Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/metallomics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1 2 3 4 5 6 7 8 9 10 11 12 13
23 24 25 26 27 28 29 30 31 32 33 43 5 36 37 38 39 40 41 42 43 44 5 46 47 48 49 50	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
52 53 54	34
55 56	35
57 58 59	36
60	

- Kelly L. Roe^{1*} and Katherine A. Barbeau¹
- ¹Geoscience Research Division, Scripps Institution of Oceanography, University of
- 8 California San Diego, La Jolla CA 92093

*Currently at: Department of Chemistry, Colorado School of Mines, Golden CO 90401

Table of Contents

Trichodesmium erythraeum IMS101 utilizes two different iron uptake systems to acquire iron from FeCl₃ and Ferric Citrate, potentially allowing *Trichodesmium* to have a competitive advantage in its bacteria-rich colony environment.

Abstract

Growth of the prevalent marine organism *Trichodesmium* can be limited by iron in natural and laboratory settings. This study investigated the iron uptake mechanisms that the model organism *T. erythraeum* IMS101 uses to acquire iron from inorganic iron and iron associated with the weak ligand complex, ferric citrate. IMS101 was observed to employ two different iron uptake mechanisms: superoxide-mediated reduction of inorganic iron in the surrounding milieu and a superoxide-independent uptake system for ferric citrate complexes. While the detailed pathway of ferric citrate utilization remains to be elucidated, transport of iron from this complex appears to involve reduction and/or exchange of the iron out of the complex prior to uptake, either at the outer membrane of the cell or within the periplasmic space. Varied iron uptake strategies may allow *Trichodesmium* to effectively scavenge iron in oligotrophic ocean environments.

Introduction

35 Iron can be a limiting nutrient to marine microorganisms in some areas of the 36 world's oceans. *Trichodesmium*, a nitrogen fixing cyanobacterium found in the tropical

2
3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
26
27
28
29
30
31
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
 1 E
40
46
47
48
49
50
51
51
5Z
53
54
55
56
57
50
50
59
60

37	and subtropical ocean, has a high iron quota (1, 2) due largely to the energy and iron-
38	expensive processes of nitrogen fixation and photosynthesis. Iron limitation decreases
39	growth, photosynthesis and nitrogen fixation in cultures of the model N_2 -fixing
40	cyanobacterium Trichodesmium erythraeum IMS101 (2-6) and similar effects are
41	believed to occur in nature (7-9). In the ocean, <i>Trichodesmium</i> can be found in colonial
42	forms which provide an enriched microenvironment that supports a diverse microbial
43	community (10-13). These Trichodesmium-associated microbes include marine bacteria
44	that produce siderophores, iron-binding ligands, under iron limiting conditions (14, 15).
45	Recent studies investigating iron uptake strategies in Trichodesmium have indicated some
46	variability in the bioavailability of ferri-siderophore complexes to <i>Trichodesmium</i> (5, 9).
47	However, it is likely that Trichodesmium must acquire iron through pathways other than
48	the traditional siderophore uptake systems since strain IMS101 lacks any readily
49	identifiable complete TonB-dependent transport system as required for conventional
50	Fe(III)-siderophore acquisition (16, 17).
51	Diverse iron acquisition systems that are not mediated by ferri-siderophore
52	complexes have been reported for various microorganisms (18-22). These include the
53	existence of transporters for inorganic ferric (Fe(III)) iron, inorganic ferrous (Fe(II)) iron,
54	or ferric iron complexes with weak ligands like citrate. Another possibility is the
55	reduction of inorganic or organically complexed ferric iron followed by either 1) uptake
56	by ferrous iron transporters such as FeoB or 2) re-oxidation of the iron and interaction of
57	the resulting ferric iron with ferric ion transporters such as the classic ABC system (18).
58	Several recent models for iron acquisition by planktonic organisms have
59	emphasized iron reduction, in particular the FeL model for some eukaryotes (23), the

Page 3 of 32

Metallomics

1		
2 3 4	60	Fe(II)s model for certain prokaryotes and eukaryotes (24, 25) and a model for
5 6	61	Synechocystis (26). In these systems, Fe(III) is either reduced at or near the cell surface
7 8 9	62	by a reductase (24, 27-30), reduced in the periplasmic space (26) or reduced in the
10 11	63	surrounding milieu by an excreted reducing agent such as superoxide (23) prior to upta
12 13	64	Superoxide released into the medium can thermodynamically reduce a range of
14 15 16	65	organically complexed iron species and has been shown to reduce these complexes und
17 18	66	oceanographically relevant conditions (31). Since the production of reactive oxygen
19 20	67	species, which includes superoxide, has been observed in numerous marine
21 22 22	68	phytoplankton species (27, 32-36), superoxide could be available to react with and redu
23 24 25	69	ferric iron, thus creating a more bioavailable iron pool for marine organisms.
26 27	70	Trichodesmium strain IMS101 has been shown to take up iron from ferric citra
28 29	71	and inorganic iron in laboratory culture conditions (5). Although the precise uptake
30 31 32	72	pathway is not known IMS101 has the potential to utilize inorganic or organic forms of
33 34	73	Fe(III) and Fe(II) because its genome contains homologs to the ferric ABC transporter
35 36	74	gene fut ABC a ferrous iron transporter feage a putative ferric reductase with homology
37 38	75	the game for the yeast farrie reductors fuel and a partial TanD compley (5, 17). Strain
39 40	75	the gene for the yeast ferric reductase <i>Jre1</i> and a partial fonB complex (5, 17). Strain
41 42 42	76	IMS101 has been shown to produce superoxide (a known reductant of ferric iron) in
43 44 45	77	culture (36) but it is unknown if this production has any impact on the pool of iron that
45 46 47	78	may be available for uptake by strain IMS101.
48 49	79	In this study, the uptake mechanisms utilized by IMS101 to acquire iron from
50 51	80	inorganic iron species and ferric citrate chelates were investigated via the use of an Fe(
52 53	81	binding ligand, superoxide dismutase (SOD), ascorbate and kinetically inert chromium
54 55 56 57 58 59 60	82	complexes. To determine whether iron reduction was occurring extracellularly prior to

1	Synechocystis (26). In these systems, Fe(III) is either reduced at or near the cell surface
2	by a reductase (24, 27-30), reduced in the periplasmic space (26) or reduced in the
3	surrounding milieu by an excreted reducing agent such as superoxide (23) prior to uptake.
4	Superoxide released into the medium can thermodynamically reduce a range of
5	organically complexed iron species and has been shown to reduce these complexes under
6	oceanographically relevant conditions (31). Since the production of reactive oxygen
7	species, which includes superoxide, has been observed in numerous marine
8	phytoplankton species (27, 32-36), superoxide could be available to react with and reduce
9	ferric iron, thus creating a more bioavailable iron pool for marine organisms.
0	Trichodesmium strain IMS101 has been shown to take up iron from ferric citrate
1	and inorganic iron in laboratory culture conditions (5). Although the precise uptake
2	pathway is not known IMS101 has the potential to utilize inorganic or organic forms of
3	Fe(III) and Fe(II) because its genome contains homologs to the ferric ABC transporter
4	gene <i>futABC</i> , a ferrous iron transporter <i>feoB</i> , a putative ferric reductase with homology to
5	the gene for the yeast ferric reductase <i>fre1</i> and a partial TonB complex (5, 17). Strain
6	IMS101 has been shown to produce superoxide (a known reductant of ferric iron) in
7	culture (36) but it is unknown if this production has any impact on the pool of iron that
8	may be available for uptake by strain IMS101.
9	In this study, the uptake mechanisms utilized by IMS101 to acquire iron from
0	inorganic iron species and ferric citrate chelates were investigated via the use of an Fe(II)

Metallomics Accepted Manuscript

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
22
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
71 10
40
49
50
51
52
53
54
55
55
30
57
58
59
60

1

83	transport three treatments were used (additions of an Fe(II) binding ligand, SOD and
84	ascorbate) to probe different aspects of the reduction process. The Fe(II) binding ligand,
85	bathophenanthrolinedisulfonic acid (BPDS) (37), traps any Fe(II) formed extracellularly
86	and inhibits reduced iron from entering the cell, similar to what is known for ferrozine,
87	another commonly used Fe(II) binding ligand (24, 27, 35, 38, 39). SOD was used to
88	investigate iron reduction by superoxide in the bulk medium. SOD is specific to
89	superoxide (40) and catalyzes the diproportionation of superoxide to hydrogen peroxide
90	and oxygen making superoxide unavailable for iron reduction. Ascorbate can reduce
91	Fe(III) (41) and can be used to increase Fe(II) in solutions and potentially increase uptake
92	if reduced iron is important in the uptake pathway. The final probe used in this study was
93	a radiolabelled Cr(III)-citrate complex. Chromium is known to form nearly identical
94	complexes with siderophores as iron, but chromium is kinetically inert to ligand
95	substitutions and reduction (42, 43). Detection of intracellular Cr will only be seen if the
96	entire metal-ligand complex is taken up. The combination of approaches used in this
97	work reveals fundamentally different iron acquisition pathways in Trichodesmium
98	IMS101 for inorganic Fe vs ferric citrate iron sources.

