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High-throughput computational screening of metal-

organic frameworks 

Yamil J. Colón and Randall Q. Snurr*   

There is an almost unlimited number of metal-organic frameworks (MOFs).  This creates 

exciting opportunities but also poses a problem:  How do we quickly find the best MOFs for a 

given application?  Molecular simulations have advanced sufficiently that many MOF 

properties – especially structural and gas adsorption properties – can be predicted 

computationally, and molecular modeling techniques are now used increasingly to guide the 

synthesis of new MOFs.  With increasing computational power and improved simulation 

algorithms, it has become possible to conduct high-throughput computational screening to 

identify promising MOF structures and uncover structure/property relations. We review 

these efforts and discuss future directions in this new field.   

 

1. Introduction 

 Metal-organic frameworks (MOFs)1-4 are the ultimate 

designer materials.  These novel, crystalline, nanoporous 

materials are comprised of inorganic subunits (metal ions, 

clusters, or chains) connected by organic linkers via 

coordinating groups such as carboxylates, phosphonates, or 

nitrogen-containing ligands.  The modular synthesis approach,5 

along with the great diversity of available building blocks and 

the ability to introduce chemical functionalities6-9 into the 

structures, provides researchers with the opportunity to tune the 

properties of these materials with great control10-12 and to 

design materials for particular applications.  As a result, MOFs 

have been studied for a wide variety of applications, including 

gas storage,13, 14 separations,15-18 sensing,19, 20 drug delivery,21-23 

light harvesting,24-26 and catalysis.27-30  

 The number of synthesized MOFs has been increasing 

exponentially,31 and given the large number of possible linkers 

and metal nodes and the various ways of combining them, the 

number of possible MOF structures is essentially limitless.  

This presents exciting opportunities, but it also poses a daunting 

challenge.  It is impractical to synthesize and test millions of 

MOFs for each application of interest; some direction is 

necessary.  Chemical intuition and computational modeling of 

individual structures will continue to play an important role.  

However, in the past few years, another powerful tool has 

emerged:  high-throughput computational screening, where the 

properties of thousands of MOF candidates are evaluated to 

identify promising candidates and to uncover useful 

structure/property relations.   

 The modular building-block approach and the potential for 

computational screening go to the heart of the newly introduced 

Materials Genome Initiative (MGI), which aims to “discover, 

develop, and deploy new materials twice as fast”32 as currently 

possible.  MGI seeks to combine theory, computation, 

synthesis, and characterization to accelerate the discovery of 

new materials and their release into the market.33, 34  

Undoubtedly, computational high-throughput screening 

techniques will play a vital role in the development of many 

classes of materials, not just MOFs. 

 In this review, we highlight efforts from the recent literature 

that use high-throughput computational techniques to screen 

MOFs for gas adsorption and separations.  We start with the 

problem of obtaining the MOF structures, followed by an 

overview of computational methods for characterizing the 

structures and predicting their gas adsorption behaviour.  

Efforts focused on identifying materials for natural gas storage, 

hydrogen storage, and various separations are reviewed, and 

data mining techniques are discussed as a way to obtain useful 

knowledge and insights from the large amount of data 

generated in high-throughput screening.  Finally, we discuss 

possible future directions and opportunities.   

2. Structures  

 MOF structures for high-throughput computational 

screening can be taken from experimental crystal structures or 

(for newly proposed MOFs) generated on the computer.  For a 

single structure, neither option is difficult, but automating these 

processes for thousands of structures is not a trivial task.   

 When new MOFs are synthesized, the crystal structures are 

usually deposited in the Cambridge Structural Database 

(CSD).35   A recent paper by Furukawa and co-workers reports 

that, as of 2011, there were close to 6,000 MOF structures in 

the CSD (Figure 1).31  However, these structures are not 

labelled as “MOFs” and the CSD also contains several hundred 
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thousand other crystal structures.  So, the first problem is to 

determine which structures in the CSD are MOFs.  This can be 

done by searching for extended structures that contain bonds 

between metal atoms and elements such as C, B, N, O, Si, P, 

and S.36  

 
Figure 1.  MOF structures reported in the CSD from 1971 to 2011.  Reprinted 
with permission from Ref 31.  Copyright 2013 The American Association for the 

Advancement of Science. 

