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Monte Carlo simulations of uniaxial nematic polymer metes performed, based on a discrete worm-like chain model awedb
with soft, anisotropic non-bonded potentials. Differehain lengths are considered, the contour length of the kirtgging an
order of magnitude larger than the persistence length. Faguilibrated melt configurations, density and directortflation

spectra are calculated and compared with analytical piedgavailable in literature. The latter typically coppesd to hydro-
dynamic treatments of correlations and assume that thei@ éhain backfolding along the nematic director. Nevedssg] it is

demonstrated that the analytical theories capture sefeataires of the spectra obtained in the current simulatiwhere moder-
ate backfolding of polymer chains is observed. Based onuaidsdle analytical expressions for density and directasttiation

spectra, material properties, such as Frank elastic ausstxe extracted. Their dependence on polymerisatioredég studied
and found to reproduce theoretically expected trends. ¥amele, evidence is provided that the splay constant iseeinearly
with chain length, when effects of hairpins are negligible.

1 Introduction hydrodynamic treatment of correlations. The “bow-tie” sha
of the density structure factdf3!is one of the representa-

In nematic liquid crystals (LC), the thermodynamic cost of tive theoretical results. At the same time, analytical tie=o
changes in the orientation of the director on the mesoscalgjiffer in certain predictions depending on the underlyiisg a
away from the core of topological defett can be expressed sumptions and approximations. One of the most known exar
through the Frank-Oseen free enetgyThe latter presents a ples is the effect of chain length on the splay elastic consta
volume integral of a free-energy density, corresponding to where both linea® and quadratic dependenéé€>have been
quadratic expansion with respect to the gradient of theettire  predicted. The former stems from an entropic penalty for an
field. For bulk LC this expansion reduces to a sum of threenhomogeneous distribution of chain ends required for ayspl
distortion modes (splay, twist, and bend) of the directddfie deformation, as assumed by Me$@r The alternative result
coupled to an appropriate elastic consfafit is due to de Gennes, assuming that the splay deformation s

Elastic properties of LC are significant for various tech- achieved through density variations, while chain endsame r
nological applications, including opto-electronics pattern  domly distributed*25, Interestingly, for lyotropic LC, taking
formation in colloid$, chemical detectiolf*%, and microflu-  into account the dependence of the osmotic compressibility
idics™2. In polymeric LC, elastic properties are a major fac- on chain length (inversely proportional to leading ordéine
tor affecting texturé®. Examples where the latter is impor- inates? the discrepancy between the results of de Gennes an'
tant include manufacturing high strength materi&fS and  Meyer, i.e., they both yield a linear dependence. For poly
applications in organic electronit$?3 There it has been mer melts (i.e., thermotropic LC), however, the controyers
suggesteéf that thermotropic LC mesophases of conjugatedremains. Notably, other theoretical studies reproducedhe
polymers can facilitate manipulation of their morphology i sult of Meyer?7-2%:31
solid state through appropriate thermal annealing prdsoco

Linking mesogenes into long molecules increases for poly
meric LC the complexity of elastic behaviour. For instance,
changes in orientational order and density variations ave ¢
pled, affecting splay deformation. Several analyticabties
were formulated*~3! predicting fluctuation spectra and asso-
ciated material properties (including Frank constantshiwia

_ There have been very féwexperimental measurements
of elastic constants in thermotropic polymeric 32 Ly-
otropic systems have been investigated to a somewhat larger
exten®, considering effects of concentration and chain length
on elastic properties. For instance, results supportirigezt
dependence of the splay constant on chain length have been
reported?. In the same work evidence was provided that in
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Germany; E-Mail: daoulas@mpip-mainz.mpg.de becomes independent of chain length, as predicted theoreti
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cally?6.30,36-38 lates the theoretical predictions in the “zero-hairpimiili in

In particle-based computer simulations of LC composederms of the molecular model employed in the simulations. In
of small molecules, several approaches have been develop&gc. 4 strength of ordering and chain backfolding are quanti
for a “first principle” determination of elastic constantsr¢  fied. Density and director fluctuation spectra are discussed
responding to a given microscopic model. Their evalua-Material properties such as Frank elastic constants are ex-
tion from director fluctuations has been particularly popu-tracted and their dependence on chain length is comparkd wit
lar39-42 while relationships between elastic constants andheoretical predictions. Our conclusions follow in thet kesc-
orientation-dependent pair-correlation functions kndvem  tion.
density functional theo?—*> have been also utiliséd+6-47
Recently a new method based on free-energy perturbatio
was proposetf. However, these techniques have been rarel
applied to polymeric LC. For example, an early wotkdis-
cussed properties of elastic constants in lyotropic nerpati
describing them as two dimensional semi-flexible chaink wit Studying fluctuations in polymer nematics and comparing
hard excluded volume interactions. Lattthe bow-tie shape  with related analytical theories requires the considenatif
of the density structure factor in lyotropic polymer nerosti large systems. In particular, it is desirable that the disitaTs
was confirmed without addressing, however, director fluctuaof the system substantially exceed the largest possibleanol
tions and related material properties. ular scale of the problem — the length of a fully stretchegpol

Here, coarse-grained computer simulations are employether chain. This motivates us to combine a drastically cearse
to study density and orientational order fluctuations, a6 we grained representation of polymer architecture with soft-n
as related material properties in thermotropic polymeratem bonded interactions (i.e. on the order of the thermal energy
ics in a unified way. The main-chain LC polymers are rep-kgT). The latter relaxes excluded volume constraints, inereas
resented with discrete worm-like chains (WLCs), while non-ing significantly the computational efficiency. At the same
bonded interactions are described through soft anisatfupi  time, comparing to models with “microscopic” hard spher¢
tentials’1%2 To obtain a realistic model and facilitate possible excluded volumeé®, achieving nematic polymer order with
comparison with future experiments, the potentials ararpar isotropic soft potentials (as those in standard Dissipdfiar-
eterised to reproduce persistence length and densityalypicticle Dynamic$®) is more complicate?f. In contrast, it has
for poly(3-alkylthiophenes). This is a representative ifgm been demonstrat@f© that it is straightforward to describe
of conjugated polymers where LC mesophases have been re€ mesophases with anisotropic soft potentials. Thisesgrat
portecP®?1:53  With this model, Monte Carlo (MC) simula- will be employed here, using a special form of anisotropic po
tions are conducted to equilibrate monodisperse nematis me tentials®-52 inspired by field theoretical approaches to poly-
with different chain lengths. Due to softness of interatsio  meric liquid crystal§?-6¢ which facilitates parameterisation.
polymers with contour lengths up to an order of magnitude Each of then polymers is representétiby a discrete WLC
larger than the persistence length (as defined from a disemide chain withN segments (bonds) so that the bonded interactions

