-0, THA-0.5, THA-1, and THA-3 samples on day 42 46 were 0.34±0.06, 0.51±0.01, 0.51±0.08, and 0.56±0.04 mg kgg¹2 247 respectively. Deltamethrin may have been degraded less 248 249 quickly in the presence than in the absence of HA becau deltamethrin is stable at acid pH values but is more easily 250 degraded at higher pH values.⁴⁷ As mentioned above, the soil 251 pH decreased as the HA dose increased. It has previously been 252 253 found that deltamethrin is more easily biodegraded at neutral 52 288 254 and alkaline pH values than at acid pH values.48 53 289 54

255 Conclusions

Fig. 5 Effects of the presence of humic acid on the degradation of deltamethrin in soil. 0%HA+Del = TDel, 0%HA+Ni = TNi, 0%HA+Del+Ni = THA-0, 0.5%HA+Del+Ni = THA-0.5, 1%HA+Del+Ni = THA-1, and 3%HA+Del+Ni = THA-3. The means are shown, and the bars show the standard deviations (n=3). Values significantly different from the controls are indicated with asterisks, * = P<0.05, ** = P<0.01, and *** = P<0 001

Both Ni and deltamethrin were found to induce oxidative stress in earthworms, leading to damage to lipid membranes, proteins, and DNA.

Ni was found to be more toxic to earthworms and to cause more DNA damage than was deltamethrin. DNA damage was found to be a more sensitive indicator of Ni and deltamethrin exposure than were lipid membrane damage and protein damage. HA was found to prevent some of the toxic effects, including DNA damage, caused by Ni and deltamethrin exposure. Lipid membrane damage was prevented most effectively at a HA content of 0.5% or 1%, but DNA damage was prevented most effectively at a HA content of 3%. However, HA negatively affected the lipid membranes in the earthworms at a HA content of 3%. The degrees of protein damage prevented at the different HA contents that were tested were not significantly different. The oxidizable Ni fraction increased as more HA was added, and the residual Ni fraction decreased as more HA was added. The deltamethrin degradation rate decreased as the HA content increased.

Acknowledgements

We thank three anonymous reviewers for their comments, which helped us to improve this manuscript. We thank Yanyan Zeng of Zhejiang Gongshang University for guidance on feeding the earthworms. This work was supported by the National Natural Science Foundation of China (GRANT NO. 41403080), the Natural Science Foundation of Zhejiang Province (GRANT NO. LQ14B07001) and the Science and Technology Planning Project of the Science and Technology Department in Zhejiang Province (2015R408027).

290

291

322

323

Impacts Accepted Manuscrip

õ

Processes

Science:

Environmental

Environmental Science Process & Impacts

256 References

1 2

3

4

5

6

7

8

- **257** 1 I. O. Akinyele and O. S. Shokunbi, *Food Chem.*, 2015, **324 258** 702–708.
- 259 2 Y. F. Jiang, X. T. Wang, Y. Jia, F. Wang, M. H. Wu, G₃₃₇
 260 Sheng and J. M. Fu, *J. Hazard. Mater.*, 2009, 170(2), 9328
 261 997.
- 262 3 Environmental Protection Department and Ministry of Land
 263 and Resources, Report on the national general survey of soil
 264 contamination, National Land & Resources Information
 265 2014, 8, 26-29. (In Chinese)
- 266
 4
 K. C. Cheung, H. M. Leung and M. H. Wong, Arch. Environ

 267
 Con. Tox., 2008, 54(4), 705-715.
 334
- 268
 5
 S.
 Wang,
 Z.
 Nan,
 X.
 Liu,
 Y.
 Li,
 S.
 Qin
 and
 335
 336
 336
 336
 336
 336
 336
 336
 336
 336
 336
 336
 336
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
 337
- 270 6 S. P. Bradbury, J. R. Coats, Toxicokinetics 334
 271 toxicodynamics of pyrethroid insecticides in fish, *Environ*272 Toxicol. Chem., 1989, 8(5), 373-380.
- 273 7 M. D. Ortiz-Pérez, A. Torres-Dosal, L. E. Batres, O.340
 274 López-Guzmán, M. Grimaldo, C. Carranza, I. N. Pérez
 275 Maldonado, F. Martínez, J. Pérez-Urizar and F. Díaz-Barrigaz
 276 Environ. Health Hersp., 2005, 113(6), 782.
- 277 8 Y. J. Wang, *Environ. Monit. in China.*, 2011, 27(1), 35345 278 (In Chinese)
- 279
 9
 G. W. Zamponi, E. Bourinet and T. P. Snutch, J. Membrane 280
 346 Biol., 1996, 151(1), 77-90.
- 280 *Biol.*, 1990, 131(1), 77-90. 348 281 10 W. Bal and K. S. Kasprzak, *Toxicol. Lett.*, 2002, 127(1), 349 282 62. 350
 - 283
 11 S. Kawanishi, S. Inoue, S. Oikawa, N. Yamashita, 351