 Many of the MOF crystal structures in the CSD contain 

solvent molecules.  In addition, there may be varying degrees of 

disorder, missing H atoms, overlapping atoms, etc.  While 

removing solvent molecules and correcting a structure are 

straightforward for a single structure using standard 

visualization tools, this is not a practical approach for large-

scale studies. Therefore, automated methods have been 

developed by Watanabe and Sholl,37 and more recently by 

Goldsmith et al.,36 to screen through the structures in the CSD 

to identify MOF structures, remove solvent molecules, fix 

disorder, etc.  Structures that are deemed to be too difficult to 

fix can be discarded from the screening process.  Figure 2 

shows a flowchart summarising the process used by Goldsmith 

et al.36  

 
Figure 2.  Flowchart of process used by Goldsmith et al. to obtain “computation 
ready” MOF structures from the CSD.  Reprinted with permission from Ref 36. 

Copyright 2012 American Chemical Society. 

 An alternative to obtaining MOF crystal structures from the 

CSD is to take advantage of the building-block nature of MOFs 

and generate new structures on the computer.  Mellot-

Draznieks et al.38 developed an approach known as “automated 

assembly of secondary building units” or AASBU.  Briefly, the 

building blocks, also known as secondary building units 

(SBUs), are randomly distributed in a unit cell and given 

interaction sites at points where they can connect to other 

building units.  These “sticky” sites are parameterized to 

promote or disfavor certain SBU connections.  A simulated 

annealing Monte Carlo algorithm is used to allow the building 
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units to rearrange.  At each step the cell size and distances 

between SBUs are allowed to vary to relieve interatomic 

contacts.  One run typically yields ~104 trial configurations.  

Radial distribution functions and simulated diffraction patterns 

are used to identify duplicates, which are then removed.  The 

configurations are then minimized and any resulting 

redundancies are removed.  This results in a few hundred 

possible SBU configurations, which are ranked according to a 

cost function or degree of connectivity, and the symmetry of 

the arrangement is determined. This provides a set of viable 

structures that could form from a given set of building units and 

insight into the topological preferences of certain SBUs.  This 

technique can be used to determine structures of MOFs from 

powder x-ray diffraction when obtaining large single crystals is 

difficult.38   

 As an alternative to the energy minimization approach used 

in the AASBU method, geometric approaches have been 

developed.  These can be classified as “bottom-up” and “top-

down.”  The bottom-up approach consists of sequentially 

connecting SBUs until a periodic crystal structure is formed.  

The top down approach starts with a given net or topology, and 

the appropriate building blocks are then mapped onto the net to 

generate the structure.  Moreover, these techniques allow for 

the construction of structures that contain more than one 

linker.39  Figures 3 and 4 illustrate the top-down and bottom-up 

approaches, respectively, for generating structures.40-46  Related 

methods have been used to generate molecular cages.47, 48 

 For top-down generation, the nets can be obtained from the 

Reticular Chemistry Structure Resource (RCSR).2  Several 

groups have used some of these nets to generate covalent 

organic frameworks (COFs)44, 49, 50 and zeolitic imidazolate 

frameworks (ZIFs)51-54 using a top-down approach.  Lin et al.52 

generated ZIFs using a top-down approach.  Using Zeo++55 

zeolites were used as templates for the ZIFs.  The unit cell of 

the corresponding zeolite was scaled by 1.95, which is how 

many times larger the Zn-imidazole ring distance is than the Si-

O distance in zeolites.  Oxygen atoms were replaced with 

imidazole rings and Si with Zn atoms.  Resulting geometries 

were validated using ZIFs with known geometries. More 

recently, Martin and Haranczyk56 constructed MOFs based on 

RCSR topologies, also implemented using Zeo++.  Combining 

this approach with new network generating algorithms may 

lead to the discovery of new MOFs with nets and topologies not 

yet synthesized.57-61     

 
Figure 3.  Schematic of the top-down approach.  Here, a terephthalic acid linker 
is mapped onto the edge, and a Zn4O complex is mapped onto the node of a pcu 

net, forming MOF-51.  C = gray, O = red, H = white, Zn = light blue. 