E? Modelling approach

2.1 Coarse-grained description

melt) could be studied. are described by:
Equilibrated configurations are analysed to obtain density -
and director-fluctuation spectra. We verify that the spectr . —— T
can be described by generic functional forms proposed the- keT —f S; Mi(s+1)-m(s) (1)

oretically,2’-31.54treating material constants (e.g., compress-
ibility and Frank constants) entering these expressioralas where nj(s) are unit vectors oriented along th¢ seg-
justable parameters. Material constants extracted imdepe ments of thei-th chain. The model is quite generic, how-
dently from density and director-fluctuation spectra anaco ever here the parameters are chosen to represent melts ~*
pared with each other, while their dependence on chainflengtpoly(3-alkylthiophenes). Each segment stands for two aton:
is also discussed. The results are compared with thedreticéstic repeat units and corresponds geometrically to thé-bac
predictions, taking into account that they assume absehce ®one chord connecting every second thiophene. Due to t'i.
hairpins as opposed to moderate chain backfolding in the simspecific geometric construction, the segment length &-§ét
ulations of the longest WLCs. For example, evidence is proto b = 0.79nm and is kept constant during the simulations.
vided supporting the arguments of Me§®regarding a linear  The stiffness parameter is set o= 3.284, which for ideal
dependence of the splay constant on chain length, when thethains can be shown analyticatlly8to lead to a persistence
is no significant chain backfolding. lengthl, ~ 2.2nm. This choice presents a qualitative top-
The paper is organised as follows. Sec. 2 describes the sindown parameterisation aiming to obtain a WLC with stiffness
ulation strategy and the modelled systems. Sec. 3 recapituepresentative for this family of polymers, e.tp ~ 2.2nm
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is comparable to values reported for poly(3-hexylthiogsn
(P3HT) at elevated temperatur®s.

In principle, within the current strategy models closer to
the original chemical structure of specific polymers can be
also implemented. For example, in R¥liquid crystalline
mesophases of P3HT were addressed employing less dras
coarse-graining, where each effective monomer represgente
one atomistic hexylthiophene (thus in that mobdet 0.4nm
which expresses the distance of two neighbouring repee
units). Non-bonded interactions were described by toedion
and angular potentials obtained in a bottom-up fashion frorr
systematic coarse-graining of atomistic chains. In thiseca
describing the geometric zigzag of the backbone was nece:
sary for developing soft anisotropic potentials leadinbitx-
ial nematic mesophases and considering effects of morpho
ogy on charge transpé? At the same time, for the purposes
of the current study focusing on the long wavelength limit, Fig. 1 Representative configuration of a nematic WLC melt with
the WLC model which neglects microscopic details presentd = 32 segments per chain when the macroscopic director of the
a more natural choice. The implementation of the discreténesophase is aligned alorguxis of the laboratory frame. The edge
WLC in the simulations simplifies the comparison with an- length of the simulation cell iBpox = 2L (whereL is the contour
alytical theoretical predictions, which were obtained ba t '€ngth of the WLC). To demonsitrate tHajoy is substantially larger
basis of the continuum WLC model (see Sec. 3). The WLCthan the actu_al end-to-end dlst_ance pf the chains along the dlre(_:tor_

del is also computationally more advantageous: to asdre of thg pematlc phase, thg F:o.r)flguratlon is presented vylthout periodic
tmhg same magnitude of chain lengths (in terms of persisten(:%éondltlons. To improve visibility a two-colour scheme is employed.
length) the more detailed description would involve twice a

many coarse-grained particles. the backbone of the poly(3-hexylthiophene) together with t
Thg anis.otrop.ic soft potential describing the non-bonded i 5tached side chaif& p, is a reference bulk density; since
teractions is defineth->?as: the bulk density of P3HT isv 4 hexylthiophenesim?® and
_ o each segment in our model represents two hexylthiophenes w>
Vip = u(rij (s,m)) | K — —-0;(s) : @;(m) (2)  choosep, = 2segmentéxm®. The parametek controls the

compressibility and we choose= 7.58kgT, which is com-

wherer;(s) andrj(m) are the coordinates of the centres parable to the values used in earlier stuét€g  To obtain
of the sth and mth segment in thd-th and j-th chain, nematic ordering, the strength of the orientation coupliag
so thatrij(s,m) = |ri(s) — rj(m)|. The tensorq 45(s) =  tween segments is set io= 3.33gT. All simulations are

%ni,a(s)niﬁ(s) - 5"7‘3 expresses the segment orientation with performed at temperatufie = 500K.

respect to the laboratory coordinate frame. The soft core

u(rij (s,m)) is proportiona?? to the overlap of two spherical 2.2 Systems studied and simulation details
density distributions set t@(r) = 3/47m0° for r < g and zero

otherwise, placed at(s) andr j(m). Thus the following form Monodisperse melts of coarse-grained chains Wtk 16,

is obtained®: 32, 48 and 64 segments were equilibrated using Monte Cai.c
L (MC) simulations in thenVT ensemble. Cubic simulation
u(rij(st)) = — /drw(r —1i()o(r —r(t)) = ©) cells_W|th periodic boundary conditions in all directionsne
Po considered. For the three largesthe length of the cell-edges,
3 i (St) rij(s,t) 2 Lbox, Was chosen to be two times Iarger than the end-to-ent'
= 8110,0° + 20 T oo distance of a fully stretched WLC (which equals the contou r

length,L = bN). For the shortest chainkl, = 16, simulations
Since the density distributions can be seen as representar cells with Ly = 8L were conducted, while smaller sys-
tions of the microscopic degrees of freedom underlying theems,,ox = 4L, were also considered to estimate finite system
coarse-grained unit$>271.72 we choose for the interaction size effects. The number of chains in each melt was chosen
rangeo = 0.79nm which is comparable to the length of a so that the average segment density reproduced the reéerenc
hexyl chain in all-trans configuration. Combined with thede bulk density of P3HT, i.enN/V = p,. This requirement leads
sity clouds, the WLC can be considered as a soft tube encasirtg systems with a large number of particles (e.g.,Noe 64

