
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 

Identification of the Inhibitory Mechanism of FDA Approved Selective Serotonin 

Reuptake Inhibitors: Insight from a Molecular Dynamics Simulation Study 

Weiwei Xue1, Panpan Wang1, Bo Li1, Yinghong Li1, Xiaofei Xu1, Fengyuan Yang1, 

Xiaojun Yao2, Yuzong Chen3, Feng Xu4*, Feng Zhu1* 

1 Innovative Drug Research and Bioinformatics Group, Innovative Drug Research Centre and College 

of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China 
2 State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou 

University, Lanzhou 730000, China 
3 Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore 

117543, Singapore 
4 College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 

Tianjin 300071, China 

* Corresponding authors: Feng Zhu (zhufeng@cqu.edu.cn) and Feng Xu (xufeng@nankai.edu.cn) 

  

Page 1 of 28 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



2 

ABSTRACT 

Antidepressants selectively inhibiting serotonin reuptake (SSRIs) represent a highly-effective 

drug class, and novel therapeutic strategies were proposed to improve SSRIs' drug efficacy. 

The knowledge of the inhibitory mechanism of FDA approved SSRIs could provide great 

insights and act as important starting points to discover privileged drug scaffold with 

improved efficacy. However, the structure of human serotonin transporter (hSERT) has not 

yet been determined and the inhibitory mechanism underlying SSRIs is still need to be further 

explored. In this study, the inhibitory mechanism of 4 approved SSRIs treating major 

depression (fluoxetine, sertraline, paroxetine and escitalopram) was identified by integrating 

multiple computational methods. Firstly, a recently published template with high sequence 

identity was adopted for the first time to generate hSERT's homology model. Then, docking 

poses of 4 SSRIs were used as initial conformation for molecular dynamics (MD) simulation 

followed by MM/GBSA binding free energy calculation and per-residue free energies 

decomposition. Finally, a binding mode shared by 4 studied SSRIs was identified by 

hierarchically clustering per-residue free energies. The identified binding mode was 

composed of collective interactions between 3 chemical groups in SSRIs and 11 hot spot 

residues in hSERT. 6 out of these 11 were validated by previous mutagenesis studies or 

pharmacophore models, and the remaining 5 (Ala169, Ala173, Thr439, Gly442 and Leu443) 

found in this work have not yet been identified as common determinants of all 4 studied 

SSRIs in binding hSERT. Moreover, changes in SSRIs' binding induced by mutation on hot 

spot residues were further explored, and 3 mechanisms underlining their drug sensitivity were 

summarized. In summary, the identified binding mode provided important insights into the 

inhibitory mechanism of approved SSRIs treating major depression, which could be further 

utilized as framework for assessing and discovering novel lead scaffold. 

KEYWORDS: 

Major depression; Binding mode; Selective serotonin reuptake inhibitor; Molecular 

dynamics; Binding free energy 
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INTRODUCTION 

Antidepressants inhibiting serotonin reuptake represent a highly-effective class of 

therapeutics treating major depression and generalized anxiety disorder1, and are the first-line 

and the most prescribed class of antidepressant in the United States2. Typical antidepressants 

of this class include selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine 

reuptake inhibitors (SNRIs)3 and others4-7. So far, this class has resulted in >10 marketed 

antidepressants approved by U. S. Food and Drug Administration (Figure 1) and several 

candidates in clinical trial. As the primary target of SSRIs8, 9, human serotonin transporter 

(hSERT) plays a key role in regulating the duration and intensity of serotonin signal in the 

synaptic cleft10, and is thus closely related to the pathology of mood and anxiety disorders11. 

In order to deal with the delayed onset of action12 and the partial- or non-response13 of 

SSRI treating depression, novel therapeutic strategies were frequently proposed as 

"improvement" to the drug efficacy14, 15. These strategies include designing dual- and 

triple-acting antidepressants15, multi-targeting hSERT and acid sphingomyelinase16, 

enhancing SSRIs' efficacy by co-targeting low-affinity high-capacity hSERT17, and others18, 

19. The binding mode of certain SSRI to hSERT was reported to be crucial for revealing its 

specific inhibitory mechanism and drug efficacy20-22. A detailed understanding of the binding 

mode shared by SSRIs of clinical importance, especially FDA approved 4 SSRIs (Figure 1), 

could provide more insights into the identification of privileged drug-like scaffold with 

improved drug efficacy21, 23. 