 A bottom-up approach was developed by Wilmer et al.42 

First, building blocks were extracted from the structures of 

existing MOFs, and a library was created, including the 

geometries of the building blocks, information on which blocks 

could combine with each other, and geometric information on 

how the building blocks connect (Figure 4). To generate a new 

MOF structure, building blocks were connected in a step-wise 

fashion.  When an atomic overlap occurred, a new building 

block or connection site was chosen until all possibilities were 

exhausted.  At some point, instead of adding a building block, 

periodic boundary conditions were imposed.  When no more 

building blocks could be added, the crystal generation process 

ended.41  Starting with a library of 102 building blocks, Wilmer 

et al. generated 137,953 hypothetical MOFs subject to the 

constraint that each MOF could contain only one type of metal 

node and one or two types of organic linkers, along with a 

single type of functional group.  Note that no force field or 

quantum mechanical energy minimizations are involved in this 

approach. 

 
Figure 4.  In the bottom-up approach, building blocks are extracted from real 
MOFs and rearranged into new combinations to generate hypothetical MOFs.  C 
= gray, O = red, H = white, Zn = light blue, N = dark blue.  Adapted by 
permission from Macmillan Publishers Ltd:  Nature Chemistry, Ref 42, copyright 

2012.    

3. Characterization 

 Given a set of MOF structures, it is useful to calculate their 

so-called textural properties, such as the surface area and void 
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fraction.  For example, the pore limiting diameter (PLD) and 

largest cavity diameter (LCD)37, 46, 62, 63 can be used to narrow 

down a large set of MOFs to a smaller set with pores large 

enough to admit a molecule of interest.  As shown in Figure 5, 

the PLD is the size of the largest probe that can traverse 

through the structure, while the LCD is the largest probe that 

can fit somewhere within the structure.  

 

 
Figure 5.  Illustration of pore limiting diameter (PLD) and largest cavity diameter 
(LCD).  Adapted with permission from Ref 62. Copyright 2010 American 

Chemical Society. 

 Other useful textural properties include the accessible void 

volume,64 He void fraction,65  accessible surface area,66-68 and 

pore size distribution (PSD).69-72 The accessible void volume 

can be calculated geometrically using Delaunay tessellation46, 

73, 74 or Voronoi decomposition.55, 75  In Delaunay tessellation 

(Figure 6), a collection of points – here, the atoms in a MOF 

unit cell – are partitioned into the vertices of tetrahedra so as to 

fill the entire space.  Similarly, Voronoi decomposition maps 

the void space surrounding a set of points by dividing the space 

into polyhedral cells. (Both of these techniques can also be used 

to calculate PLD, LCD, accessible surface area, and PSD.)  The 

He void fraction is related to the accessible void volume.  The 

accessible void volume is a purely geometric quantity, while 

the He void fraction is calculated using Widom insertions of a 

He probe76 to mimic how this quantity is measured 

experimentally using He adsorption.65  The accessible surface 

area can be calculated by effectively rolling a probe sphere 

across the surface of the material.66-68  The PSD is calculated by 

randomly selecting points in the structure and recording the 

radius of the largest sphere containing that point which can fit 

in the structure.69   

 
Figure 6.  Illustration of Delaunay tessellation.  The red spheres represent atoms 
of a framework which are connected by edges to form tetrahedra.  Only one 
tetrahedron is shown for clarity.  The purple sphere represents the probe used to 
find occupied (red inside tetrahedron), unoccupied (green), and accessible (blue) 

volume.  Reproduced from Ref 46. 