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 |3
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there are more than2 10° segments in the cell), which nev- chain projection on theaxis. Thus it follows thaf, = nl /V.
ertheless can be equilibrated due to the softness of theate The second term in egn 5 expresses the constraint that change
tions. For each of the longest melts eight independent simul in areal density and director fields are coupled, h&hcan be
tions were performed, to allow for an error estimation of theseen as a Lagrange multiplier enforcing this constrainpain
extracted properties (cf. Sec. 4). For melts With= 16 chains  ticular*26 02,0p — PolJ 1 6N = py — pr, wherepy andpr are
the number of independent simulations was larger — sixteen. the local densities of chain “head” and “tail” ends. In thmiti

All chains are initially fully stretched and aligned aloret  of infinitely long chains there are no chain ends preseng thu
z-axis of the laboratory frame, while their centres-of-maies  the differential form in eqn 5 is strictly zero. Hence in thase
randomly distributed. A MC algorithm based on a combi- G — c. For finite chains, to penalise deviations@f — pr
nation of standard random monomer displacement (DIS) anftom zero (as happens in the case of splay deformatjon
slithering snake (REP) MC moves is employed to equilibrateanalytical theorie®27:2%3ypically assumes = Ikg T /2.
the system. The mix of moves contains 30% DIS and 70%T his corresponds to the concentration susceptibility ofda m
REP. A representative snapshot of an equilibrated nematiture of “head” and “tail” ends, considering them as noninter
melt of chains withiN = 32 is presented in Fig. 1. acting ideal gases. Recently it was recognised that this co..
straint applies in fact to polar nematic ordering and care-s
quired when it is implemented in nonpolar nematit¥ (i.e.
quadrupolar ordering). For the latter, an alternative deas
In this section, earlier theoretical predictions regagditen- ~ CONServation law has been de\_/eloﬁ‘éd—lowever, to the best )
sity and director fluctuations in polymer nematics will be re ©f our knowledge this constraint has not yet been employeu
capitulated in terms of the discrete WLC model employed inWhen describing fluctuations. The last terR, is a “bare”
the simulations. For a nematic mesophase wittontinuum ~ Frank free energy with splay, twist, Kz, and bendKs,
WLCs, it is straightforward to introduce a local areal depsit ©lastic constants approximately equal to those of a system ¢
of chains intersecting a plane normal to the average direéto  UnPolymerised mesogeriés

the mesophas@, Without loosing generality, it is convenient _ From eqn 5, structure faggosrls_ of areal density and directe:
to assume that is parallel to thee-axis of the laboratory coor- fluctuations were obtainéd?®tin the hydrodynamic limit

dinate frame. The, sets the position of such a plane and and found in agreement with a more elaborated “microscopic’
is a two dimensional vector defining a point on the plane. Ind€scription, mapping polymer trajectories on wordlinesaf

this setup chains, when oriented without backfolding, can b dimensional bosons”293% To cast these results in context
described”2%-31as curves which are single-valued functions of discrete WLCs, it is helpful to parameterise the continuum

of z. The local areal density becomes: WLC through the arc lengthof the curve. Since there is no
backfolding,z will be a single-valued function df, that is,
z=1z(t) andri (z(t)) =ri.(t). Thus egn 4 becomes:

3 Theoretical background (zero-hairpin limit)

Nz
p(r1,2) = ;/ S -1.(2)5(%-2)dz (@)
=0 nooL
In the abovez,(i) andz_ (i) are z-projections of the two PN 2) = i;/o S(r-ru®)d(m-aM)zd  ©
ends of the-th chain ( is the contour length of the WLC).
Within a hydrodynamic treatment of correlations, local fliic
ationsdp(r | ,z,) andon(r ; ,z,) of density and director fields
can be penalised through a free enefg§y®3!

F= /du/dzp [2 (‘;f)i (5) p(ri.z)= ii‘s(” —1i1(5))8(%—z(s)a (7)

wherer;(s) = {ri, (s),z(s)} are the coordinates of the cen-
+Fn[SN] tres of the segments of the discrete WLC arid a character-
istic microscopic length scale representing an average@ro
The first term in eqn 5 stands for a simple equation-of-stateg(r)]ne0fntgead'ssttizfjg$:'cvteo err:‘osretgllqgG(}jr:ncseitnt:‘ﬁi?fasﬁo?ﬁisf;n be
with P, and B being the average areal chain density and the q y

two-dimensional bulk modulus, respectively. The latteeslo defined as:

Considering thaZ = dz/dt is the direction cosine of the
tangent vector of the curve at arc lengthvith the z-axis, a
discrete analog of eqgn 6 can be introduced as:

G 3 2
> (dzpép — poDL6n>

not depend on chain length, up to@(L‘l) term?® due to  (p(q,.q)P(—q,,~q)) = (8)
translational entropy. For a chain to intersect a planeatiee- 5 / nN ) L2

age distance of its centre frozp must be smaller thaky2 be- & S expli(q, riL(S)+qz(s — (PO> a,.9
low or above the surfadé, wherel is the average length of the V iél (i@, Fin(9)+6a(9)] ’ Po S(A.,%)

4| Journal Name, 2010, [vol] 1-14 This journal is © The Royal Society of Chemistry [year]
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The form of the spectrum of the orientation tensor in eqn 12
Angular brackets denote an average in the canonical eris generic and typicaf for nematic LC described by a Frank
semble and = aN was substituted intg@, = nl/V to ob-  free energy, albeit here the splay constéfitis g—dependent.
tain a = Po/pPo. The scattering functior§(q, ,q;) is nor-  The limit of KR for g2 — 0 is KlR@ =Ki +BE2 =Ky +
malised byV and not the number of scatterendy, as is more kg T1fo. It can be seef-23LthatKR  ~ N, which agrees

; . : 9,31
common. Direct substitution of theoretical resafts Stor  ith a more qualitative treatment by Meyer. On the contrary,
(p(9;,02)p(—q,,—0)) into eqn 8 Igads tothe following pre- i, the same limit, an alternative approach by de Ge#h&s
diction for the discrete WLC model: leads to a different scalingsft, ~ N2. Notably, for infinite
kaTp3 (97 + (Kia? +KaaZ) /GP3) ©) chains all analytical theorigé2"2%31are consistent with each
B + (B/GRZ + @) (K1 +Kaa?) other, predicting<R = K; + B/c?.