The determination of the crystal structure of hSERT's bacterial homolog LeuT24, 25 

provided a template to elucidate binding mode of SSRIs-hSERT via computational methods26 

in the past decade. The most frequently used methods include induced fit docking (IFD)20-22, 

27, 28, pharmacophore model29-31 and molecular dynamics (MD)32. IFD focuses on considering 

the flexibility of hSERT's amino acid side chains lining the binding cavity27, while 

pharmacophore model is primarily designed for screening new SSRIs31. For a better mobile 

recognition mechanism of SSRIs-hSERT, MD simulation was used to reveal the binding of 

substrates and drugs to hSERT's S1 site26, 33-35, a reported primary binding site of SSRIs' 

competitive inhibition36-38. However, escitalopram is so far the only approved SSRI, the 

binding mode of which to S1 site was analyzed by MD simulation32, 39. Currently, no 

comprehensive study on binding modes of SSRIs-hSERT has been carried out. Thus, a 
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detailed understanding of the inhibitory mechanism underlining SSRIs' pharmacological 

activity and target recognition is in urgent need20, 36. 

In this study, we carried out an inhibitory mechanism identification of 4 FDA approved 

SSRIs treating major depression (fluoxetine, sertraline, paroxetine and escitalopram) by 

integrating multiple computational methods. Firstly, a newly reported template of drosophila 

dopamine transporter (dDAT)36 with much higher sequence identity (53%) than LeuT (23%) 

was used for the first time to generate the homology model of hSERT. Then, SSRIs were 

docked into hSERT and used as initial conformation for MD simulation. Finally, a binding 

mode (at atomic level) shared by 4 studied SSRIs was identified by clustering per-residue 

binding free energies. As a validation, drug sensitive mutations inducing >10-fold shifts on 

inhibitory potency (Ki)40 were further explored. The binding mode identified in this study 

provided important insights into the inhibitory mechanism of approved SSRIs, which could 

be further utilized as a useful framework for assessing and discovering novel lead scaffold23. 

METHODS 

Homology Modeling 

As illustrated in SI, Figure S1, a recently determined 3.0Å X-ray crystal structure (PDB 

code 4M4836) of dDAT (from Glu26 to Asp599) showed a much higher sequence identity 

(53%) to hSERT than LeuT24 (23%). By using it as template, the automated mode in 

SWISS-MODEL41 was applied to construct homology model of hSERT. The constructed 

model was from Glu78 to Pro617, which covers all 12 transmembrane regions and 

corresponding intervening loops. Then, Ramachandran plot in PROCHECK42 was applied to 

validate the constructed model. Finally, two functional Na� in LeuBAT37 (a LeuT variant 

engineered to harbor hSERT-like pharmacology by mutating key residues around the primary 

binding pocket) were manually fitted into their corresponding binding sites in hSERT via 

PyMOL's43 structure superimposition. 

Molecular Docking 

To get their initial poses, 4 SSRIs were docked into the modeled hSERT using Glide44 

with standard precision. Residues identified as key determinants of SSRIs-hSERT binding21, 

40 were used to define the docking grid box. Docking poses of fluoxetine, sertraline and 

paroxetine with the most similar conformations as those in LeuBAT37, and docking pose of 

escitalopram with the most similar orientation with those of fluoxetine, sertraline and 
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paroxetine were selected as their initial binding poses for MD simulation. Moreover, to assess 

the validity of the docking approach in the studied model, a cross-docking strategy was 

adopted by docking SSRI into the structure of LeuBAT obtained with other SSRI bound (e.g. 

docking fluoxetine into the structure of LeuBAT obtained with sertraline bound). The 

co-crystallized poses of fluoxetine, sertraline and paroxetine (PDB codes 4MM8, 4MM5 and 

4MM4) in LeuBAT37 were superimposed to their corresponding cross-docking poses. 

Although, no co-crystallized structure of escitalopram in LeuBAT has been reported, its 

resulting docking pose is oriented in a very similar way as fluoxetine, sertraline and 

paroxetine in LeuBAT, which forms an ionic interaction between the ammonium group and 

residue Asp98. The detailed information can be found in SI, Methods. 

Protein-Ligand/Membrane System Setup 

SSRIs-hSERT complexes obtained by docking were embedded into the explicit POPC 

lipid bilayer using the Membrane Builder in CHARMM-GUI45-47. TIP3P water48 of 20Å 

thickness was then placed above and below the constructed bilayer. Environmental salt 

concentration was kept at 0.15M by adding Na� and Cl�. The overall system contained a 

total of ~96,000 atoms per periodic cell, and the box size was set as 83Å × 83Å × 127Å. 