 Several software packages are available to calculate the 

textural properties of MOFs and related materials.  Zeo++55 

utilizes Voronoi decomposition to calculate the properties.  It 

can calculate PLD, LCD, accessible surface area, accessible 

void volume, and pore size distributions taking into account 

inaccessible regions.77  It can also be used to analyse pore 

similarity and to generate MOF structures.52, 56, 72, 78  

MOFOMICS79 is able to identify portals, channels, cages, and 

connectivity.  It identifies portals through k-cycle enumeration, 

which grows paths iteratively, until they can be closed.  

Subsequently, channels are identified by the largest void 

cylinder that can fit between portals.  Cages are identified using 

Delaunay triangulation but only recording the spheres larger 

than a given threshold.  The connectivity is determined by 

finding “junctions,” i.e., places where molecules can change 

their direction of travel.  Then, channel-channel and channel-

cage intersections are calculated by intersecting the channels 

(cylinders) and cages (cylinders).  The channels and 

intersections are examined to find the connectivity between 

junctions. Poreblazer70 differs from the previous software 

packages in that it divides the empty space into cubelets and 

utilizes them to characterize the pore structure.  It can calculate 

surface area, pore size distribution, connectivity, LCD, and 

PLD.  These software packages can be used to detect guest-

inaccessible regions, so that molecules are not inserted in these 

regions in Monte Carlo simulations.80 

 The TOPOS software81 can be used to find the underlying 

topology of a particular structure as well as the cavities in the 

structures and their sizes.  A given MOF structure can be 

simplified by taking the metal corners as nodes and the organic 

linkers as edges.  Using this criterion, the underlying net may 

be found.  Recently, the developers of this software analysed 

6620 3-periodic structures obtained from the CSD and 
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determined their topologies, finding correlations between 

specific building blocks and the resulting topology.81  Figure 7 

indicates that pcu followed by dia are the most frequent nets in 

the structures analysed.  It is also possible to consider parts of 

the organic linkers as nodes.  For instance, a tri-topic linker, 

which has three connections originating from a central point, 

could be broken up into three edges (connection sites) and one 

node (central point).82   

 
Figure 7.  Distribution of first 20 most frequent underlying nets of non-
interpenetrated structures analysed by Alexandrov et al81.  Bottom numbers in 
blue indicate transitivity (number of unique nodes and unique edges). Reproduced 

from Ref. 81. 

 All of these algorithms and software packages are well 

suited for automated, high-throughput screening of porous 

materials.55, 72  Recent efforts involve the use of graphics 

processing units (GPUs) due to their speed and low price.46, 78, 

83, 84  Calculating the distribution of textural properties for a 

collection of MOF structures is a useful way to determine the 

diversity of the structures.78, 85  This can be important if the goal 

is to find the best material for some application or to establish 

widely applicable structure/property relationships.  Meeting 

these goals is facilitated if the full span of physical properties 

has been covered.   

4. Calculation of Adsorption Properties 

 Molecular modeling can be used to predict properties such 

as binding energies, adsorption isotherms, and diffusion 

coefficients for guest molecules in MOFs.  The computational 

methods can broadly be classified as those based on quantum 

mechanics and those based on classical mechanics and are 

reviewed elsewhere.67, 76, 86-90  Briefly, quantum mechanical 

calculations, such as density functional theory (DFT), typically 

solve the time-independent Schrödinger equation to find 

minimum energy structures, binding energies, and details of the 

electronic structure. Quantum mechanical calculations have 

been used to screen dozens of MOFs, but not thousands, to date 

because of the large amount of computer time required.  

However, quantum mechanical calculations can also be used to 

parameterize force fields,91 which can then be used in classical 

simulations on larger numbers of structures. 