Sq,,0) =

This corresponds to highly asymmetric scattering, where
the contour lines of constai®(q, ,q;) create the character- 4 Results
istic “bow-tie” patterr?’-2%-31 As an illustration, it is helpful
to consider the behaviour &(q,,q,) along theq, =0 and 4.1 Data analysis

g, =0 axes: ) _ ) ) o
During the discussion of the theoretical predictions, far-s

plicity it was assumed that the laboratory and the macrascop
nematic director frames match. In simulations, this takase
) in the starting configurations whenreis oriented along the-
S(0,q;) has an Ornstein-Zernike form with? = %"g be- axis of the simulation box. However, it is important to mon-
ing the analog of a correlation length (squared). Indeed théor 1 during the entire MC run since it can reoriéht’ due
above demonstrate that for infinitely long chaihs; o (that  to fluctuations. Thus in each melt configuration the maximur -
is, G — ), there should be no scatteritftalongg, =0while  eigenvalueS, and the corresponding eigenvector of the tensc:
constant scattering is still obtained fgr = 0. According to & J Qup(r)dr = =k Zin,’sN 0i,ap(S) were calculated. This anal-
eqgn 10, chains of finite length scatter also pr= 0. This  Ysis demonstrates that for the two shortest mélts; 16 and
scattering however decays as one moves from the origin of th@2, the changes in the orientationfofire indeed substantial.
axes (more detailed discussion of the predicted contous plo For example, for théN = 16 melt angles as large &s=7.5°
of the structure factor can be found, for example, in¥9f. betweenn and thez—axis of the laboratory frame were ob-
To compare with simulations, it is convenient to addressserved. Atthe same time, for the two longest mhlts 48 and
director fluctuations in melts of discrete WLCs in terms of 64 the re-orientations ai were found insignificant, i.e., the

ks TpZ
B+ Gp3o2

ks T2

S(qlno) = T S(07 qZ) = (10)

the nematic tensP#%5475Qq5(r) = py 1510 g 4p(S)3(r —  observed angles were at mdt- 1°. During the analysis of
ri(s)). The Fourier transform of this quantity is given by: the fluctuation spectra, the differences between the latgra
and the nematic director frames are taken into accufas
Qup(Qy,07) = (11)  described below.
1 NN _ To calculate fluctuation spectra, the scattering vectorstmu
NS i&lqtaﬁ(s) exp[l (qL 11 (S) +0zz (S))] comply with periodic boundary conditiof and it is more

convenient to introduce them in the laboratory frame. Therc

For 71 oriented along the-axis and small distortions of (h€ir components are given Inf; = 2Mq /Lbox, Whereiq are
the director field, one h&476 &ng (r) = 2Qq,(r)/3(S) (here  INt€gers andr = x,y,z. For each configuration of the = 16

a = xy and (S) is the average order parameter). Thus the@nd 32 melts a density structure fac&n") is calculated in
theoretical predictior@-2%3for (5ng(q, ,¢,)2) transform to: the Fourier space of the laboratory frame via the definition i

eqn 8 but replacing] = {q, ,q,} with q- (ri(s) are by de-
4(|Qaz(q,,9,)[%) 1 oz fault in the laboratory frame). To define the vectors we use
9(S%ksT = qui T Ksq2 ( N qi) + —15<i4 < 15. Subsequently, g--dependent 123-frame is
introduced®’’. The z-axis of this frame in every configura-

(12) tion is set along the correspondimgy The y-axis is placed
1 9z L WR B in the plane defined bg- andn, while orthonormality de-
R? ke \ gz ) With Kr=Ki+ 55— i i i i i
KRo? +Ksgz \ g% =25 42 termines thec-axis. The scattering vector in 123-frame is ob-

G’“Z Y4 ) ~ AL . . -
P tained af)=Tq", whereT is the rotation matrix transforming
As in the case 08(q ,g;) angular brackets denote an aver- between the two frames. From the definition of the 123-frame

age in the canonical ensemble. it follows thatq = {0,qy, 0.}, with g, | i andgq, || A. Trans-

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 |5
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forming all availableg- into {ay, q,}-pairs, the values &(q") For the following discussion of fluctuation spectra and ma-
can be assigned to a two dimensional spectBiy, g;) inthe  terial constants, it is important to quantify the amountatk:
director-based frame. Since tlfeangle between the direc- folded chains as a function of polymer length. To comply with
tor and thez-axis of the laboratory frame changes during thethe theoretical description in Sec. 3, in every configurgtio
run, the discrete set of vectogs generates a continuum set for each chain the number of intersections with a sequence of
of g-vectors in 123-frames. In practice, these continuum valplanes normal to the axis of the director, was calculated.
ues ofqgy andg, are coarse-grained into bitfs In this work  The distance between the planes was chosen with fine step
the width of the bins is chosen equal to the resolutimil?,,x ~ (significantly smaller than the bond length). A chain was-con
of the Fourier space in the laboratory frame and final densitysidered as backfolded if found to intersect a plane more than
fluctuation spectra are obtained as averages ditpeq,) ac-  once.
cumulated in each bin over all configurations.

The calculation of the spectrum of the orientation tensor
is similar. Namely, for the two shortest melts the Fourier 40— T 71T T T T 71

L M O

transform Q,3(q~) is first calculated replacing in egn 11 L s _
q={q,,q;} with g-. The Fourier image is transformed to
aq--dependent 123-frame to obtad{qy,q,) = TQ(q")T .
Then|Qyp(ay.dz)|? are calculated and assigned to the bins of
theyzplane in 123-frame which correspond to the rotajed
After considering all configurations, the final spectra abve o
tained as averages of the values accumulated in each bin.