 284
 Toyokuni, M. Kawanishi and K. Nishino, Free Radical Biog

 285
 Med., 2001, 31(1), 108-116.
 - 285 Med., 2001, 31(1), 108-110.
 286 12 H. Vais, M. S. Williamson, A. L. Devonshire and P. N354
 287 Usherwood, Pest Manag. Sci., 2001, 57(10), 877-888.
 - 287 Usherwood, *Fest Manag. sci.*, 2001, 57(10), 877-886. 255
 288 13 M. Velki and B. K. Hackenberger, *Chemosphere*, 2015
 289 90(3), 1216-1226. 356
- 290 14 C. A. Edwards and P. J. Bohlen, Chapman & Hall, Long 7 291 1996.
- 292 15 D. J. Spurgeon, J. M. Weeks and C.A. Van Gestel,
 293 *Pedobiologia*, 2003, 47(5), 588-606.
- 294 16 D. Xu, C. Li, Y. Wen and W. Liu, *Environ. Pollut*, 2013, 174, 121-127.
- **296** 17 M. Li, Z. Liu, Y. Xu, Y. Cui, D. Li and Z. **297** Kong, *Chemosphere*, 2009, **74(5)**, 621-625.
- 298 18 S. Lynn, F. H. Yew, K. S. Chen and K. Y. Jan, *Environ. Mol. Mutagen.*, 1997, 29(2), 208-216.
- 300 19 B. A. Freeman and J. D. Crapo, J. Biol. Chem., 1981,
 301 256(21), 10986-10992.
- 302 20 I. Dalle-Donne, R. Rossi, D. Giustarini and A. Milzani, R.
 303 Colombo, *Clin. Chim. Acta.*, 2003, 329(1), 23-38.
- 304
 21
 14 Y. Song, L. S. Zhu, J. Wang, J. H. Wang, W. Liu and H.

 305
 Xie, Soil *Biol. Biochem.*, 2009, **41(5)**, 905-909.
- 306 22 N. Meems, C. E. W. Steinberg and C. Wiegand, *Sci. Total* 307 *Environ.*, 2004, 319(1), 123-136.
- 308 23 D. Hernández, C. Plaza and N. Senesi, *Environ. Pollut.*, 2006,
 309 143(2), 212-220.
 - **310** 24 R. W. Winner, Aquat. Toxicol., 1984, **5**(**3**), 267-274.
 - 311 25 D. Lin, Q. Zhou, Y. Xu, C. Chen and Y. Li, *Environ.* 312 *Pollut.*, 2012, 171, 46-51.
 - 313 26 H. Ohkawa, N. Ohishi and K. Yagi, Anal. Biochem., 1979,
 314 95(2), 351-358.
 - 315 27 I. Dalle-Donne, R. Rossi, D. Giustarini, A. Milzani and R.
 316 Colombo, *Clini. Chim. Acta.*, 2003, 329(1), 23-38.
 - 317 28 L. Dong, J. Gao, X. Xie and Q. Zhou, *Chemosphere*, 2012,
 318 89(1), 44-51.
 - 319 29 J. You, D. P. Weston and M. J. Lydy, Arch. Environ. Con.
 320 Tox., 2004, 47(2), 141-147.

- 30 K. F. Mossop and C. M. Davidson, *Anal. Chim. Acta.*, 2003, **478(1)**, 111-118.
- 31 J. M. Weeks and C. Svendsen, Environ. Toxicol. Chem., 1996, 15(10), 1801-1805.
- 32 M. M. H. C. M. Valko, H. Morris and M. T. D. Cronin, *Curr. Med. Chem.*, 2005, **12**(10),1161-1208.
- 33 M. Velki and B. K. Hackenberger, *Chemosphere*, 2013, **90(3)**, 1216-1226.
- 34 D. Vaughan and B. G. Ord, *Plant Soil*, 1982, **66(1)**, 113-116. 35 C. Y. Chen, Y. F. Wang, Y. H. Lin and S. F. Yen, *Arch.*
- *Toxicol.*, 2003, **77(3)**, 123-130.
- 36 S. Qi and G. J. Den Hartog, *Environ. Toxic. Pharm.* 2008, **26(1)**, 96-101.
- 37 J. W. Eaton and M. Qian, Free Radical Bio. Med., 2002, 32(9), 833-840.
- 38 G. Frenzilli, M. Nigro, V. Scarcelli, S. Gorbi and F. Regoli, *Aquat. Toxicol.*, 2001, **53**(1), 19-32.
- 39 S. A. Reinecke and A. J. Reinecke, Arch. Environ. Con. Tox., 2004, 46(2), 208-215.
- 40 P. Lavelle, P. Rangel and J. Kanyonyo, Proc. 8th iNTEL colloq Soil Zoology, Belgium, 1983, 405-410.
- 41 S. Chelinho, X. Domene, P. Campana, P. Andrés, J. Römbke and J. P. Sousa, *J. Soil Sediment*, 2014, **14(3)**, 584-599.
- 42 L. R. Heggelund, M. Diez-Ortiz, S. Lofts, E. Lahive, K. Jurkschat, J. Wojnarowicz and C. Svendsen, *Nanotoxicology*, 2014, 8(5), 559-572.
- 43 W. Luo, R. A. Verweij and C. A. M. Van Gestel, Soil Biol. Biochem., 2014, 76, 235-241.
- 44 R. Clemente and M. P. Bernal, *Chemosphere*, 2006, **64(8)**, 1264-1273.
- 45 P. H. F. Hobbelen, J. E. Koolhaas and C. A. M. Van Gestel, *Environ. pollut.* 2006, **144(2)**, 639-646.
- 46 M. Cycoń and A. Żmijowska, Int. J. Environ. Sci. Te., 2014, 11(5), 1305-1316.
- 47 D. A. Laskowski, Springer, New York, 2002, 49-170.
- 48 S. Chen, Q. Hu, M. Hu, J. Luo, Q. Weng and K. Lai, *Bioresource technol.*, 2011, , 8110-8116.