- 99
- 100

Experimental

101 **Growth Conditions.** Non-axenic *Trichodesmium erythraeum* IMS101 cultures (obtained 102 from J. Waterbury) were grown on a platform shaker (104 RPM) at 24°C with a 12 hour 103 light/dark cycle (75 μ E m⁻² sec⁻¹) and maintained in R medium (5). Briefly, R medium 104 was composed of 75% offshore Pacific seawater (collected ~400 miles off the coast of 105 California) and 25% Milli-Q water, 2.5×10^{-6} M Na₂EDTA, 1.0×10^{-7} M ferric citrate,

Metallomics

106	8.0×10 ⁻⁶ M KH ₂ PO ₄ , 1.0×10 ⁻⁷ M MnCl ₂ , 1.0×10 ⁻⁸ M Na ₂ MoO ₄ , 1.0×10 ⁻⁸ M ZnSO ₄ ,
107	1.0×10^{-10} M CoCl ₂ , 1.0×10^{-10} M NiSO ₄ and 1.0×10^{-10} M Na ₂ SeO ₃ . For Fe limited cultures,
108	an Fe-replete culture was gravity filtered onto a $3.0 \ \mu\text{m}$ -pore size filter, rinsed twice and
109	resuspended in Low-Fe R medium (ferric citrate omitted). Fe limited cultures used for
110	iron acquisition experiments were acclimated to low Fe conditions by maintaining the
111	cells in the initial Low-Fe R medium for one week, followed by an additional two weeks
112	of growth in fresh Low-Fe R medium. The medium for radiolabelled ⁵⁵ Fe experiments
113	was similar to the R medium, but was passed through a chelex column and amended with
114	a trace metal mix that omitted the EDTA and ferric citrate (R-FeEDTA) at pH 8. All
115	glassware, filter holders, filters and bottles were acid cleaned and microwave sterilized.
116	
117	Experimental Solutions.
117 118	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment
117 118 119	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of
 117 118 119 120 	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵⁵ FeCl ₃ (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer
 117 118 119 120 121 	Experimental Solutions.55 Fe solutions - Radioactive solutions were made fresh prior to each experimentand stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of55 FeCl3 (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer116.4 mCi mmol ⁻¹). Fresh working stocks of ⁵⁵ FeCl3 in 0.007 M HCl were used to make
 117 118 119 120 121 122 	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵⁵ FeCl ₃ (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer 116.4 mCi mmol ⁻¹). Fresh working stocks of ⁵⁵ FeCl ₃ in 0.007 M HCl were used to make ⁵⁵ Fe solutions and a fresh non-radiolabelled working stock of FeCl ₃ in 0.007 M HCl was
 117 118 119 120 121 122 123 	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵⁵ FeCl ₃ (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer 116.4 mCi mmol ⁻¹). Fresh working stocks of ⁵⁵ FeCl ₃ in 0.007 M HCl were used to make ⁵⁵ Fe solutions and a fresh non-radiolabelled working stock of FeCl ₃ in 0.007 M HCl was used to make solutions with ¹⁴ Citrate. The ⁵⁵ Fe-Citrate and Fe- ¹⁴ Citrate solutions were
 117 118 119 120 121 122 123 124 	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵⁵ FeCl ₃ (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer 116.4 mCi mmol ⁻¹). Fresh working stocks of ⁵⁵ FeCl ₃ in 0.007 M HCl were used to make ⁵⁵ Fe solutions and a fresh non-radiolabelled working stock of FeCl ₃ in 0.007 M HCl was used to make solutions with ¹⁴ Citrate. The ⁵⁵ Fe-Citrate and Fe- ¹⁴ Citrate solutions were made by mixing FeCl ₃ with sodium citrate or ¹⁴ C-citric acid (made in Milli-Q and stored
 117 118 119 120 121 122 123 124 125 	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵⁵ FeCl ₃ (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer 116.4 mCi mmol ⁻¹). Fresh working stocks of ⁵⁵ FeCl ₃ in 0.007 M HCl were used to make ⁵⁵ Fe solutions and a fresh non-radiolabelled working stock of FeCl ₃ in 0.007 M HCl was used to make solutions with ¹⁴ Citrate. The ⁵⁵ Fe-Citrate and Fe- ¹⁴ Citrate solutions were made by mixing FeCl ₃ with sodium citrate or ¹⁴ C-citric acid (made in Milli-Q and stored at -20°C) in 0.4 µm filtered UV irradiated seawater and allowed to equilibrate overnight
 117 118 119 120 121 122 123 124 125 126 	Experimental Solutions. ⁵⁵ Fe solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵⁵ FeCl ₃ (Perkin Elmer 82.68 mCi mg ⁻¹) or a stock solution of ¹⁴ Citric acid (Perkin Elmer 116.4 mCi mmol ⁻¹). Fresh working stocks of ⁵⁵ FeCl ₃ in 0.007 M HCl were used to make ⁵⁵ Fe solutions and a fresh non-radiolabelled working stock of FeCl ₃ in 0.007 M HCl was used to make solutions with ¹⁴ Citrate. The ⁵⁵ Fe-Citrate and Fe- ¹⁴ Citrate solutions were made by mixing FeCl ₃ with sodium citrate or ¹⁴ C-citric acid (made in Milli-Q and stored at -20°C) in 0.4 μm filtered UV irradiated seawater and allowed to equilibrate overnight in the dark at pH 6.6. After the equilibration period all FeCit stocks were diluted 1,000

 μ M citrate. An iron free ¹⁴C-citrate solution was made by diluting citric acid in 0.4 μ m

Metallomics Accepted Manuscript

filtered UV irradiated seawater and equilibrating the solution overnight in the dark. The final concentration of ¹⁴Citrate used in experiments was 30 nM or 2 μ M. The inorganic iron ⁵⁵FeCl₃ solution was diluted into UV irradiated seawater immediately prior to the start of each experiment to minimize colloid formation at the start of the experiment. The final concentration of ⁵⁵FeCl₃ in experiments was 10 nM. It should be noted that the FeCl₃ added to the uptake experiments likely partitioned into a spectrum of poorly-defined colloidal and soluble forms of varying lability over the time course of the experiments.

⁵¹Cr Solutions - Radioactive solutions were made fresh prior to each experiment and stored in the dark at 25°C. Radioactive stocks were prepared from a stock solution of ⁵¹CrCl₃ (Perkin Elmer 961.46 mCi mg⁻¹). Fresh working stocks of ⁵¹CrCl₃ or non-radiolabelled CrCl₃ in 0.007 M HCl were used to make ⁵¹CrCit solutions or Cr¹⁴Cit solutions. The Cr-Citrate solutions were made following the procedure of Hamada et al. (44.45) by mixing CrCl₃ with sodium citrate (made in Milli-O and stored at -20°C) or ¹⁴C-citric acid in 0.4 μm filtered UV irradiated seawater and allowed to equilibrate overnight in the dark at pH 6.6. During the equilibration period the Cr-Cit solution changed color from green to purple. The formation of the kinetically inert Cr-Citrate complex was validated by UV-VIS spectroscopy with peaks at 400 and 580 nM (44, 45). After the equilibration period all CrCit stocks were diluted 1,000 times to their final experimental concentration of 10 nM Cr with 2 µM citrate. It should be noted that the synthesized "CrCit complex" was probably actually a mixture of 1:1 and 1:2 Cr:Cit complexes, however at the 1:200 Cr:Cit ratio the 1:2 complex was likely the dominant species.