The detailed information can be found in SI, Methods. 

MD Simulation 

MD simulation was performed within AMBER1449 using GPU-accelerated PMEMD. 

AMBER force field ff14SB
50 and Lipid14

51 were used for protein and lipids, respectively. The 

ions parameters for TIP3P water were collected from Joung & Cheatham52. The force field 

parameters for fluoxetine, sertraline, escitalopram, paroxetine and cholesterol were described 

by the General AMBER Force Field53 and the charges were assigned using Restrained 

Electrostatic Potential partial charges54 with Antechamber55. Geometry optimization and the 

electrostatic potential calculations were performed with Gaussian09 at the HF/6-31G* level56. 

For each simulation, a sophisticated protocol including minimization, heating and 

equilibration was employed. Then, 150ns MD simulation was conducted in NPT ensemble 

under a temperature of 310K and a pressure of 1 atm using a periodic boundary condition. 

Meanwhile, the direct space interaction was calculated by considering the long range 

electrostatic interaction (cutoff = 10.0Å) using particle-mesh Ewald method57. All bonds 

involving hydrogen were constrained by SHAKE algorithm58 allowing an integration time 

step of 2fs. The detailed information can be found in SI, Methods. 

Page 5 of 28 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



6 

Binding Free Energy Calculation 

Binding free energy (∆G��/����) of SSRIs to hSERT excluding entropic contribution 

was calculated using the single-trajectory based MM/GBSA method59, 60. A total of 500 

snapshots were taken from the last 50 ns MD simulation. For each snapshot, the 

SSRIs-hSERT binding free energy was calculated by: 

∆G��/���� = ∆E��� + ∆E��� + ∆G��� + ∆G � ���               (1) 

In Eq. (1), ∆E��� and ∆E��� are the van der Waals and the electrostatic components in 

the gas phase, and ∆G��� and ∆G � ��� are the polar and the non-polar solvent interaction 

energies. ∆G � ���  was calculated by ∆G � ��� = 0. 0072 × ∆SASA  by the linear 

combination of pairwise overlaps method (LCPO)61, where SASA is the solvent accessible 

area. The detailed information can be found in SI, Methods. 

Per-residue Free Energy Decomposition Analysis 

To quantitatively evaluate the contribution to SSRIs binding, the total binding free 

energy was decomposed on a per-residue basis. The corresponding binding free energy 

(∆G��/����
��%�%�&'�(�) excluding entropic contribution was given by: 

∆G��/����
��%�%�&'�(� = ∆E���

��%�%�&'�(� + ∆E���
��%�%�&'�(� + ∆G���

��%�%�&'�(� + ∆G � ���
��%�%�&'�(�     (2) 

The definition of quantities in Eq. (2) is similar to that in Eq. (1), except for the 

non-polar solvent interaction energy (∆G � ���
��%�%�&'�(� ) which is calculated by recursive 

approximation of a sphere around an atom, starting from an icosahedron (ICOSA)49. The 

detailed information can be found in SI, Methods. 

Hierarchical Clustering with Ward Algorithm 

Energy contributions of certain residues to 4 studied SSRIs calculated in the previous 

section were used to generate a 4 dimensional vector. Then, the per-residue energy 

contribution vector-based hierarchical clustering tree of 245 residues with contributions to at 

least one studied SSRI in hSERT's binding (contribution ≠ 0	kcal/mol) was generated 

using the R statistic analysis software62 with the similarity levels among vectors measured by 

the Manhattan distance: 

Distance8a, b: = ∑ |a' − b'|'                       (3) 

where i denotes each dimension of per-residue energies a and b. Cluster algorithm 

used here is the Ward's minimum variance method63, which is designed to minimize the total 
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within-cluster variance. In this study, a Ward's minimum variance module in R package was 

used62. The hierarchical tree graph was generated using EMBL's online tree generator 

(iTOL64 version 3.0). Per-residue binding free energy contributions favoring SSRI's binding 

were displayed in red, with the highest contribution set as exact red and lower contributions 

gradually fading towards white (no contribution). Meanwhile, per-residue energy 

contributions hampering SSRI's binding were shown in blue, with the highest one set as exact 

blue and lower ones gradually fading towards white. 