   Simulations based on a classical picture use the principles 

of statistical mechanics to calculate macroscopic 

thermodynamic and transport properties.  Grand canonical 

Monte Carlo (GCMC) simulations can predict enthalpies of 

adsorption, adsorption isotherms, and (for mixtures) 

selectivities.  Molecular dynamics (MD) simulations can 

provide diffusion coefficients and other transport properties.  A 

key input to GCMC or MD simulations is a set of equations and 

parameters describing the energetic interactions among the 

atoms.  The energies among non-bonded atoms are often 

described by simple Lennard-Jones plus Coulomb potentials.41, 

67  For fairly rigid structures, the framework atoms are usually 

held fixed at their crystallographic coordinates, but for flexible 

MOFs, the movements of the framework atoms must be 

included.  Recently, Sarkisov and co-workers92 developed a 

simple method to predict whether a structure is flexible or not, 

which may be quite useful in this regard.    Lennard-Jones 

parameters for framework atoms are often taken from generic 

force fields such as DREIDING93 or the Universal Force Field 

(UFF).94  Efforts are also underway to develop more 

sophisticated force fields.44, 95-98 For the guest molecules, it is 

often recommended to use force fields fit to match the bulk 

vapour/liquid equilibria.99   

5. High-throughput computational screening 

 High-throughput screening of MOFs has only become 

possible within the past few years.  To date, most efforts have 

focused on the adsorption of small molecules, motivated by gas 

storage and separation applications.  As we illustrate below, 

these studies can reveal promising candidates, new 

structure/property relationships, and possible performance 

limits for these materials. 

5.1 Adsorption of small molecules 

 As noted above, quantum mechanical calculations have not 

yet been applied in a truly high-throughput manner to screening 

of MOFs.  However, several groups have used quantum 

mechanical calculations to investigate the effect of substituting 

different metals into a particular MOF structure.  Special 

attention has focused on MOF-74,100 also known as CPO-27101 

or M/DOBDC,102 which has a high density of so-called “open”  

metal sites where one coordination site is empty.  These open 

metal sites have been demonstrated, both experimentally and 

via modeling, to interact strongly with various adsorbates.  

Several groups screened different metals in MOF-74 for their 

ability to bind CO2.
103-106  Park et al.104 predicted that Ti- and 

V-MOF-74 should have a stronger affinity for CO2 than Mg-

MOF-74.  This is a very interesting prediction because the Ti 

and V versions of MOF-74 have not yet been synthesized, and 

the Mg version currently shows the strongest binding of CO2. 

These calculations also provide insights into the nature of the 

binding.103-106  Canepa and co-workers studied the interaction 

of H2, CO2, CH4, and H2O with 25 different metals in MOF-

74.103  Starting from Zn-MOF-74, subsequent metals were 

substituted for Zn and the structures were allowed to fully 
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relax.  The DFT calculations predicted that all of the metals 

studied except Rh, Pd, Os, Ir, and Pt bind H2O preferentially 

over CO2.  Figure 8 illustrates the binding site for H2O with Rh, 

Pd, Os, Ir, or Pt.103  Systems that bind CO2 preferentially over 

water may be useful for CO2 capture under humid conditions.   

 
Figure 8.  M-MOF-74, where M is one of the noble metals Rh, Pd, Os, Ir, and Pt.  

Dashed lines indicate a hydrogen bond.  Reproduced from Ref. 103. 