152	
153	Fe reduction probe solutions - A 100 mM bathophenanthrolinedisulfonic acid
154	(BPDS) (Sigma) stock, an Fe(II) chelator, was made in Milli-Q and stored at 4°C.
155	Superoxide dismutase (SOD) (Sigma) stocks at 8108 U ml ⁻¹ and an 81021 U ml ⁻¹ were
156	made in Milli-Q water and stored at -20°C. An 81021 U ml ⁻¹ denatured SOD stock was
157	made in Milli-Q, boiled for 10 min and cooled to room temperature the day of the
158	experiment. A stock of 1 M sodium ascorbate (Sigma) in Milli-Q was made fresh the day
159	of the experiment. The final concentrations of BPDS, SOD and ascorbate used in
160	experiments were 100 – 300 μ M, 6.66 – 66.6 U ml ⁻¹ , and 1 mM, respectively. The
161	addition of ascorbate to the uptake medium changed the pH from 8 to7 similar to what
162	was observed by Maldonado and Price in similar experiments (30).
163	
164	⁵⁵ Fe uptake inhibition experiments. Strain IMS101 cultures were grown to late
165	exponential phase (14 days) in Low-Fe R medium before being harvested for uptake
166	experiments as described in detail in Roe et al., 2012. Bacterial abundance in the cultures
167	was reduced by gently rinsing Trichodesmium erythraeum IMS101 filaments three times
168	with R-FeEDTA on a 3.0 μ m polycarbonate filter and resuspending with R-FeEDTA (5).
169	For the killed controls a final concentration of 0.01% glutaraldehyde was added to the
170	culture and allowed to equilibrate for one hour at room temperature. All of the uptake
171	experiments in this study were conducted during the light portion of the diel cycle but
172	kept in dark conditions.
173	For the Fe uptake inhibition experiments iron was supplied as ⁵⁵ FeCl ₃ or ⁵⁵ FeCit
174	(1:200, Fe:Cit) and incubated with BPDS, SOD, or denatured SOD. ⁵⁵ FeCit was also

Metallomics Accepted Manuscript

Metallomics Accepted Manuscript

1
2
3
1
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
-+0 17
4/
48
49
50
51
52
53
54
55
55
30
5/
58
59
60

175	incubated with ascorbate. The BPDS, SOD, and denatured SOD were added to each
176	treatment 15 min prior to the addition of Fe. Each treatment had 3 live replicates and 2
177	killed controls. After addition of the radiolabelled ⁵⁵ Fe, all of the bottles were placed in
178	an incubator on a platform shaker at 24°C in a dark box for 3 hours. The sampling
179	procedure is explained in detail in Roe et al., 2012. Briefly, the culture was size
180	fractioned into a <i>Trichodesmium</i> fraction (>3 μ m) or bacterial fraction (<3 μ m - >0.4 μ m)
181	A 5 ml sample was taken for the bacterial fraction and a 10 ml sample was taken for the
182	Trichodesmium fraction. The cells were collected onto the filter (<12.7 cm Hg), rinsed
183	with 5 ml seawater, 2 ml of Ti-Citrate wash (46) for 2 min to remove extracellular iron
184	and a final rinse with 5 ml seawater. The filters were then placed in a scintillation vial
185	with the scintillation cocktail Ecolite (MP), stored overnight, and read on a Beckman LS
186	6000IC scintillation counter. To determine Trichodesmium specific Fe uptake (described
187	in detail in Roe et al., 2012) the 3.0 μ m bacterial Fe uptake (determined from microscopy
188	cell counts and the <3.0 μm to >0.4 μm bacterial fraction Fe uptake) and the 3.0 μm
189	glutaraldehyde killed control was subtracted from the Trichodesmium fraction.
190	
191	Fe(II) production experiments. The Fe(II) production experiments were set up in
192	triplicate for each treatment. In these experiments ⁵⁵ FeCl ₃ was added 15 min prior to the
193	addition of the Trichodesmium culture to minimize any Fe(II) signal and allow for

- oxidation of any Fe(II) in the FeCl₃ stock. After 15 min the *Trichodesmium* and BPDS 194 were added to each bottle. 6.66 U ml⁻¹ SOD was added at this time to the SOD treatment
- 195
- 196 bottles. To create killed Trichodesmium controls, the cells were exposed to 0.01%
- glutaraldehyde for 1 hour and then rinsed on a 3.0 μ m filter and resuspended in uptake 197

Page 9 of 32

Metallomics

medium to minimize the amount of glutaraldehyde in the experimental culture. The experimental bottles were then placed in an incubator on a platform shaker at 24°C in illuminated or dark conditions for 3 hours. The Fe(II)-BPDS was collected on a Sep-Pak column, packed with C_{18} resin (Waters Association), similar to the procedure of (39). A 10 ml sample was filtered through a 3.0 µm filter, the filtrate was loaded on to the Sep-Pak column, rinsed with 10 ml of 0.5 M NaCl buffered with 0.005 M NaHCO₃ (pH 8), 20 ml of 0.5 M NaCl buffered with 0.005 M HCl (pH 3), and eluted in 5 ml methanol. The methanol was evaporated from the scintillation vial. Ecolite was added, and stored overnight before being counted on a Beckman LS 6000IC scintillation counter. The Sep-Pak was conditioned with 20 ml methanol followed by 10 ml Milli-O. The same Sep-Pak was used for each Fe treatment and rinsed between each use with 10 ml methanol and 10 ml Milli-Q. A series of abiotic controls with BPDS and the two iron sources were set up identical to the Fe(II) production experiments except, IMS101 was omitted from the medium.

Citrate complex uptake experiments. A series of uptake experiments with varying
citrate concentrations were conducted, in which ⁵⁵FeCit was supplied at a ratio of 1:200,
1:2,000, and 1:10,000 Fe:Cit. Additional experiments designed to examine the FeCit
uptake mechanism in *Trichodesmium* were conducted with ⁵¹CrCit (1:200 Cr:Cit),
Fe¹⁴Cit (1:200 Fe:Cit), and ¹⁴Cit. These experiments were set up and conducted

similarly to the ⁵⁵Fe uptake inhibition experiments described above.

Metallomics Accepted Manuscript

Trichodesmium cell counts. For the Fe inhibition experiments, an aliquot from each live radioactive bottle was preserved in 1% glutaraldehyde. The bacterial fraction was filtered onto a 0.4 µm filter and the Trichodesmium fraction was filtered onto a 3.0 µm filter (discussed above) and stained with DAPI (stain with 5 µg/ml, for 5 min). Trichodesmium cell counts were obtained from counting the trichomes ml⁻¹ and cells per trichome to calculate cells ml⁻¹. The bacteria on all of the filters were counted to obtain bacteria ml⁻¹. For the Fe(II) production experiment, one non-radioactive culture was set up identical to radioactive cultures and preserved in 1% glutaraldehyde. The sample was filtered onto a 3.0 µm filter where Trichodesmium cell counts were obtained from counting the trichomes ml^{-1} and cells per trichome to calculate cells ml^{-1} . All slides were made within 3 days of being collected and were counted on an Olympus AX70 EPI fluorescence microscope. Data analysis. A Students two tailed t-test was used to compare the radiolabelled ⁵⁵FeCl₃ and ⁵⁵FeCit uptake between the control, BPDS and SOD treatments. A two tailed t-test

was used to compare the ⁵⁵FeCit uptake between the different citrate ligand concentration
treatments. A set of two tailed t-tests were used to compare the differences in the amount

237 of Fe(II) produced by live *Trichodesmium* and the SOD and killed control treatments.

The t-tests were completed with commercially available software in Excel. For all t-teststhe 95% confidence level was used to determine statistical differences.

Results and Discussion

Metallomics

⁵⁵FeCl₃ uptake inhibition experiments

244	Incubation experiments with the Fe(II) trapping ligand, BPDS, and the superoxide
245	scavenging enzyme superoxide dismutase, SOD, were conducted with 55 FeCl ₃ to
246	determine if an extracellular reductive step is utilized by Trichodesmium erythraeum
247	IMS101 for iron acquisition. Strain IMS101's iron uptake from inorganic iron, ⁵⁵ FeCl ₃ ,
248	was similar to previously published values (5) after three hours of incubation in the dark
249	(Table 1). Complete inhibition (100%) of iron uptake from 55 FeCl ₃ by strain IMS101 was
250	observed in the presence of 100 μ M BPDS (Table 1), indicating that reduction of iron to
251	Fe(II) prior to uptake may be an important step for utilizing inorganic iron (ie. BPDS
252	inhibits IMS101 iron uptake from ⁵⁵ FeCl ₃ by trapping an Fe(II) intermediate before it can
253	be utilized by the organism). Some of the inhibition could, however, be attributed to
254	BPDS instead binding highly labile ferric iron (non-colloidal) in solution. BPDS is
255	known to reduce some Fe(III) in solution ((39) and references within) and BPDS bound
256	similar amounts of iron in fresh cell-free medium (~0.30 nM) as total strain IMS101 iron
257	uptake after three hours of incubation (~0.15 nM). However, we have shown that uptake
258	of iron from $FeCl_3$ by strain IMS101 increases by about a factor of six over 9 hours (5)
259	while the amount of Fe-BPDS formed without cells present remained constant over this
260	same time span, suggesting that strain IMS101 can access more than the most highly
261	labile iron available to BPDS.

To further investigate the potential for Fe(III) reduction prior to uptake, strain IMS101 was incubated with SOD to determine what role superoxide may play as a reductant of Fe(III) during iron acquisition. A decrease in iron uptake by IMS101 was observed with increasing SOD concentrations, up to $\sim 80\%$ at 66.6 U ml⁻¹ SOD (Table 1),

Metallomics Accepted Manuscript

suggesting that superoxide influences iron acquisition, possibly by acting as a reductant
of iron. The addition of denatured SOD to the uptake medium had no effect on iron
uptake, indicating that the effect of SOD on iron uptake is due to its reaction with
superoxide and not a detrimental effect on strain IMS101 or a non-specific interaction
with FeCl₃ (Table 1).
The utilization of superoxide as a reductant for Fe (Table 1) is consistent with

what has been observed in another marine cyanobacterium, Lyngbya majuscula (35). Although superoxide was not measured in this study, strain IMS101 is known to produce superoxide at a rate of ~ 20 fmole cell⁻¹ hr⁻¹ in culture (36). The results of this study suggest that biologically produced superoxide is reducing inorganic Fe in the bulk medium and that the reduced Fe is then available for uptake by strain IMS101. Based on the published superoxide production rate (36), we predict that the superoxide produced should be capable of reducing iron well in excess of the amount of iron taken up by strain IMS101 (Table 1), if Fe is the only entity reacting with superoxide.