RESULTS AND DISCUSSION 

Homology Modeling and SSRIs-hSERT Complexes Construction 

As shown in SI, Figure S2, superimposition of the modeled hSERT and the X-ray 

crystal structure of dDAT36 showed high degree of homology. The structure of modeled 

hSERT consists of 12 transmembrane α-helices, and the corresponding residues within these 

helices agree well with the reported experimental results65. The stereo chemical quality and 

accuracy of the predicted model was evaluated by Ramachandran plot in PROCHECK42, and 

99.5% of the modeled residues were located in the "allowed region" (SI, Figure S3), 

indicating a reliable homology model. 

Based on the modeled hSERT, molecular docking was carried out to determine initial 

poses of SSRIs in hSERT. Results (SI, Figure S4) show that fluoxetine, sertraline, 

escitalopram and paroxetine fit in the binding site primarily surrounded by TM1, TM3, TM6 

and TM8. To assess the validity of the docking approach in the studied model, a 

cross-docking strategy was adopted by docking SSRI into the structure of LeuBAT obtained 

with other SSRI bound (for example, docking fluoxetine into the structure of LeuBAT 

obtained with sertraline bound). The co-crystallized poses of fluoxetine, sertraline and 

paroxetine (PDB codes 4MM8, 4MM5 and 4MM4) in LeuBAT37 were superimposed to their 

corresponding cross-docking poses. Both poses kept consistence with each other (SI, Figure 

S5), which guaranteed correct initial poses generated in this work. So far, no co-crystallized 

structure of escitalopram in LeuBAT has been reported, but its resulting docking pose is 

oriented in a very similar way as fluoxetine, sertraline and paroxetine in LeuBAT, which 

forms an ionic interaction between the ammonium group and residue Asp98. 

Assessing the Binding Mode of SSRIs-hSERT 
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Simulation Stability Analysis. Initial SSRIs-hSERT complex generated by docking was 

assessed by 150ns MD simulation to reach equilibration state, which could be monitored by 

the structural root mean square deviation (RMSD) of both protein backbone atoms and ligand 

heavy atoms as a function of time. According to RMSD analysis (Figure 2), each simulation 

of hSERT in complex with 4 studied SSRIs reached equilibration around 100ns, and a time 

scale of 150ns was therefore set in this work to guarantee a stable state for the SSRIs-hSERT 

complex. 

Binding Free Energy Analysis. Binding free energies of hSERT in complex with 

fluoxetine, sertraline, escitalopram and paroxetine were calculated, and the results 

(∆G��/����) were -41.52, -44.32, -49.21 and -51.14 kcal/mol respectively. Meanwhile, 

experimental binding free energies (∆G�>�) were also estimated based on reported Ki values40 

using ∆G�>� = −RTln8K': . As shown in Table 1, ∆G��/����  in this work were 

overestimated comparing to those of experiment40. For ligands with similar structures and 

binding modes, entropy contribution could be omitted if one is only interested in the relative 

order of binding affinities66, so differences of energies calculated in this study (∆∆G��/����) 

and estimated based on experiments (∆∆G�>� ) among SSRIs (Table 1) could help to 

understand whether the overestimation came from the exclusion of entropy. As illustrated in 

SI, Figure S6, ∆∆G��/���� correlates very well with ∆∆G�>� (RB = 0.93). The ascending 

trend of energy difference (∆∆G�>� ) from experiment40 was reproduced very well by 

∆∆G��/���� in this work, though their values were still estimated higher than experiment40. 

The higher energy calculated in this work was in accordance with the reported over 

estimation of binding affinity by the MM/GBSA methods67-69. Calculated contributions of 

each energy term in Eq. (1) were listed in SI, Table S1. As shown by numbers in bold, the 

binding of SSRI to hSERT was primarily driven by hydrophobic (∆E���) and coulomb 

interaction energies (∆E���), but hampered by the polar solvent energy (∆G���). 

Analyzing the Binding Mode of SSRIs-hSERT 

In this study, the binding mode of each SSRIs-hSERT was obtained by molecular 

docking and further assessed by MD simulation. As illustrated in Figure S7, slight 

conformation shifts between 4 SSRIs' docking poses and their representative snapshots in the 

equilibrated MD trajectories were observed, but the key interactions such as the salt bridge 

and the hydrogen bond between the ligands and Asp98 of hSERT were preserved. 
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Representative snapshots of SSRIs-hSERT complexes from equilibrated MD trajectories 

are also shown in SI, Figure S8, illustrating the orientations of each SSRI and its interacting 

residues. However, to fully understand the binding mode of SSRIs-hSERT, it is essential to 

quantitatively distinguish contributions of each amino acid to the drug binding. Thus, plots 

showing binding free energy contributions of each amino acid were generated by a 

per-residue free energy decomposition analysis (Figure 3). To the best of our knowledge, 

Figure 3 is the first reported SSRIs' binding free energy contributions at a per-residue basis. 