 Methane storage in MOFs has received considerable 

attention86, 101, 107-111 driven by energy applications, such as 

natural gas vehicles.  Recently, high-throughput computational 

screening has been applied to search for better MOFs for 

natural gas storage. Using a bottom-up structure generation 

scheme, Wilmer et al.42 generated 137,953 hypothetical MOF 

structures and screened them for methane storage.  The 

structures were built using 102 building blocks that were 

extracted from real MOFs (Figure 4).  Methane uptake was 

calculated for all of the structures using GCMC simulations at 

35 bar and 298 K.  To speed up the calculations, they were 

performed in stages.  In the first stage, short GCMC simulations 

were performed for all structures.  The structures were ranked 

from best to worst in terms of methane uptake at 35 bar as 

shown in Figure 9, and the top 5% were then screened again 

with longer simulations.  Finally, the top 5% from the second 

stage were subjected to even longer simulations.  Using this 

methodology over 300 hypothetical MOFs were identified 

which are predicted to adsorb more methane at 35 bar than the 

world record holder at that time, PCN-14.112   In addition, 

several structure/property relationships were identified.  For 

example, Figure 10 shows how methane adsorption at 35 bar 

correlates with the material’s void fraction.  It can be seen that, 

despite a diverse range of textural properties, the best materials 

all have a void fraction around 0.8. This study illustrates the 

potential of high-throughput screening techniques to 1) identify 

promising candidates for synthesis and 2) uncover useful 

structure/property relationships.  The complete database of 

hypothetical MOFs is accessible online at 

hmofs.northwestern.edu. 

Figure 9.  Three-stage screening to identify the best MOFs for methane storage. a) In the first stage, 137,953 hypothetical MOFs were screened for methane storage at 
35 bar using short GCMC simulations, b) In the second stage, the top 5% of structures identified in the first stage were simulated using more Monte Carlo cycles, c) In 
the third stage, the top 5% from the second stage were simulated using even more Monte Carlo cycles. The orange areas in the first two graphs indicates the top 5% of 
structures in each graph. Purple bars indicate the statistical error. In all graphs, the MOFs are ranked from best to worst according to methane uptake at 35 bar and 298 

K in volumetric units.  Reprinted by permission from Macmillan Publishers Ltd:  Nature Chemistry, Ref 42, copyright 2012.    
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Figure 10.  Absolute methane adsorption at 35 bar and 298 K versus void 
fraction.  Optimal values are obtained at a void fraction of 0.8.  Adapted by 
permission from Macmillan Publishers Ltd:  Nature Chemistry, Ref 42, copyright 

2012.     

 

 Hydrogen storage in MOFs has also received considerable 

attention in the past decade.13, 87, 113-121  From the literature, it is 

now known that for room temperature hydrogen storage, the 

heats of adsorption of MOFs are too low to reach current 

targets.  One strategy to overcome this is to introduce strongly 

interacting functional groups, such as Mg alkoxides.122-124  

However, it is not readily apparent what combination of MOF 

topology, pore size, void fraction, etc. is optimal and what 

density of functional groups should be introduced.  To answer 

these questions, over 18,000 MOFs and porous aromatic 

frameworks (PAFs)125, 126 were screened for hydrogen 

storage.127  As in the work of Wilmer et al.,42 the structures 

were generated in a bottom-up approach.  These hypothetical 

structures contained various numbers of Mg alkoxide sites.  

Due to the strong interactions between the Mg alkoxide groups 

and the H2 molecules, generic force fields are not adequate. 

Hence, the GCMC simulations, used to calculate hydrogen 

uptake at 243 K, employed a first principles-derived force field 

for the hydrogen-Mg alkoxide interactions.122 Structures were 

found that are predicted to outperform currently known 

structures in both gravimetric and volumetric storage.  

Structure/property relationships were also revealed.  For 

example Figure 11 shows that very high void fractions (0.9) 

and low Mg densities (0.0 mmol/cm3 – 0.5 mmol/cm3) are 

optimal for gravimetric uptake, while void fractions around 0.7 

and a Mg density of 2.5 mmol/cm3 are optimal for volumetric 

uptake. 

 
Figure 11.  Absolute gravimetric (top) and volumetric (bottom) H2 uptake versus 
void fraction obtained from simulated isotherms at 243 K and 100 bar on 18,383 
different materials. Colors indicate the Mg alkoxide density (left), and the 
isosteric heat of adsorption at 2 bar (right).  Reprinted with permission from Ref 
127. Copyright 2014 American Chemical Society.  

 MOFs from the CSD have also been screened for their 

hydrogen storage potential.  Goldsmith et al36 used data mining 

techniques to identify MOF structures in the CSD (Figure 2).  