⁵⁵Fe(II) Production Experiments – role of superoxide

The net production of Fe(II) by strain IMS101 from ⁵⁵FeCl₃ was examined after three hours of incubation in the dark. Total Fe(II) produced by strain IMS101 was 10.91 $\pm 1.25 \times 10^{-18}$ mole Fe cell⁻¹ (Figure 1A). The net amount of Fe(II) produced by strain IMS101 in the presence of SOD decreased by ~80% and was similar to the amount of Fe(II) produced in the glutaraldehyde killed control (Figure 1A). Both the SOD treatment and the glutaraldehyde killed control are statistically different from the live strain IMS101 iron only treatment (P < 0.05). When IMS101 filtrate (experimental culture

Page 13 of 32

1

Metallomics

2	
3	
4	
5	
0	
6	
7	
8	
ā	
40	
10	
11	
12	
13	
10	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
21	
51	
32	
33	
34	
35	
26	
30	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
52	
55 E 4	
э4	
55	
56	
57	
50	
00	
59	
60	

289 incubated for 3 hrs in the dark before removal of IMS101 by filtration) was incubated 290 with $FeCl_3$ in the dark for 3 hrs, a detectable signal of Fe(II) above the SOD treatment 291 could be observed (Figure 1C) and the Fe(II) formed was ~50% lower than the Fe(II) 292 observed in the presence of strain IMS101. All of the Fe(II) production results indicate 293 that strain IMS101 was likely producing a reductant (e.g. superoxide) that could be 294 excreted into the bulk medium and may persist long enough (superoxide half-life ranges 295 from seconds to minutes in seawater (47-50)) to reduce iron. 296 Under the tested conditions strain IMS101 was shown to produce Fe(II) from 297 inorganic iron (Figure 1) at a rate that was approximately double the iron uptake rate 298 once the glutaraldehyde killed control was accounted for, suggesting that reduction of 299 iron is not the rate limiting step in iron acquisition by strain IMS101. The rate of 300 diffusion of the ferrous iron to the cell vs the rate of re-oxidation of Fe(II) and 301 precipitation as Fe(III) may be a bigger factor limiting uptake in strain IMS101 cultures 302 since reduction does not appear to be localized at the cell surface. 303 The generation of superoxide by strain IMS101 and in turn, the amount of Fe(II) 304 produced, would likely be affected by the metabolic activity within the cells. Increased 305 extracellular superoxide production has been observed in *Chattonella marina* (51, 52) 306 and in *Cochlodinium polykrikoides* (53) in illuminated conditions and has been shown to 307 be related to photosynthetic activity. During illuminated conditions strain IMS101 was 308 observed to produce more Fe(II), ~20% (P<0.05) (Figure 1B), which may be due to 309 strain IMS101 being more metabolically/photosynthetically active, allowing for greater 310 production of superoxide that could react with and reduce iron. Previous iron uptake 311 experiments with strain IMS101 showed a slight increase in FeCl₃ uptake during

13

Metallomics Accepted Manuscript

Metallomics Accepted Manuscript

312 illuminated vs. dark conditions (5) which may be related to the differences in the amount313 of Fe(II) produced in these conditions.

315 Potential uptake mechanism(s) that could be used for FeCl₃ acquisition

Based on the experimental results with strain IMS101 a working model for uptake of inorganic Fe(III) is proposed in which an extracellular reduction step prior to uptake is necessary. The reduction of Fe(III), which is likely partitioned into a spectrum of poorly-defined colloidal and soluble forms of varying lability under our experimental conditions, appears to occur in the bulk medium by superoxide. Extracellular superoxide production by Trichodesmium has been shown (36) and superoxide can persist long enough (54) to diffuse away from the cell surface and interact with iron in the bulk medium. (It should be noted that other potential reductive pathways which utilize additional reductants (i.e., extracellular proteins, reactive metabolite - quinones) or the putative cell surface Fre1-like reductase cannot be ruled out by these experimental results.). Once the iron is reduced, the Fe(II) could be transported inside the cell by *feoB*. It may also be possible that the Fe(II) generated by reduction forms Fe' which could then be the species transported inside of the cell. A third possibility is that IMS101 utilizes the Fe stress-induced protein (IdiA) or an analog of it, which is typically a part of an ABC transporter, to transport iron (whether it is reduced Fe(II) or Fe') from the periplasmic space to the inside of the cell (55).

334 ⁵⁵Fe-citrate complex uptake inhibition experiments

Page 15 of 32

Metallomics

1		
2 3 4	335	The inhibition by BPDS and SOD of ⁵⁵ Fe uptake from Fe(III)-citrate complexes
5 6 7	336	(⁵⁵ FeCit) showed different patterns than those with ⁵⁵ FeCl ₃ . A 1:200 Fe:Citrate ratio was
7 8 9	337	used to ensure complete formation of the ferric dicitrate complex (56, 57). Iron uptake
10 11	338	from FeCit by strain IMS101 (Table 1) was ~ 2 times greater than uptake from FeCl ₃
12 13	339	after three hours of incubation in the dark.
14 15 16	340	Iron uptake from FeCit decreased when strain IMS101 was incubated with BPDS
17 18	341	(Table 1). However, the inhibitory effect of BPDS on iron uptake from FeCit was smaller
19 20 21	342	than that observed for FeCl ₃ uptake at comparable BPDS concentrations (Table 1). Due
21 22 23	343	to the potential for competition between BPDS and citrate for Fe binding, the results with
24 25	344	BPDS are a bit ambiguous. At high (300 μ M) BPDS concentrations, BPDS may be able
26 27 28	345	to reduce and bind iron thus decreasing the ferric citrate concentration, while at lower
29 30	346	(100 μ M) BPDS concentrations less of the Fe(II)-BPDS complex may form, reducing the
31 32	347	inhibitory effect. Nonetheless, it is possible that the observed reduction in iron uptake
33 34 35	348	with increased BPDS addition is due to some interaction between strain IMS101, ferric
36 37	349	citrate, and BPDS as control experiments in cell free medium with BPDS added to FeCit
38 39	350	(10 nM Fe:200 μ M citrate, previously equilibrated) showed similar amounts of Fe(II)-
40 41 42	351	BPDS formation (about 0.8 nM) regardless of the BPDS concentration used (100 μ M or
43 44	352	300 μM) .
45 46 47	353	An inhibition experiment with SOD was conducted to see if superoxide was
48 49	354	necessary for FeCit uptake. Superoxide has been shown to reduce organically complexed
50 51	355	iron, including FeCit (31). No inhibitory uptake effect was seen when strain IMS101 was
52 53 54	356	incubated with varying SOD concentrations (Table 1) suggesting reduction by superoxide
55 56 57 58 59	357	is not important for FeCit uptake.
60		13

Metallomics Accepted Manuscript

380	Metal-Citrate complex uptake experiments
379	
378	enhances the acquisition of iron from this complex for Trichodesmium.
377	does not appear that FeCit is reduced in the extracellular medium in a manner that
376	physiology (6). In any case, from the combined results with BPDS, ascorbate and SOD it
375	studies have not identified adverse impacts of ocean acidification on Trichodesmium
374	show any obvious differences between the control and ascorbate treatments, and previous
373	physiology. However, microscopic examination of the experimental cultures did not
372	observed reduction in iron uptake could be a result of a change in IMS101 cell
371	change in pH with the addition of ascorbate (from pH 8 to 7), it is possible that the
370	component of the Trichodesmium iron uptake system. It should be noted that, due to the
369	utilized/recognized by the cell. Alternatively, ascorbate may act as an inhibitor to some
368	uptake with the addition of ascorbate may indicate that the Fe(II)Citrate complex is not
367	significantly reduced in the presence of ascorbate. Thus, the observed decrease in iron
366	of significant uncomplexed Fe(II) in these experiments where iron uptake was
365	same mechanism as we observed for inorganic iron uptake, arguing against the presence
364	conditions (60). Additionally, uncomplexed Fe(II) could presumably be taken up by the
363	reduction by ascorbate since Fe(II)Cit complexes can persist under our experimental
362	complex or dissociates, it is unlikely that the Fe(II) dissociates from citrate after
361	the system. Although it is not known if the reduced iron stays as an intact Fe(II)Cit
360	given that the presence of ascorbate might be expected to increase the amount of Fe(II) in
359	showed ~65% reduction in FeCit iron uptake (Table 1). This is somewhat surprising,
358	Uptake experiments with ascorbate, a known reductant of Fe(III) (41, 58, 59),
358	Uptake experiments with ascorbate, a known reductant of Fe(III) (41, 58, 59)