For the longesN = 48 and 64 melts, where the variations
in the orientation ofn are small, we assume that the direc- e
tor frame coincides with the laboratory frame, so tyat q-. 10 N 100
In these meltsy is placed in theyzplane of the laboratory 0" 2050 40 20" 80 70 B0
frame so thag = {0,qy,q,}, whereqy, = 2711'),27Z/L|DOX with
—20< 1y, < 20. Thus(qy, q) and|Qas (G, qz.)‘ are directly Fig. 2Main panel: Percentage of chains in a melt having at least
calculated from egn 8 and eqgn 11 respectively, and the final o : . :

. ne hairpin, as a function of number of chain segmeidnset:

spectra} are obtained as averages of the v_alues accumuated ghe component of the average radius of gyration (squaF%Q,),
each discretgqy, g, }-pair for all configurations. along the director as a function b

T
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4.2 Strength of nematic order and director orientation

Fig. 2 presents the percentage of backfolded chains (ave:-

N 16 32 48 64 aged over all configurations) as a function of the number of
(S || 0.62(4) | 0.65(1)| 0.66(0) | 0.66(7) segments in the chain. It can be seen that the amount of thes=
molecules increases substantially with chain length sftina
Table 1 Average nematic order paramet$), as a function of N = 64 almost 40% of polymers have at least one backfolding
number of chain segmenty, The apparent linearity of the plot is due to the still moderat

chain lengths. Theoretical arguments based on the comtinut

In Table 1 we summarise the values of configurational averwLC modef® within mean-field approximation predict that
ages of the maximum eigenvalugs), as a function of chain the fraction of backfolded chains should eventually saéura
lengthN. It can be seen that the strength of nematic orientatioro unity as 1— exp(—I") with ' = (L/lo) exp(—Un/kgT). The
increases with chain length, saturating for longer mokesul characteristic scales of length, and energyJ;, are functions
This behaviour stems from orientational correlations glon of chain stiffness, strength of orientational couplingjerpa-
chain backbone induced by bending rigidityand is quali- rameter, and temperaturie stands for the contour length. The
tatively similar to the shift of the isotropic-nematic teiion  small number of backfolding events per chain in our case is
to higher temperatures as molecular weight incredses’® demonstrated by the inset of Fig. 2. The figure presents a log-
arithmic plot of the component of the average radius of gyra-
tion (squared) along the nematic direcllagz, as a function of
N. It can be seen that it still obeys a rod-like scaliRfg ~ N?;

in a regime with many hairpins it should He°RZ, ~ N.

4.3 Chain backfolding

6| Journal Name, 2010, [vol] 1-14 This journal is © The Royal Society of Chemistry [year]
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Fig. 3 (a) Contour plot of density fluctuation spectrusigy, g), in the nematic director frame of a melt with= 32 segments per chain.
Contour lines correspond to equal magnitude of scattering. (b) Maiel;pgor the samé&l = 32 melt solid circles show a one-dimensional
“cut” of the scattering function$(0, gz). The contribution from intramolecular scattering alaraxis, $(0,qz), is also presented with solid
line. An estimate 0&,(0,q,) based on a rod system is shown with dashed line (see main text for détesks). Form factorf (0, g), for

N = 16, 32 and 64 melts.

4.4 Density fluctuation spectra tain from $(q-) the $(0,q,) in the director frame. Fig. 3b
highlights thatS(0, q;) is already affected by the second of the
subsidiary maxima o (0,q;). The apparent difference in the
location of some of the maxima &0, q,) and$,(0, ;) stems
from the binning of they, vectors used to calculate the former.

The oscillations 0%%,(0,q,) manifest the strong stretching
of polymers along the nematic director and are observed i
all melts modelled in the current work. This is illustrated
in the inset of Fig. 3b presenting(0,q,) for systems with
N = 16, 32 and 64. Itis instructive to compare the intramolec-
ular scattering with the following estimate. In a melt config

The additional scattering features in Fig. 3a do not signifyuratio.n’ for each'd—th ::hain rt]he comp_ong_nt of the r.aditlj)s of
smectic ordering but stem from intramolecular scatterkay. 93{""“"” (sqgare ) a.or.19 t e. nematic direc zi) 1S OD-
a nematioN = 32 melt, this is shown in Fig. 3b by compar- tained. Eachi-th chain is assigned the form factor of a rod.
ing S(0, q) with the contribution from intramolecular scatter- Hodi)(tz) = [2sin(gly(i) /2) /)] (0 s taken parallel to
ing, (0, q,), along thez-axis of the director frame (for clarity e rod axis). The length of the rotl;, is chosen so that

A representative contour plot &ay, 0,) for a nematidN = 32
melt, calculated in the director frame as described in Sdg. 4
is presented in Fig. 3a. It agrees qualitatively with theothe
retically predicted bow-tie shape (see previous sectishile
similar scattering patterns have been reported in eailiau-s
lations of lyotropic polymer nemati€S. Fig. 3a demonstrates
that near the origin, the scattering decreases moving dheng
gy = 0 axis as predicted theoretically. However, in simulations
this decay is not monotonous and for highgra sequence of
scattering minima is observed.

N
Zlexp(iqL Ti(9))

only the regiorg, > 0 is shown). The intramolecular scatter- it has the same radius of gyration (squared) as the chain, th..
ing is first calculated in the laboratory frame from: is, lyi) = ,/12R§Z(i). The approximate intramolecular scatter-
] ) ing follows from $,(0,0z) ~ (NPo)(Pod(0z)), Wwhere angular
1 brackets denote an average over all chains and configusation
S’(ql_) - Vi;< > - NpOP(q'-) It is presented in the maig panel of Fig. 3b with das%ed line
(13) a_nd follows roughly the shape 6{,(_0, ;) calculated exactly
via eqgn. 13. As illustrated in the inset, the loss of structur
Angular brackets denote an average over chain conformdd in P(0,¢;) increases with chain length, e.g., due to larger
tions andP(q") stands for the molecular form facfdr Sub-  Variations in chain conformations.
sequently, the 123-frame transformation is employed to ob- It is interesting to explore wheth&qy,0) andS(0,q,) can