As illustrated in Figure 3, there were 11, 12, 14 and 14 residues identified as high 

contribution ones (with the absolute energy contribution ≥ 0. 5	kcal/mol ) for binding 

fluoxetine, sertraline, escitalopram and paroxetine respectively. On one hand, energy 

contributions of different residues to the same SSRI vary greatly (for example, from 

−0. 57	kcal/mol for Ala173 to −3. 68	kcal/mol for Tyr95 in fluoxetine's binding), and 

energy contributions of the same residue to different SSRIs also differ significantly (the polar 

residue Asp98's contributions ranged from −1. 83	kcal/mol  for escitalopram to 

−2. 75	kcal/mol for fluoxetine, as an example). On the other hand, Figure 3 also infers a 

certain level of similarity among 4 studied SSRIs, which inspired us to conduct a deeper 

exploration of binding mode shared by 4 SSRIs. 

Identifying the Binding Mode Shared by Approved SSRIs 

Binding mode shared by approved SSRIs to hSERT could provide a useful framework 

from which novel lead scaffolds can be assessed and discovered23. To identify the binding 

mode, the hierarchical clustering with ward algorithm63 was applied to find hot spot residues 

from those per-residue binding free energies generated in the previous section. In particular, 

there were 541 residues with available binding free energy contribution to 4 studied SSRIs, 

296 of which have no contribution (= 0	kcal/mol) to the binding of any studied SSRIs. Then, 

energy contributions of the remaining 245 residues were used for clustering analysis. As 

illustrated by the hierarchical tree in Figure 4, 4 distinct residue groups (A, B, C and D) were 

identified. Binding free energy contributions favoring SSRI's binding were displayed in red, 

with the highest contribution (−3.68	kcal/mol) set as exact red and lower contributions 

gradually fading towards white (contribution = 0	kcal/mol ). Meanwhile, binding free 

energy contributions hampering SSRI's binding were shown in blue, with the highest one 

(0.22	kcal/mol) set as exact blue and lower ones gradually fading towards white. It is 

Page 9 of 28 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



10 

necessary to clarify that the absolute value of the highest contribution favoring SSRI's 

binding (exact red) is 16 times stronger than that hampering the binding (exact blue). 

It is clear to see that binding free energy contributions of residues in group A (Tyr95, 

Asp98, Ala169, Ile172, Ala173, Tyr176, Phe341, Ser438, Thr439, Gly442 and Leu443) are 

consistently higher across 4 studied SSRIs in favoring the binding than those in group B, C 

and D. For each SSRI, the sum of energy contributions of residues in group A constitutes the 

primary portion of the total energy (77.04% for flouxetine, 74.01% for sertraline, 60.19% for 

escitalopram and 71.73% for paroxetine). Therefore, these 11 residues in hSERT were 

identified as hot spots for the binding of 4 SSRIs. Moreover, energy contributions of residues 

in subgroup A1 (Tyr95, Asp98, Ile172 and Tyr176) are more significant than those in 

subgroup A2 (Ala169, Ala173, Phe341, Ser438, Thr439, Gly442 and Leu443), and the sum 

of energy contributions of residues in subgroup A1 consists of 48.55%, 37.68%, 35.34% and 

40.87% of total energies for flouxetine, sertraline, escitalopram and paroxetine, respectively. 

Thus, residues in subgroup A1 and A2 could be classified as hot spots with "strong" and 

"relatively strong" contributions. 

Moreover, the root mean square fluctuation (RMSF) versus the protein residue numbers 

of hSERT was calculated and illustrated in SI, Figure S9. It is observed that the hot spot 

residues of hSERT (Tyr95, Asp98, Ala169, Ile172, Ala173, Tyr176, Phe341, Ser438, Thr439, 

Gly442 and Leu443) show relatively rigid behaviors for the studied 4 complexes. The 

relatively low RMSF values of those residues suggest that SSRIs binding could stabilize the 

key residues located at the drug binding site. This is in accordance with the observed 

stabilization effect in previously study70. 