Page 17 of 32

Metallomics

381	Iron uptake from ⁵⁵ FeCit by strain IMS101 was examined at 200, 2,000 and
382	10,000 fold excesses of citrate to iron. Iron uptake decreased with increasing ligand
383	concentration (Figure 2). Relative to uptake at 1:200 Fe:citrate, a ~25% decrease in iron
384	uptake was observed at 1:2,000 (P < 0.05) and ~60% decrease in iron uptake was
385	observed at 1:10,000 ($P < 0.05$) Fe:citrate (Figure 2). As the ligand concentration
386	increased, the amount of unchelated iron (FeIII') decreased by a factor of 10 (1:2,000
387	Fe:citrate)) to 50 (1:10,000 Fe:citrate)) (calculated from equations in Garg et al., 2007
388	and rates from Rose and Waite, 2003). The calculated decrease in Fe' with greater excess
389	citrate is much larger than the relative decrease observed in iron uptake. This result
390	suggests that Fe' is not the important species taken up by strain IMS101 when using
391	FeCit as an iron source. The apo citrate ligand also does not appear to compete efficiently
392	with ferric citrate for the uptake site. Both the varying Fe:citrate ratio results and the lack
393	of significant inhibition from Fe(II) probes suggest that ferric citrate is the important
394	species utilized by strain IMS101. The decrease in uptake with increasing citrate
395	concentrations suggests that the mono ligand complex (1:1 Fe:citrate), which would
396	decrease with increasing citrate concentration, may be the species most actively involved
397	in uptake.
398	To further investigate the pathway of iron acquisition from ferric citrate,

experiments were performed in which strain IMS101 was incubated with Fe¹⁴Cit or
⁵⁵FeCit (both 1:200) (Figure 3A). Strain IMS101 was observed to accumulate
approximately three times more ¹⁴C than ⁵⁵Fe intracellularly, which is slightly higher than
the 2:1 ratio of the complex (61). These results suggest that FeCit is taken up as a whole

403 complex. However, uptake of ¹⁴C from uncomplexed labelled citrate added at high

Metallomics Accepted Manuscript

concentrations (2,000 nM) was similar to the amount of ¹⁴C taken up from the Fe¹⁴Cit complex $(9.4 \pm 3.5 \text{ mole cell}^{-1} \times 10^{-18})$. At low added citrate concentrations (30 nM) no ¹⁴C uptake was observed. These results suggest that uncomplexed citrate may be incorporated intracellularly in a concentration-dependent fashion, possibly through porins, which makes the results with Fe¹⁴Cit difficult to interpret. Since iron is kinetically labile and citrate may have more than one uptake pathway into the cell it is difficult to determine how the iron in FeCit is taken up from experiments with Fe¹⁴Cit or ⁵⁵FeCit. Fe could be acquired as the entire Fe(III)Cit complex by a potential outer membrane receptor or through a porin which ferric dicitrate can pass through (porin cut-off <1500 daltons), with subsequent transport across the periplasmic membrane. Alternatively, the FeCit complex could be altered by reduction or a ligand exchange mechanism prior to uptake. Radiolabelled ⁵¹Cr(III) citrate complexes (supplied as a mixture of 1:1 and 1:2 Cr:Cit complexes) were employed to distinguish between these two possibilities (intact or altered complex transport) as the kinetically inert chromium complex will only be detected intracellularly if the entire complex is taken up. When ⁵⁵FeCit and ⁵¹CrCit (200:1) were supplied to the cultures, only the ⁵⁵Fe could be detected inside of the cell (Figure 3B). Since CrCit could not be detected intracellularly (regardless of which species, 1:1 or 1:2), the mechanism of transport of FeCit is unlikely to involve uptake of the intact complex, since the CrCit complex would also be able to be transported in this same fashion. The results with ⁵¹CrCit suggest that while the metal-ligand complex is bioavailable, an additional dissociation step, potentially iron reduction or ligand exchange, needs to occur prior to uptake. Ligand exchange seems most likely as citrate can bind Fe(II).

Page 19 of 32

427

1

Metallomics

2		
3		
4		
5		
6		
7		
1		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	<i>י</i>	
1	0	
ו ר	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
ົ	0	
2 2	0	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
2 2	י פ	
ວ ວ	0	
ۍ ∡	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
4	8	
4	9	
5	0	
5	1	
ט ה	י כ	
ວ Γ	∠ 2	
о г	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	
6	0	

428 Discussion of possible mechanism for acquisition of Fe from ferric citrate 429 Based on our experimental results, a working model for the acquisition of Fe from 430 Fe(III)Cit by strain IMS101 is proposed in which the Fe(III)Cit complex undergoes some 431 kind of iron removal in the local environment of the cell (ie. at a cell surface receptor or 432 within the periplasmic space) rather than in the bulk medium. Results from the 433 experiments performed in this study indicate that thermodynamic dissociation of 434 Fe(III)Cit to form Fe', or extracellular reduction of the Fe(III)Cit complex by superoxide 435 or another excreted reductant prior to uptake does not enhance the ability of IMS101to 436 acquire Fe from ferric citrate. Although the ferric citrate complex may be important for 437 recognition by strain IMS101, it is not clear how it is recognized since strain IMS101 438 does not have any identifiable outer membrane receptors. The recognition and transport 439 of iron in ferric citrate complexes is typically accomplished by a TonB-dependent outer 440 membrane receptor uptake system, *fecABCDE* (e.g., (62)), where the iron dissociates 441 from citrate and is transported to the cytoplasm (63). Since strain IMS101 does not have a 442 Fec uptake system, it is possible that strain IMS101 utilizes a non-classical ferric citrate 443 uptake system for acquisition of this iron source. Numerous alternative ferric citrate 444 uptake systems have been described in bacteria (21, 64-71).

Results with Cr(III)-citrate suggest that the iron in the Fe(III)-citrate complex is transported inside of the cell only after a reductive step with dissociation from citrate and/or a non-reductive ligand exchange mechanism. The reduction/exchange step could happen at the cell surface in association with a specific receptor, or the intact Fe(III)citrate complex could diffuse into the periplasmic space via a porin. Once in the

450	periplasm the iron could be internalized by an ABC transporter, <i>futABC</i> or <i>Idia</i> homolog,
451	or by the Fe(II) transporter, <i>feoB</i> . At the moment, we cannot distinguish between these
452	possibilities.
453	
454	
455	Conclusion
456	It appears that Trichodesmium erythraeum IMS101 utilizes two different iron
457	uptake mechanisms to acquire bioavailable iron, a superoxide-mediated reductive step
458	prior to uptake of inorganic $FeCl_3$ from the bulk medium and a superoxide-independent
459	transport system to acquire iron from the ferric citrate complex (Figure 4).
460	The use of superoxide as a reductant for inorganic iron may be beneficial for
461	IMS101 as superoxide has been shown to reduce labile iron in dust particles (72) and can
462	be used as an antimicrobial agent. Although superoxide is capable of reducing iron in
463	dust, it is generally believed not to be an important source of iron in surface waters (72).
464	However, it may be important in a Trichodesmium colony environment where dust can be
465	collected and kept in close proximity to Trichodesmium where the amount of bioavailable
466	iron could be enhanced by superoxide and the reducing environment of the colony
467	interior. IMS101's ability to produce superoxide may give IMS101 an additional
468	advantage since IMS101 has antioxidant defenses (73) and could use superoxide to help
469	control the bacterial population on Trichodesmium colonies in an effort to compete with
470	the bacteria for iron (5) or other resources. Our results are consistent with the recent
471	findings of Rubin and Shaked (2011) that Trichodesmium is able to mobilize iron from
472	inorganic mineral sources and suggest superoxide reduction of Fe(III) as a possible

Page 21 of 32

Metallomics

1	
2	
3	
٥ ۵	
4 5	
ວ	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
13	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
31	
25	
30	
36	
37	
38	
39	
40	
<u>41</u>	
יד 10	
-72 10	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
50	
59	
60	

mechanism. It should be noted, however, that the FeCl₃ added here as an iron source
represents a much more labile iron phase than the synthesized iron oxides and desert dust
used in the previous study (74).