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 |7
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translational entropy of chains (cf., Sec. 3). Such effbots-
ever are not discernible in the plot.
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Fig. 4 Examples of the inverse density structure factoNos 32 N
(solid circles) andN = 64 (open circles) melts. The bottom panel
present$§§1(qy, 0) as a function ofyy and the approximation (cf.
egn 10) with a constant (dashed line) which is practically the same
for bothN. The upper panel preserpé&“l(o, gz) as a function of

gz. The parabolic fits foN = 32 andN = 64 are shown with solid . . ) st )
and dashed lines, respectively. In both panels, broken red lines mark A Parabolic approximation t@5S (0, q), motivated by

the boundaries af-space used for the fit. the Ornstein-Zernike form of egn 10, is demonstrated in the

upper panel of Fig. 4 for melts with = 32 andN = 64 (solid
blue and dashed black lines, respectively). The curvesshow
é‘p the figure were obtained through a linear least squares fi
9f p5S 1(0,q;) in g*-space, withGpg /keT as a free param-
eter while fixing B/ksT to the values calculated from the
analysis ofp§5“l(qy,0). As a test, we have fitted the spec-
tra allowing also for variations oB/kgT and no significant
differences were observed. Moreover, B&gT calculated

in this way, match the data obtained from the analysis oi
p2S1(qy,0) (see Fig. 5). For all melts the fit was performec
in the region|g,| < 0.56nnT!, which presents an empiri-

Fig. 5Simulation results fo6p2/ksT (black circles, left axis) and
B/ksT (red squares, right axis) as a function of number of chain
segmentsi\. The arrow marks the constant offset@b2/kgT.

be described by a constant and an Ornstein-Zernike form r
spectively, as suggested by eqn 10. For this purpose Fig.
presentpZS-1(qy,0) (lower panel) angp2S1(0,q,) (upper
panel) as a function ajy andg; respectively, foN = 32 (blue
solid symbols) andN = 64 (black open symbols) melts. The
structure factor presented in the figure is the average ot eig
S(ay,q,) calculated from the corresponding number of inde-
pendent runs. Accordingly, errorbars are equal to the srand

deviation/02(qy, 0,) of the structure factor at every scatter- : S
(G ) y cal choice. Namely, as suggested by the similarity betweer.

ing mode. ; . :
ql'h bott | of Fig. 4 d trates that f IIthe $(0,q;) and the approximate intramolecular scattering
€ (t) onj[hpa:jne (')t tlg. A efmotns rates Itathge:'n'sma calculated from the rod system, the natural choice to avoi.

wavevectors, the density structure factor normal to B e “iagginess” 0fp2S1(0,q,) would be to consider length

director can be indeed approximated by a cgnstant, Whicgcales larger than the characteristic chain dimension rakimi
should equaB/kgT (cf. egn 10). The constant is marked by _ . >
the horizontal black dashed line, obtained from a lineastiea N9 Scattering. This would correspond | < 271/, /12Rg,

squares fit? of p3S*(qy,0) in g?-space, fogy| < 0.6nm L. (R, follows from Fig. 2). Indeed for the shortebt = 16
The extracted/ksT is presented as a function Nfin Fig. 5  chains, where effects from intramolecular scattering hee t
(open squares). The errorbars correspond to approximatebtrongest, we follow this condition and figS%(0,q,) by a
1% error in the estimation d. They characterise the spread parabola forig,| < 277/l ~ 0.5nm™. At the same time, we
of the values obtained after splitting the independent fans  have observed th&jZ /ks T extracted from the parabolic ap-
each chain length into groups with four simulations eacl, an proximation does not change substantially when the fit regim
calculating theB constant separately for each group as de-s expanded beyont,| = 0.5nm! to incorporate periods
scribed above. The data in Fig. 5 demonstrate that, for thef oscillations inp2S-1(0,q,) (presumably because of can-
considered chain lengths, the two-dimensional bulk maglulu cellation effects). For longer chains, where effects from i
B does not depend oN. In principle, a weak reduction &  tramolecular scattering are less pronoungef1(0,q,) is
asN becomes larger is expected mainly because of the smalle@pproximated by a parabola fg,| ~ 0.6nm2. In this case,

8| Journal Name, 2010, [vol] 1-14 This journal is © The Royal Society of Chemistry [year]
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Fig. 6 (a) Contour plot of the inverse director fluctuation spectrMp{ay, dz), corresponding to twist-bend modes for= 64 melt. (b) A
subset of simulation data fov(qy, g;) as a function otﬁ at two representative valueg, = 0 and 1nn1? (squares and circles, respectively)
is presented. Dashed lines show the approximation by the analyticabsignef eqn 14. (c) Same as (b) but considewg(ay, gz)as a
function ofgZ at fixedgy = 0 and Lnn?.

the fitting region includes several multiples of2 /12RZ,. 1= 'G'OK' L '{ ]

Fig. 5 presents th&pZ/ke T obtained from the above pro- 2 == Ky ]
cedure as a function dfl (open circles). As in the case of 100k ooKy , /} 3
B/ksT, errorbars characterise the spread of the values for_, | ® Gp, e
Gp2/ksT obtained after splitting the independent runs fors® 80 ,/ g T T I’I =
each chain length into groups with four simulations each. No =) eo; 8o o 1%
tably, theGpZ/ksT calculated from fits wher®/kgT was ¥ | L aof ¥ 1=
also allowed to vary, are within these errorbars. The result 4o A ol 1 1%

. . ~ Vi 0 20] 40 60

can be well described by linear dependenc&pg /ksT on e 1N
chain length (dashed black line). This observation sugport %%~ ¢~ e__:__:z:_:_:: ]
the theoretical assumpti8h2731G ~ | (sincel = aN) with of——s 'E_é_o_'—“'sz' PRRNTS
the difference that in simulations the linear dependenseaha N

constant offset (marked by the arrow in Fig. 5). Itis inter- ) _ " _ _

esting that there are no clear deviations from the deperdend¢'d- 7 Main panel: SplayKy, , twist, Kz, and bendKs, elastic

Gf)z/kBT ~ N which was predicted in the zero-hairpin limit constants as a function of the number of segments in a chain. The
0 1 ~ . . .

even in the case of the longer melté,— 64, where almost Gp2 calculated in Fig. 5 is also reproduced on the plot. Inset:

. R ..,2 .
40% of molecules have at least one backfolding “defect”. Compgrlspn OK_1(o) fedep0 after subtracting from the latter the
offset indicated in Fig. 5.