Conformational features of how SSRIs accommodate into 11 hot spot residues are 

shown in Figure 5. A pocket was defined by hot spot residues with a slight conformational 

shift, and all SSRIs fitted the pocket in a resembled orientation. Therefore, the binding mode 

of SSRIs-hSERT recognition was generalized and schematically represented in Figure 6. As 

shown, the binding mode was defined by collective hydrophilic and hydrophobic interactions 

between 3 chemical groups (R1, R2 and R3) and 11 hot spot residues (Tyr95, Asp98, Ala169, 

Ile172, Ala173, Tyr176, Phe341, Ser438, Thr439, Gly442 and Leu443). As shown in Figure 

5 and Figure 6, hot spot residues with strong and relatively strong contributions were 

illustrated in black and gray color, respectively. Chemical groups in Figure 6 here were 

highlighted in blue and green. In particular, R1 formed salt-bridge and hydrogen bond 

interactions with Asp98; R2 interacted with Ala169, Ile172, Tyr176 and Phe341 via 
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hydrophobic contacts; R3 formed hydrophobic interactions with Tyr95, Ala173, Ser438, 

Thr439, Gly442 and Leu443, and also contacted with Ile172, Tyr176 and Phe341. 

Among those 11 identified hot spot residues, 6 (Tyr95, Asp98, Ile172, Tyr176, Phe341 

and Ser438) were collectively validated by previous mutagenesis studies20-22, 40, 71, 72 as 

sensitive to 4 approved SSRIs. Co-crystallized structures of SSRIs in hSERT's homolog37, 73 

could shade great light on their binding mechanism, but so far no structure of escitalopram in 

hSERT's homolog has been reported. Based on co-crystallized structures of 3 SSRIs 

(fluoxetine, sertraline and paroxetine), 7 residues (Tyr95, Asp98, Ile172, Ala173, Tyr176, 

Phe341 and Gly442) were suggested as primary binding by visualizing interaction distances 

between SSRIs and LeuBAT37. Besides of mutagenesis studies and crystal structures, 

computational methods such as induced fit docking20-22, 27, 28, pharmacophore model29-31 and 

molecular dynamics32 collectively identified 4 residues (Tyr95, Asp98, Ile172 and Tyr176) as 

features for 4 SSRIs' binding21, 22, 31, 71, 72. All primary binding residues found in 

co-crystallized structures and features identified by computational methods are covered by 

those 11 hot spot residues of this study. Besides those 6 residues (Tyr95, Asp98, Ile172, 

Tyr176, Phe341 and Ser438) identified by mutagenesis studies and computational methods, 5 

hot spot residues found in this work have not yet been identified by previous studies as 

common determinants of 4 approved SSRIs in binding hSERT. However, among these 5 hot 

spots, 2 (Ala173 and Gly442) were suggested to interact with fluoxetine, sertraline and 

paroxetine37, 1 (Thr439) was found as sensitive to fluoxetine22 and escitalopram72, and 2 

(Ala169 and Leu443) were only reported to be in close proximity to the cyano group of 

escitalopram21, 72. Thus, Ala169, Ala173, Thr439, Gly442 and Leu443 were identified for the 

first time as common determinants of 4 FDA approved SSRIs treating major depression in 

binding hSERT. 

Besides group A in Figure 4, group B (especially subgroup B1) represents residues with 

significant differences in binding free energy contribution. The sum of energy contributions 

of residues in subgroup B1 (Ala96, Leu99, Gly100, Trp103, Tyr175, Phe335, Ser336, Gly338 

and Asp437) consists of 8.09%, 8.60%, 25.41%, and 10.33% of total energies for fluoxetine, 

sertraline, escitalopram and paroxetine, respectively. Particularly, Phe335 and Leu99 were 

main energy contributors to escitalopram's binding. Take the residue Phe335 as an example, 

its contribution to escitalopram's binding was relatively strong (-1.99 kcal/mol), while its 

contributions to other 3 SSRIs’ binding were much weak with the highest contribution to 

paroxetine (-0.42 kcal/mol). As illustrated in Figure S8C, the strong contribution of Phe335 
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may come from its interaction with escitalopram’s cyano group which is in the close vicinity 

of Phe335. Meanwhile, Gly442 and Leu443 showed stronger interaction with fluoxetine, 

sertraline and paroxetine than escitalopram, and Ala96 showed stronger interaction with 

fluoxetine than other SSRIs. Understanding energy differences at per-residue basis could help 

to interpret drug selectivity, which may eventually aid the development of future selective 

antidepressants. 