476 The elucidation of *Trichodesmium erythraeum* IMS101 iron acquisition strategies 477 in this study contributes to our overall understanding of how marine organisms acquire 478 iron. The data obtained in this study for inorganic iron uptake agree with the Fe(II)s 479 model (24, 25) and the idea that unchelated iron can be a source of reduced iron, and the 480 concentration of the reduced iron at the cell surface is important for iron uptake. However, 481 it is clear from the uptake results with ferric citrate that neither of the models, Fe(II)s or 482 FeL (23), can completely explain strain IMS101 ferric citrate uptake even though both 483 models are designed with organisms that do not possess any classical siderophore 484 transport systems, similar to strain IMS101. Although reduction of ferric citrate may be a 485 factor in strain IMS101 iron uptake this reduction is not mediated by superoxide and the 486 reduced species in the bulk medium do not appear to be important for uptake, which does 487 not agree with the FeL model where Fe(II)L is important for uptake. The observed strain 488 IMS101 ferric citrate utilization also does not agree with the Fe(II)s model as uptake does 489 not appear to be dependent on the unchelated iron concentration in the medium. This 490 suggests that more information about iron uptake pathways in marine organisms is 491 needed to advance our knowledge of iron bioavailability in the ocean environment and 492 the development of more robust models of iron biogeochemistry in marine systems.

- 493
- 494
- 495

496 Acknowledgements

- 497 We would like to thank J. B. Waterbury for the initial *Trichodesmium* culture. D. Parker
- 498 for helpful discussions. This work was funded by NSF grant OCE-0327070 to Kathy
- 499 Barbeau and Margo G. Haygood and NSF grant OCE-1061068 to Kathy Barbeau and
- 500 Bianca Brahamsha. This manuscript was improved by the comments of two anonymous

501 reviewers.

60

Metallomics

1			
2			
3	503	Refe	rences
4	504		
5	505	1	Kustka A. Carnenter E.I. Sanudo-Wilhelmy SA, 2002 Iron and marine
0 7	505	1.	nitrogen fixation: progress and future directions Res Microbiol 153.255-262
8	500	C	Dermon Erenk I. Cyllen IT. Shelved V. Sherrell DM. Fallwayski DC. 2001
g	507	Ζ.	Berman-Frank I, Cullen J I, Snaked Y, Snerrell KNI, Falkowski PG. 2001.
10	508		Iron availability, cellular iron quotas, and nitrogen fixation in <i>Trichodesmium</i> .
11	509		Limnol. Oceanogr. 46: 1249-1260.
12	510	3.	Mulholland MR, Bernhardt PW. 2005. The effect of growth rate, phosphorus
13	511		concentration, and temperature on N-2 fixation, carbon fixation, and nitrogen
14	512		release in continuous cultures of Trichodesmium IMS101. Limnol. Oceanogr.
15	513		50: 839-849.
16	514	4	Kunner H. Setlik I. Seibert S. Prasil O. Setlikova E. Strittmatter M. Levitan
17	515		O. Lohscheider J. Adamska I. Berman-Frank I. 2008 Iron limitation in the
18	516		marine cyanobacterium <i>Trichodesmium</i> reveals new insights into regulation of
19	517		nharme eyanobacterium <i>Trichoucismum</i> reveals new insights into regulation of
20	510	F	Des VI Derheen V Menn EL Heursed MC 2012 Acquisition of iron by
27	510	3.	Koe KL, Barbeau K, Mann EL, Haygood MG. 2012. Acquisition of fion by
23	519		<i>Trichodesmium</i> and associated bacteria in culture. Environ. Microbiol. 14:1681-
24	520	c.	1695.
25	521	6.	Shi DL, Kranz SA, Kim JM, Morel FMM. 2012. Ocean acidification slows
26	522		nitrogen fixation and growth in the dominant diazotroph Trichodesmium under
27	523		low-iron conditions. Proceedings of the National Academy of Sciences of the
28	524		United States of America 109: E3094-E3100.
29	525	7.	Mills MM, Ridame C, Davey M, La Roche J, Geider RJ. 2004. Iron and
30	526		phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic.
32	527		Nature 429: 292-294
33	528	8	Kustka AB, Sanudo-Wilhelmy SA, Carnenter EJ, Canone D, Burns J, Sunda
34	529	0.	WG 2003 Iron requirements for dinitrogen- and ammonium-supported growth in
35	530		cultures of <i>Trichodesmium</i> (IMS 101): Comparison with nitrogen fixation rates
36	531		and iron: carbon ratios of field populations. Limpology and Oceanography
37	527		
38	552	0	40,1007-1004.
39	555	9.	Chappen PD, Monett JW, Hynes ANI, webb EA. 2012. Molecular evidence of
40	534		iron limitation and availability in the global diazotroph <i>Trichodesmium</i> . Isme
41 12	535		Journal 6: 1728-1739.
43	536	10.	Capone DG, Ferrier MD, Carpenter EJ. 1994. Amino acid cycling in colonies
44	537		of the planktonic cyanobacterium Trichodesmium thiebautii. Appl. Environ.
45	538		Microbiol. 60:3989-3995.
46	539	11.	Glibert PM, Bronk DA. 1994. Release of dissolved organic nitrogen by marine
47	540		diazotrophic cyanobacteria. Trichodesmium spp. Appl. Environ. Microbiol.
48	541		60 :3996-4000
49	542	12	Mulhalland MR Ohki K Canone DG 2001 Nutrient controls on nitrogen
50	5/13	12.	untake and metabolism by natural nonulations and cultures of Trichodasmium
51 50	545		(Cyonobactoria) I Dhyaol 27 :1001 1000
52 53	544 515	12	(Cyanovaciena). J. Fllycol. 57:1001-1009. Showidon CC. Steinhourg DV. Kling CW, 2002. The microhiol and material
53 54	545	13.	Sheridan UC, Steinderg DK, Kling GW. 2002. The microbial and metazoan
55	546		community associated with colonies of <i>Trichodesmium</i> spp,.: a quantitative
56	547		survey. J. Plankton Res 24:913-922.
57			
58			
59			

1				
∠ 3	5 40	14		
4	548	14.	Haygood MG, Holt PD, Butler A. 1993. Aerobactin production by a plankton	10
5	549	1.5	marine <i>Vibrio</i> sp. Limnol. Oceanogr. $38:1091-1097$.	74
6	550	15.	Butler A. 2005. Marine siderophores and microbial iron mobilization, p. 369-3	/4.
7	551		Springer.	
8	552	16.	Hopkinson BM, Morel FMM. 2009. The role of siderophores in iron acquisiti	on
9 10	553		by photosynthetic marine microorganisms. Biometals 22: 659-669.	
11	554	17.	Chappell PD, Webb EA. 2010. A molecular assessment of the iron stress	
12	555		response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol	•
13	556		12: 13-27.	
14	557	18.	Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron	
15	558		homeostasis. Fems Microbiol. Rev. 27:215-237.	
16	559	19.	Wandersman C, Delepelaire P. 2004. Bacterial iron sources: From siderophor	res
17	560		to hemophores. Annual Review of Microbiology 58: 611-647.	
19	561	20.	Braun V, Killmann H. 1999. Bacterial solutions to the iron supply problem.	
20	562		Trends in Biochemical Sciences 24 :104-109.	
21	563	21.	Katoh H. Hagino N. Grossman AR. Ogawa T. 2001. Genes essential to iron	
22	564		transport in the cyanobacterium <i>Synechocystis</i> sp strain PCC 6803 Journal of	
23	565		Bacteriology 183 ·2779-2784	
24	566	22	Braun V Hantke K Koster W 1998 Bacterial iron transport: Mechanisms	
25	567	22.	genetics and regulation Metal Ions in Biological Systems. Vol 35 35:67-145	
20 27	568	22	Salmon TD Dose AL Noilan BA Waite TD 2006 The Fall model of iron	
28	560	23.	samon 11, Kose AL, Nehan DA, Wate TD. 2000. The FeL model of non	
29	509		acquisition. Nondissociative reduction of reflic complexes in the marine	
30	570	24	shi hay K at AD M a FMM 2005 A 111 44-1754.	
31	5/1	24.	Snaked Y, Kustka AB, Morel FMM. 2005. A general kinetic model for iron	`
32	572		acquisition by eukaryotic phytoplankton. Limnology and Oceanography 50:872	2-
33	573		882.	
34 35	574	25.	Morel FMM, Kustka AB, Shaked Y. 2008. The role of unchelated Fe in the in	ron
36	575		nutrition of phytoplankton. Limnology and Oceanography 53:400-404.	
37	576	26.	Kranzler C, Lis H, Finkel OM, Schmetterer G, Shaked Y, Keren N. 2013.	
38	577		Coordinated transporter activity shapes high-affinity iron acquisition in	
39	578		cyanobacteria. ISME J.	
40	579	27.	Kustka AB, Shaked Y, Milligan AJ, King DW, Morel FMM. 2005.	
41	580		Extracellular production of superoxide by marine diatoms: Contrasting effects of	on
42	581		iron redox chemistry and bioavailability. Limnology and Oceanography 50:117	12-
43 44	582		1180.	
45	583	28.	Eide DJ. 1998. The molecular biology of metal ion transport in Saccharomyces	5
46	584		cerevisiae. Annual Review of Nutrition 18:441-469.	
47	585	29.	Maldonado MT, Price NM. 2000. Nitrate regulation of Fe reduction and	
48	586		transport by Fe-limited <i>Thalassiosira oceanica</i> . Limnology and Oceanography	
49	587		45: 814-826	
50	588	30	Maldonado MT Price NM 2001 Reduction and transport of organically hour	nd
51	589	50.	iron by Thalassiosira oceanica (Bacillarionbyceae) Journal of Phycology	iiu
52 53	500		37 •298_309	
54	500	21	Bose AI Waite TD 2005 Reduction of organically complexed ferrie iron by	
55	502	51.	superovide in a simulated network water Environ Sei Technol 20.2645 2650	
56	392		superoxide in a simulated natural water. Environ. Sci. Technol. 39:2045-2030.	
57				
58				
59 60				24
00				