4.5 Director fluctuation spectra and Frank constants

4.5.1 Twist,K,, and bend,Ks, constants The theoretical result can describe the simulation data n
a rather broad range of wavevectors, for all modelled chain
When the scattering vector is located in gtzplane eqn 12 lengths. This conclusion follows after fitting the rightrioh
predicts that the fluctuations of the nematic tensor comedp ~ Side of eqn 14 td/k,(qy,dz) calculated from melt configu-

ing to twist-bend modes should fulfil: rations. We perform this fit irg?-space for|gy,| < 1nmt
using linear least squares. The statistical error estirftate

the individual modes d\y,(qy,d,) was obtained as described
in sec. 4.4. The elliptic shape of the twist-bend fluctuation

%k T(S)?

= R e A Y W N 14
4<|sz(anQZ)|2> 2% 3 14

Wz(0y, 0z)

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 |9
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spectrum is illustrated in Fig. 6a, presentinglfbs= 64 a con-
tour plot ofW,(ay, ;). An example of the accuracy of the fit
is provided in Fig. 6b presenting a subset of simulation data

for W,(ay, ) as a function oqu, at two representative val- (@) 1.5 12
ues,g, = 0 and 1nm? (squares and circles, respectively). For 1+ 4H4 10
theseq,, dashed lines show the approximationitgq)z, +Ks02
(whereK; andKj originate from the fit in the whole region __ 0-5 ) (1] 8
layz| < 1nm?t) and, within error bars, are close to the data.™g
Fig. 6¢ presents a similar plot, considerMg(qy,q;) nowas = " 10 ©
a function ofgZ atgy = 0 and 1nnrt. © 05 ) (] 4

The twist and bend elastic constants calculated from the fit
for all modelled chain lengths are presented in Fig. 7. Er- -1 - 5 2
rorbars were obtained from the standard deviation of elasti
constants calculated by fitting the fluctuation spectra thea -1.5 ‘ ‘ ‘ ‘ ‘ 0
of the available independent runs, separately. We emghasis 15 1 05 0 05 1 15
the robustness of the results regarding the choice of the fit- Oy [nm™]
ting region. Namely, choosing smaller limits, for example
ay.2| < 0.5nm2, yields for K, andKs very similar results. (b) 15 \\_/x‘//y 12
Fig. 7 demonstrates that boih andKz tend to constant val- Ll o11
ues as chain length increases, which is in agreement with the 1
oretical argument®. Kz is roughly twice as large @&, while 05 1 10
the order of magnitude of both constants is#N. For ther-  — 9
motropic nematic polymers, experiments have reportedfor £ 9) <(, L1 g
andK3z a rather broad range of order of magnitudes, ffé#f Y N
10 12N to3° 10~1ON. Interestingly, the order of magnitude of -0.5 !
the twist and bend constants obtained in the simulatiofs fal 6
within this window. The magnitudes &% andKjs in the above -1 5
experiments were found to be comparable to each other. 15 ///f,,\\\ 4

452 SplayKR, constant 5 -1 -05 0 L 05 1 15

ay [nm™]

For the splay-bend mode, the theory (see eqn 12) predicts:

Fig. 8(a) Contour plot of the inverse director fluctuation spectrum,

VWz(Qy,Qz) = Wz(ay,az), of the splay-bend modes in\a= 16 melt, illustrating
9%k T(S)? _ kR B&4q2 @+Ks@  (15) the “wiggles” in the pattern of contour lines. (b) Contour plot of the
4|Quay,q)2) | MO 122V Stz inverse single-chain director fluctuation spectrus(dy, gz), for
the same melt, presenting a cross-like pattern of minima.
KT

In the above expression an equivalent form for the splaynelt: While the general shape of the plot follows the thec
constan}(q,) (comparing to eqn 12) is employed, to facil- retical expectations, the isolines exh|b|t a sequence a§-‘w
itate fitting. It follows from eqn 15 that, in theory, for srhal gles™.Contrary to the case of density structure factors (cf
wavevectors the isolines ¥¥,,(qy,q;) should form an ellipse Fig. Sa) these addltlonal features'stem from mterm.oleculc
in the yzplane of the director frame. Ag, andg; increase, Cor_relatlons f';md not directly from_lntr_amolecular scatigr
the contour plot 0fM,,(qy, ;) should transform into a figure- This conclusion follows after considering the contribntiof

of-eight shape with the long axis oriented along the dinecto Intramolecular scattering, obtained by calculating focteia
th molecule first the Fourier transform of its nematic terisor

In contrast to twist-bend fluctuations, the shapes of splayN€ laboratory frame according to:

bend spectraM|,(qy,q,) in the simulations of melts with
shorter chainsN = 16 andN = 32) do not completely match
the corresponding theoretical predictions. As an illugira
Fig. 8a presents a contour plot ¥,(qy,q,) for aN = 16

1
VWpo

For each chain the Fourier image of the molecular ne-

N
Quap(@") = Z\qi,aﬁ (s)exp(iq- -ri(9)) (16)

10| Journal Name, 2010, [vol]l, 1-14
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Fig. 9 (a) Contour plot of the inverse director fluctuation spectrp(ay, gz), corresponding to splay-bend modes b= 64 melt where no
“wiggles” are observed. (b) A subset of simulation dataVig(qy, g;) as a function ot]f, at two representative valueg, = 0 and 1nntlt
(squares and circles, respectively) is presented. Dashed linegisdapproximation by the analytical expression of egn 15. (c) Samg as (b
but considering\;(ay,d,) as a function off? at fixedgy = 0 and 1nml.

matic tensor is transformed to q--dependent 123-frame at two representative valueg, = 0 and 1nm?. Notably, the
to obtain Qi(qy,0,) = TQ (qL)T*1 so that the total part value of the bend constait obtained from this fit matches
of intramolecular scattering is given byv;zl(qy,qz) =  the value extracted from the twist-bend fluctuations.