Group C represents residues with contributions hampering the binding of 4 SSRIs to 

hSERT. It is necessary to clarify that the absolute value of the highest contribution favoring 

SSRI's binding (exact red) is 16 times stronger than that hampering the binding (exact blue), 

which makes the contribution favoring the binding overwhelming. Moreover, Arg104 and 

Asn368 were identified in Figure 4 as residue favoring (fluoxetine, sertraline and paroxetine) 

or hampering (escitalopram) the binding of SSRIs to hSERT. 

In-silico Analysis of Drug Sensitivity Profile on Hot Spot Residues 

Analyzing Drug Sensitive Mutation via Binding Free Energy. Analysis of the sensitivity 

profiles could provide insight into SSRIs' binding mode21. Sensitivity of certain residues to 

SSRI's binding can be reflected by comparing the difference in energy contributions before 

and after in-silico mutation on the corresponding residue. It is easy to understand that 

mutations on hot spot residues are critical to drug sensitivity. Therefore, this study 

investigated the influence of hot spot residues-mutation on SSRIs' binding. In particular, 12 

single-point mutant complexes were analyzed individually by adding 20ns simulation using 

the assessed wild type model as the starting point (SI, Figure S8). Binding free energies were 

also calculated (SI, Table S1). As a comparison, impacts of hSERT mutations on binding 

affinities of SSRIs from previous experimental study40 were listed in SI, Table S1. A 

significant decrease in Ki from wild type to mutant in experiment40 was reproduced very well 

by ∆G��/����, whereas two exceptions (Phe/Tyr341 and Ser/Thr438) from paroxetine's 

binding were also observed. 

Exploring the Mechanism of Hot Spot Residues Mutation Induced Drug Sensitivity. 

Drug sensitive mutation on hot spot residues led to conformational changes in hSERT's 

binding pocket, and orientation shifts of SSRIs to accommodate into the pocket were 

observed (Figure 7 (A1-C1) and SI, Figure S9). This structural rearrangement further led to 

changes in binding free energy contribution of each amino acid (Figure 7 (A2-C2) and SI, 

Figure S10). By correlating mutations on hot spot residues with changes in binding free 
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energy contribution, 3 mechanisms underlining mutation-induced drug sensitivity were 

summarized. 

In the first mechanism, mutation-induced drug sensitivity comes directly from a 

significant binding free energy contribution loss in mutational residues. Taking the Tyr/Ala95 

of fluoxetine's binding as an example, in spite of an increase (-0.69 kcal/mol) in Ser438, 

binding free energy contribution was dramatically decreased (3.73 kcal/mol) in the 

mutational residue Tyr/Ala95, which resulted in unfavorable binding (Figure 7 A2). The 

detailed structural rearrangements (Figure 7 A1) further clarified that reduction in the side 

chain size from Try to Ala was the main reason of mutation-induced drug sensitivity. 

In the second mechanism, mutation-induced drug sensitivity originates from binding 

free energy contribution loss in residues other than the mutational one. Taking the Ile/Met172 

of fluoxetine's binding as an example, in contrast to unnoticeable energy change in the 

mutational residue Ile/Met172, binding free energy contribution was decreased by 0.87 

kcal/mol in Tyr176 leading to unfavorable binding (Figure 7 B2). As shown in Figure 7 B1, 

a clear increase in the distance between fluoxetine and its interacting residue Tyr176 was 

induced by Ile/Met172 mutation, which resulted in the decrease in Tyr176's binding free 

energy contribution. 

In the third mechanism, mutation-induced drug sensitivity comes from binding free 

energy contribution loss from both mutational and other residues. Taking the Phe/Tyr341 of 

escitalopram's binding as an example, besides a great decrease by 1.14 kcal/mol in the 

mutational residue Phe/Tyr341, binding free energy contribution was also decreased by 0.82 

and 1.05 kcal/mol in Leu99 and Ser438 respectively (Figure 7 C2). Phe/Tyr341 mutation 

induced an clear structural rotation of escitalopram in the binding pocket, and leaded to 

unfavorable interactions between drug and two other residues (Leu99 and Ser438 in Figure 7 

C1), which contributed to the mutation-induced drug sensitivity. 

As shown in Figure 7 and SI, Figure S9 and S10, all residues with significant change in 

binding free energy contribution between the mutant and wild type hSERT were from those 

11 hot spot residues or residues in their close vicinity, which further validates the binding 

mode of SSRIs' binding to hSERT identified in this study. 