1 2

Metallomics

3	593	32.	Henry MF, Vignais PM. 1980. Production of superoxide anions in Paracoccus
4 5	594		denitrificans. Arch. Biochem. biophys. 203:365-371.
6	595	33.	Yamasaki Y, Kim DI, Matsuyama Y, Oda T, Honjo T. 2004. Production of
7	596		superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia
8	597		mikimotoi. J. Biosci. Bioeng. 97:212-215.
9	598	34.	Marshall JA. de Salas M. Oda T. Hallegraeff G. 2005. Superoxide production
10	599		by marine microalgae Mar Biol 147: 533-540
11	600	35	Rose AL. Salmon TP. Lukondeh T. Neilan BA. Waite TD. 2005 Use of
12	601		superoxide as an electron shuttle for iron acquisition by the marine
14	602		cvanobacterium Lyngbya majuscula Environ Sci Technol 39: 3708-3715
15	603	36	Godrant A Rose AL Sarthou G Waite TD 2009 New method for the
16	604	50.	determination of extracellular production of superoxide by marine nhytonlankton
17	605		using the chemiluminescence probes MCLA and red-CLA Limnol Oceanogr
18	606		Meth 7.682_602
19	607	37	Blair D. Diabl H 1961 Bathonhananthrolinedisulphonic acid and
20 21	608	57.	bath oppresent for iron and copport
22	600		Talenta 7 :162, 174
23	610	20	Cang S Dass AL Codmont A Waite TD 2007 Iron untake by the job thyotoxic
24	010	38.	Garg S, Kose AL, Gourant A, Waite TD. 2007. Iton uptake by the ichthyotoxic
25	011		challonella marina (Raphidophyceae): Impact of superoxide generation. Journal
26	61Z	20	of Phycology 43:978-991.
27 28	613	39.	Snaked Y, Kustka AB, Morel FMIN, Erel Y. 2004. Simultaneous determination
20 29	614		of iron reduction and uptake by phytoplankton. Limnol. Oceanogr. Meth. 2:13/-
30	615	10	
31	616	40.	Wolfe-Simon F, Grzebyk D, Schofield O, Falkowski PG. 2005. The role and
32	617	4.1	evolution of superoxide dismutases in algae. Journal of Phycology 41:453-465.
33	618	41.	Anderson MA, Morel FMM. 1982. The influence of aqueous iron chemistry on
34 35	619		the uptake of iron by the coastal diatom <i>Thalassiosira weissflogii</i> . Limnology and
36	620		Oceanography 27:789-813.
37	621	42.	Snow GA. 1969. Metal complexes of Mycobactin P and of desferrisideramines.
38	622		Biochem. J. 115:199-&.
39	623	43.	Raymond KN. 1977. Kinetically inert complexes of the siderophores in studies
40	624		of microbial iron transport, p. 33-54. In Raymond K (ed.), Bioinorganic
41 12	625		Chemistry II. American Chemical Society, Washington, D.C.
43	626	44.	Hamada YZ, Carlson BL, Shank JT. 2003. Potentiometric and UV-Vis
44	627		spectroscopy studies of citrate with the hexaquo Fe3+ and Cr3+ metal ions.
45	628		Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 33:1425-
46	629		1440.
47	630	45.	Hamada YZ, Bayakly N, Peipho A, Carlson B. 2006. Accurate potentiometric
48	631		studies of chromium-citrate and ferric-citrate complexes in aqueous solutions at
49 50	632		physiological and alkaline pH values. Synthesis and Reactivity in Inorganic
51	633		Metal-Organic and Nano-Metal Chemistry 36:469-476.
52	634	46.	Hudson RJM, Morel FMM. 1989. Distinguishing between extracellular and
53	635		intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34:1113-1120.
54	636	47.	Hansard SP, Vermilyea AW, Voelker BM. 2010. Measurements of superoxide
55 56	637		radical concentration and decay kinetics in the Gulf of Alaska. Deep-Sea
50 57	638		Research Part I-Oceanographic Research Papers 57:1111-1119.
58			
59			
60			25

2				
3	639	48	Heller MI, Croot PL, 2010, Superoxide Decay Kinetics in the Southern Ocean	
4	640	10.	Environmental Science & Technology 44.191-196	
5	641	<u>4</u> 9	Rose AL Godrant A Furnas M Waite TD 2010 Dynamics of	
0 7	642	ту.	nonphotochemical superovide production and decay in the Great Barrier Reef	
7 8	642		lagoon Limpology and Oceanography 55:1521, 1526	
9	643	50	Dage AL Webb EA Weite TD Meffett IW 2008 Measurement and	
10	644	50.	Rose AL, webb EA, waite 1D, Monett JW. 2008. Measurement and	
11	645		implications of nonphotochemically generated superoxide in the equatorial Pacifi	IC
12	646		Ocean. Environmental Science & Technology 42:2387-2393.	
13	647	51.	Marshall JA, Hovenden M, Oda T, Hallegraeff GM. 2002. Photosynthesis	
14	648		does influence superoxide production in the ichthyotoxic alga Chattonella marine	a
15	649		(Raphidophyceae). J. Plankton Res 24:1231-1236.	
16 47	650	52.	Marshall JA, Munday B, Yoshizawa Y, Hallegraeff GM. 2001. Effect of	
17	651		irradiance on superoxide production by <i>Chattonella marina</i> (Raphidophyceae)	
10	652		from South Australia and Japan. JOC UNESCO. Paris.	
20	653	53	Kim CS. Lee SG. Lee CK. Kim HG. Jung J. 1999 Reactive oxygen species as	
21	654	00.	causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodiniur	n
22	655		nalylwikeides. I. Denkton Bes 21.2105 2115	u
23	656	51	polykrikoldes. J. Flankton Kes 21:2103-2113. Zafini an OC 1000. Chamietry of superpendid ion radical (O^{-1}) in accurate 1	
24	030	54.	Zalifiou OC. 1990. Chemistry of superoxide ion-radical (O_2) in seawater .1.	
25	657		pK^{*}_{asw} (HOO) and uncatalyzed dismuration kinetics studied by pulse radiolysis.	
26	658		Marine Chemistry 30: 31-43.	
27	659	55.	Webb EA, Moffett JW, Waterbury JB. 2001. Iron stress in open-ocean	
28	660		cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.):	
29	661		Identification of the IdiA protein. Applied and Environmental Microbiology	
30 31	662		67: 5444-5452.	
32	663	56.	Messenger AJM, Ratledge C. 1982. Iron transport in <i>Mycobacterium</i>	
33	664		smegmatis: uptake of iron from ferric citrate. J. Bacteriol. 149:131-135.	
34	665	57	Spiro TG. Bates G. Saltman P. 1967 Hydrolytic polymerization of ferric citrate	2
35	666	01.	II influence of excess citrate Journal of the American Chemical Society	
36	667			
37	669	50	When MMT Mentell AF 1067 Metal ion and metal chalate catalyzed evidation	n
38	660	56.	f agaserbia agid by malagular avygan L Curria and farria ion astalyzed avidation	1
39	009		of ascoroic actu by molecular oxygen. I. Cupic and leftic for cataryzed oxidatio	п.
40 41	6/0	-	Journal of the American Chemical Society 89:41/6-4185.	
41 42	6/1	59.	Khan MMT, Martell AE. 1967. Metal ion and metal chelate catalyzed oxidation	1
43	672		of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed	
44	673		oxidation. Journal of the American Chemical Society 89:7104-7111.	
45	674	60.	Pham AN, Waite TD. 2008. Oxygenation of Fe(II) in the presence of citrate in	
46	675		aqueous solutions at pH 6.0-8.0 and 25 degrees C: Interpretation from an	
47	676		Fe(II)/citrate speciation perspective. Journal of Physical Chemistry A 112: 643-	
48	677		651.	
49	678	61	Pierre JL , Gautier-Luneau I , 2000 Iron and citric acid. A fuzzy chemistry of	
50	679	01.	ubiquitous biological relevance Biometals 13 .91-96	
51 52	680	62	Staudanmaier H. Vanhova B. Varaghi 7. Braun V. 1980. Nucleotide	
52 53	681	02.	sequences of the face CDE genes and locations of the proteins suggest a	
54	697		Designation Dividing Drotain Dependent transport machanism for iron(III)	
55	082		r enplasmic-binding-riotem-Dependent transport mechanism for fron(III)	
56	083		dicitrate in <i>Escherichia coli</i> . J. Bacteriol. 1/1:2020-2033.	
57				
58				
59			۲	6
60			2	U