4n3 11 Qiyz(Cly, G) /9 ke T For all chain lengths, the small wavelength behaviour of the

Fig. 8b presents the contour plotwf,(qy. ) for N = 16 splay constanﬂ,(lR(o>, i.s presgnted in Fig. 7 (open cirgles). It
demonstrating that it has a different pattern comparing tgVas extracted from linear fits W;(Gy,d) as a function of
W,,(qy,q;). For short chains, the cross-like shape of min-y» while settingg, = 0. For melts without significant hairpin
ima inwy(ay, ), not observed in total scattering, stems from effects, the plot suggests a linear dependendéfg]’ onN as
strong correlations in the orientation of segments alorg thfirst predicted by Meyer. For polymer nematics with a large
same molecule due to stiffness. The instantaneous polé& angnumber of hairpins per chain, it has been predicted theoreti
65 between a segment ands nonnegative and has an averagecally®” that K1R<O> should reach a finite value as a function ot
value (6s) > 0. In Fig. 8b the angles between the branchesN. Thus, for longer chains with moderate backfolding (such
of the cross and they-axis depend on the magnitude @).  asN = 64) the onset of saturation, i.e., sublinear dependenc =
Indirectly however the intermolecular correlations leagto  of KlR(o) on N, might be expected. In fact fod = 64 our re-

the distortions in Flg 8a are still COUpled to chain conivect sults Suggest the appearance of such effectsy manifested by
ity. This follows from the observation that they are locatedsjight, within errorbars, “bending” of thﬁ?(o) plot.

at wavevectors roughly corresponding to the contour length . . .

of the polymer chains. For longer polymers the distortions An important question refers_ FO the exten_t to which thg
of the isolines not only shift to smaller wavevectors but be_above results are affected by f|_n|te system size effec_t S: F_or
come also less pronounced. Fig. 9a presents the contour pIB‘t: 16 the splay constant obtamedero_m t?St S|mula_t|ons .
of Wyz(y, Gz) for the longesiN = 64 melt, which is in very smaller cellsLpox = 4L, rpat;hed thé(l<0> in Fig. 7 (obtained
good agreement with the shape predicted by eqn. 15. This c&#f Lbox = 8L). However, in simulations of longest melts where-
be quantified by fitting th&\,(qy, q,) obtained in the simula- LbOX:' 2L is employed, fluctuations could be more suppresseu,
tions for |gy| < 1nm1 by the functional form suggested by resulting mtqura_nkﬂ constants that are Ia_rger comparing to
eqn. 15. Fig. 9b considers two representative vaiyes0 and those of an “infinite” system. Th_erefore, in Iarge_r samples
1nm! to demonstrate that the fitted function (dashed lines)°f these melts splay constants might reduce, leading to more
describes the original data (squares and circles, respggti Pronounced saturation effects.

closely at different values af,. Fig. 9c provides a similar In Fig. 7 the quantityGp?2 previously calculated from den-
comparison, now considerind.(ay,q,) as a function ot sity fluctuations (cf. Fig. 5) is also reproduced as a fumctib

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 | 11
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N. According to the theoretical predictid(’ﬁm = Ky +Gp? the theoretical results were obtained in the zero-haiipiit.|

one expects that: a«;ﬁo) has the same slope comparing to TW_o material_constants controlling (for large Wavel_engg_ths
G{2 as a function oN and b)KlR(o) > Gp2 is larger tharGp, density fluctuations normal_ and parallel to the ne_matlcasllre

_ R ) : an tor were extracted and their dependence on chain length was
sinceKy is nonnggagve. In Fig. 7 for short chairSp; has  jnyestigated. For all melts, this dependence was found to be
a similar slope witfKy,, which agrees with the first expecta- ¢qngjstent with the theoretical predictions in the zerigia
tion. At the same time in simulatior@3? is larger thar1<1R<O). limit 26-29:31 despite the increasing amount of backfolding
One can argue that this difference from the theoreticaltressu with chain length. For the shorter melts, within the accyiaic
due to the constant offset in the linear dependend@dgfon  the data and the considered system sizes, the splay Frank con
N observed in Fig. 5. The inset of Fig. 7 compaK{{so) and  stant obtained from director fluctuations was found to iasee

Gp2, subtracting from the latter the offset9BkgT obtained linearly with chain length, in agreement with the argumefits

in Fig. 5. In this case the two curves are very close to eac¥eyer*®and later theorie$!"21.37 For larger chains (an or-
other, for short chains. der of magnitude longer than the persistence length) oar dat

suggest the onset of a sub-linear dependence due to large:
amount of backfolded molecul®s Twist and bend Frank

5 Conclusions and Outlook constants were found to saturate with chain length, in agree
ment with theoretical expectatioffs

In this work Monte Carlo simulations of nematic polymer Although the interactions are soft, the order of magnitude
melts described by a soft model were performed to study equiof bend and twist constants was found to be 0N which
librium density and director fluctuation spectra, as welteas  is Within the window of magnitudes 182N to 10-°N re-
lated material constants. The model is generic but incorpoPorted in some experimeri&3> Both constants were found
rates features important for the qualitative study of thevab  to be significantly smaller than the splay constant. Taking i
properties. The polymer architecture is represented bglithe ~ account that the model was mapped on a real family of pol-
crete WLC model, accounting for two characteristic molecula mers (i.e. poly(3-alkylthiophenes)), these observataesn-
scales: the persistence and the contour length. Pairwise nocouraging for a possible comparison of our results withreitu
bonded potentials have two components. The first is isatropi€xperiments in these materials.
and limits the compressibility of the polymeric liquid, vidni In the current study, no strong effects of chain backfolding
the second depends on the relative orientation of the segmenon the dependence of material constants on the length of poi,
inducing nematic ordering. Nematic WLC melts for four dif- mer chains were observed. This behaviour can be ratiodalise
ferent chain lengths were considered, their contours baging by the fact that the number of hairpins per molecule remainec
to an order of magnitude longer than the persistence leagth ( small. To address in detail how material constants aretaffiec
defined in the state of a disordered melt). by chain backfolding, modelling nematic melts with longer
Some generic characteristics (such as the bow-tie patterrghains would be required. Varying chain stiffness offerdiad
of the shape of density and director fluctuations spectr@ wertional possibilities for changing conformational propestand
found to agree with theoretical predictidifs?®31 At the ~ such effects should be also explored in the future.
same time, at length scales roughly comparable with the ex-
tension of polymer chains along the nematic director, the de
sity and the splay-bend spectra exhibited additional scatt Acknowledgments
ing features. These features were evident in melts withtshoRN
WLC (only a few persistence lengths long). In such systems c ; . .
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