CONCLUSION 
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In this study, identification of the inhibitory mechanism from 4 approved SSRIs treating 

major depression was carried out by integrating multiple computational methods. A recently 

reported template dDAT was successfully adopted to generate the homology model of 

hSERT, and the binding mode shared by 4 studied SSRIs was identified by hierarchically 

clustering per-residue binding free energies of 245 residues with contributions to at least one 

studied SSRI in hSERT's binding. The identified binding mode was defined by interactions 

between SSRIs and 11 hot spot residues (Tyr95, Asp98, Ala169, Ile172, Ala173, Tyr176, 

Phe341, Ser438, Thr439, Gly442 and Leu443) in hSERT. 6 out of these 11 hot spot residues 

were validated by previous mutagenesis studies or pharmacophore models. 5 hot spot 

residues (Ala169, Ala173, Thr439, Gly442 and Leu443) found in this work have not yet been 

identified as common determinants of all 4 studied SSRIs in binding hSERT. In the last 

section of this study, changes in SSRIs' binding induced by mutation on hot spot residues 

were further explored, and 3 mechanisms underlining their drug sensitivity were summarized. 

The binding mode identified in this study provided significant insights into the inhibitory 

mechanism of approved SSRIs, which could be utilized as a useful framework for assessing 

and discovering novel lead scaffold. 
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TABLES 

Table 1. Comparison between the calculated and experimental binding free energies among 4 

studied SSRIs to the wild type hSERT (∆G is in kcal/mol and Ki value is in nM) 

Systems Ki
a ∆Gexp

b ∆∆Gexp ∆GMM/GBSA
c ∆∆GMM/GBSA 

Fluoxetine 255 ± 61 -9. 00 0 -41. 52 ± 0. 10 0 

Sertraline 242 ± 33 -9. 03 -0.03 -44. 32 ± 0. 12 -2.80 

Escitalopram 32 ± 1 -10. 23 -1.23 -49. 21 ± 0. 12 -7.69 

Paroxetine 24 ± 6 -10. 40 -1.40 -51. 14 ± 0. 12 -9.62 

a Experimental value from Sørensen's work40. 

b Estimated binding free energy based on Ki values using ∆G�>� = −RTln8K':. 

c Calculated binding free energy in this work. 
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FIGURES 

 

Figure 1. Structures of the SSRI and SNRI antidepressants approved by FDA. 
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Figure 2. Root mean square deviations of protein backbone atoms (A) and ligand heavy atoms 
(B) as a function of time in MD simulations. 
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Figure 3. Per-residue decomposition of binding free energy contributions of 4 SSRI-hSERT 
complexes. 
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Figure 4. Hierarchical clustering tree of 245 residues with contributions to at least one studied 
SSRI in hSERT's binding by their per-residue energy contributions. Per-residue binding free 
energy contributions favoring SSRI's binding were displayed in red, with the highest contribution 
set as exact red and lower contributions gradually fading towards white (no contribution). 
Per-residue energy contributions hampering SSRI's binding were shown in blue, with the highest 
one set as exact blue and lower ones gradually fading towards white. 
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Figure 5. The binding mode of SSRIs (A) fluoxetine, (B) sertraline, (C) escitalopram and (D) 
paroxetine to 11 hot spot residues in hSERT. Residues and SSRIs were shown in stick 
representation, and salt bridges and hydrogen bonds were depicted as blue and red dotted lines, 
respectively. 
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Figure 6. Schematic representation of the binding mode of 4 studied SSRIs to hSERT identified 
in this work. 
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Figure 7. Three mechanisms underlining drug sensitivity induced by mutations on hot spot 
residues. Structural superimposition of (A1) fluoxetine binding to wild type and Tyr/Ala95 
mutant hSERT, (B1) fluoxetine binding to wild type and Ile/Met172 mutant hSERT and (C1) 
escitalopram binding to wild type and Phe/Tyr341 mutant hSERT. Contribution changes in 
SSRI's binding (A2-C2) by mutation on hot spot residues measured by the per-residue binding 
free energy corresponding to A1-C1. Residues affected were shown as a stick representation in 
wild type (light brown) and mutant (lightblue) models. The mutation residues were highlighted 
in red dash line circle and font. 
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A binding mode shared by 4 FDA approved SSRIs treating major depression was identified by 

integrating multiple computational methods. 
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