59

60

Metallomics

1			
2			
3	684	63	Braun V Mahren S 2005 Transmembrane transcriptional control (surface
4	605	05.	signalling) of the Each wich is call Each type. Each Microbiology Devices 20(72)
5	083		signating) of the Escherichia con rec type. renis withoutology Reviews 29:0/3-
6	686		684.
7	687	64.	Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD,
8	688		Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Ouackenbush J,
9	689		Zhou LX, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R.
10	600		Khalak HC Clodak A McKannay K Fitzagarald I M Loa N Adams MD
11	(01		Halar HO, Oluck A, McKellicy K, Hitzegelalu LM, Etc. N, Aualis MD,
12	091		Hickey EK, Berg DE, Gocayne JD, Utterback TK, Peterson JD, Keney JM,
13	692		Cotton MD, Weldman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes
14	693		WS, Weidman JM, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter
15	694		JC. 1997. The complete genome sequence of the gastric pathogen <i>Helicobacter</i>
16	695		<i>pvlori</i> Nature 388 :539-547
17	696	65	Velavudhan I. Hughes NJ. McColm AA. Bagshaw J. Clavton CL. Andrews
18	607	05.	SC Kelly DL 2000 Iron acquisition and virulance in Helicohaster muleri: a
19	(09/		SC, Keny DJ. 2000. If on acquisition and virulence in <i>Heitcobacter pytori</i> . a
20	698		major role for FeoB, a high-affinity ferrous iron transporter. Molecular
21	699		Microbiology 37: 274-286.
22	700	66.	Laboure AM, Briat JF. 1993. Uptake of iron from ferric citrate in the
23	701		cvanobacteria Svnechocvstis PCC6803. Comptes Rendus De L Academie Des
24	702		Sciences Serie Jii-Sciences De La Vie-Life Sciences 316 :661-666
25	702	67	Cuarinat MI Moidl FI Plassnar O 1000 Citrate as a sideranhare in
20	705	07.	Bunduchi shi mi imani u L. Destarial 170 ,2000, 2202
21	/04	(0)	Braayrnizobium japonicum. J. Bacteriol. 172:3298-3303.
20	/05	68.	Mazoy R, Botana LM, Lemos ML. 1997. Iron uptake from ferric citrate by
29	706		<i>Vibrio anguillarum</i> . Fems Microbiology Letters 154: 145-150.
31	707	69.	Jones CM, Niederweis M. 2010. Role of Porins in Iron Uptake by
32	708		<i>Mycobacterium smegmatis</i> . Journal of Bacteriology 192 :6411-6417.
33	709	70	Angerer A. Gaisser S. Braun V. 1990 Nucleotide sequences of the sfuA sfuB
34	710		and sfuC genes of Servatia marcescens suggest a periplasmic-hinding-protein-
35	711		dependent iron transporter mechanism. I. Pasterial 177 :572,578
36	711	71	Marshall D. Stintei A. Cilmann C. Marson IM. Daala V. 2000. Citanta madiated
37	/12	/1.	Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K. 2009. Citrate-mediated
38	713		iron uptake in <i>Pseudomonas aeruginosa</i> : involvement of the citrate-inducible
39	714		FecA receptor and the FeoB ferrous iron transporter. Microbiology-Sgm 155:305-
40	715		315.
41	716	72.	Heller MI. Croot PL. 2011. Superoxide decay as a probe for speciation changes
42	717		during dust dissolution in Tropical Atlantic surface waters near Cane Verde
43	719		Marina Chamistry 126.27 55
44	710	72	Walnie Chemisu y 120.37-33. Kalanan D. Dan Annata A. Danman Engels I. 2000. Constantial museu la the
45	/19	13.	Keiman D, Ben-Amotz A, Berman-Frank I. 2009. Carotenoids provide the
46	720		major antioxidant defence in the globally significant N-2-fixing marine
47	721		cyanobacterium <i>Trichodesmium</i> . Environmental Microbiology 11 :1897-1908.
48	722	74.	Rubin M, Berman-Frank I, Shaked Y. 2011. Dust- and mineral-iron utilization
49	723		by the marine dinitrogen-fixer <i>Trichodesmium</i> . Nature Geoscience 4:529-534
5U	724		
51	727		
52 52	123		
ວ ວ 54	/26		
04 55			
55 56			
57			
58			
50			

Table 1. ⁵⁵Fe % uptake from ⁵⁵FeCl₃ and ⁵⁵FeCitrate per *Trichodesmium erythraeum* IMS101 cell. Average mole ⁵⁵Fe uptake for each iron source is shown for control treatments from 3 experiments. % uptake for different treatments measured in triplicate is shown relative to the Fe source control treatment. Treatments include adding BPDS (bathophenanthrolinedisulfonic acid) - 100 µM, 3X BPDS - 300 µM, SOD (superoxide dismutase) - 6.66 U ml⁻¹, 10X SOD - 66.6 U ml⁻¹, DSOD (denatured SOD) - 66.6 U ml⁻¹, and Asc (ascorbate) - 1 mM at their respective final concentrations.* Indicates that the treatment is statistically different from the control (P<0.05).

735					
736			Ave mole ⁵⁵ Fe		
737	Source	Treatment	$cell^{-1} \times 10^{-18}$	% Uptake	Experiment
738	FeCl ₃	Control	2.75 ± 1.06	100	-
739		BPDS		0.3*	А
740		SOD		67.3	В
741		10X SOD		20.0*	В
742		DSOD		111.8	С
743					
744	FeCit	Control	8.49 ± 3.81	100	
745		BPDS		69.1*	D
746		3X BPDS		23.4*	D
747		SOD		106.7	E
748		10X SOD		100.4	Е
749		Asc		35.1*	F
750					

1 2 3 4 5 6	758 759 760		
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	761 762 763 764 765 766	f_{1}^{0} f_{2}^{0} f_{2	
27 28	767	IMS101, and 6.66 U ml ⁻¹ SOD. The Glut treatment contained FeCl ₃ , 100 μ M BPDS, IMS101, and 6.66 U ml ⁻¹ SOD. The Glut treatment contained FeCl ₃ , 100 μ M BPDS	Ś
29 30	768	and glutaraldehyde killed <i>Trichodesmium</i> . B) Strain IMS101 was incubated with	
31	769	FeCl ₃ in light or dark conditions. Each treatment contained 10 nM FeCl ₃ , 100 μ M	
32	770	BPDS and strain IMS101 C) The Live treatment contained 10 nM FeCl ₃ , 100 μ M	
33	771	BPDS and strain IMS101. Live SOD treatment contained 10 nM FeCl ₃ , 100 μ M	
34	772	BPDS, strain IMS101, and 6.66 U ml ⁻¹ SOD. The medium treatment (Med.) had	
35	773	strain IMS101 incubated in the medium for 3 hrs and then removed immediately pr	rior
36	774	to the addition of 10 nM FeCl ₃ and 100 μ M BPDS. The medium (Med.) SOD	
37	775	treatment had strain IMS101 incubated in the medium for 3 hrs and then removed	
30 39	776	immediately prior to the addition of 10 nM FeCl ₃ , 100 μ M BPDS and 6.66 U ml ⁻¹	
40	777	SOD. All treatments were incubated with FeCl ₃ for 3 hrs. Data are averages of 3	
41	778	replicates and error bars are standard deviation of the mean. All experiments were	
42	779	conducted with $1.3 - 1.5 \times 10^4$ cells ml ⁻¹ .	
43	780		
44 45	781		
45 46	782		
47	783		
48	784		
49	785		
50	786		
51 52	787		
ວ∠ 53	788		
54	789		
55	700		
56	701		
57	702		
58	192		
59			20
60			29

Metallomics Accepted Manuscript

Metallomics

Figure 3. *Trichodesmium erythraeum* IMS101 FeCit uptake experiments with ⁵⁵Fe, ⁵¹Cr and ¹⁴Citrate. A) Uptake experiments were conducted with a 1:200 Fe:Cit ratio at 10 nM Fe. B) Uptake experiments were conducted at a 1:200 metal:Cit ratio and metal concentrations of 10 nM. Data are averages of 3 replicates and error bars are standard deviation of the mean. Experiment was conducted with $2.8 - 5.5 \times 10^4$ cells ml⁻¹. Note that all axis are different ranges.

Metallomics Accepted Manuscript

Metallomics

Figure 4. Schematic diagram of iron transport mechanisms in *Trichodesmium erythraeum*IMS101. Iron acquisition is accomplished by either extracellular reduction of inorganic
Fe by superoxide and the recognition of FeCit at the outer membrane followed by
reduction and/or removal of Fe from the complex prior to transport.