Instead of performing molecular simulations, they used 

previously observed correlations with the surface area and pore 

volume to estimate the hydrogen uptake at 77 K and 35 bar.  

Promising structures for cryogenic hydrogen storage were 

identified,36 and the maximum volumetric hydrogen uptake was 

found for structures with surface areas around 3100-4800 m2/g.  

These authors also explored the trade-off between volumetric 

capacity and gravimetric capacity as shown in Figure 12.  The 

results show a concave downward relationship between 

volumetric and gravimetric storage capacities.  
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Figure 12.  Theoretical absolute H2 gravimetric and volumetric uptake at 77 K 
and 35 bar for ~4000 MOFs obtained from the CSD.  Crossed circles represent 
MOFs with incomplete or disordered crystal data in the CSD.  These structures 
were constructed by hand.  Reprinted with permission from Ref 36. Copyright 

2012 American Chemical Society. 

5.2 Separations 

 Screening for separations applications is more complex than 

the examples highlighted above, because multiple adsorbates 

are involved and diffusion effects may be important.  In 

addition, the material will ultimately be incorporated into a 

process, and the material cannot be optimized without 

considering this process.  This makes it more difficult to 

determine the selection criteria for the best material for a given 

separation.  

 Consider the separation of noble gases.  These have a wide 

range of applications (lasers128, medicine,128, 129 etc.), and their 

separation usually takes place through the use of cryogenic 

distillation – an energy intensive and costly process.  Hence, it 

is of interest whether MOFs could be used to separate mixtures 

of noble gases. 

 Van Heest et al. screened over 3000 MOFs extracted from 

the CSD for the separation of Ar/Kr, Kr/Xe, and Xe/Rn 

mixtures.63  PLDs for all structures were calculated, as well as 

the Henry’s constants.  Self-diffusivities (Ds) were estimated 

using transition state theory (TST).88  With these quantities, 

adsorption selectivities and permselectivities were calculated.  

The adsorption selectivity is a strictly thermodynamic quantity 

and is relevant to adsorption processes such as pressure swing 

adsorption as well as to membrane separations.  The 

permselectivity applies to membrane applications and takes into 

account both sorption into the material (here via the Henry’s 

constants) and transport through the membrane (here via the 

self-diffusivities).  The starting list of over 3000 MOFs was 

reduced to 70 by choosing those structures with selectivities 

greater than 30 and permselectivities greater than 10.  GCMC 

simulations were then performed on these 70 structures to 

generate the pure component isotherms, and ideal adsorbed 

solution theory (IAST)130 was used to predict the mixture 

isotherms and selectivities from the pure-component data.  

Interestingly, some structures showed reverse selectivity 

(preferential adsorption of the smaller molecule).  Figure 13 

shows that structures with a fractal dimension above 5 

selectively adsorb the smaller of the adsorbates.  In other cases, 

Kr was favoured over Xe (reverse selectivity) but Rn over Xe 

(normal selectivity).  For these cases, the geometric argument is 

not enough. So, energetic considerations were studied.  The 

researchers found that for distances between 3.92 and 4.03 Å in 

relation to carbon the interactions are favourable for Kr over Xe 

and Rn over Xe.  If a material has many regions where 

interactions at these distances take place, the material will be 

selective for Kr over Xe and Rn over Xe.63 

 
Figure 13.  Selectivity for Kr over Xe calculated using IAST for a 80:20 mixture 
of Kr-Xe versus the surface fractal dimension for probes between the sizes of Kr 
and Xe.  Adapted with permission from Ref. 63. Copyright 2012 American 

Chemical Society.   

 Sikora et al.46 screened the 137,000 hypothetical MOFs 

generated by Wilmer et al.42 for Xe/Kr separation.  Delaunay 

tessellation was used to calculate the PLD and LCD of the 

structures.  The calculation was performed using GPUs.    

Instead of using IAST, multicomponent GCMC simulations 

were performed to calculate selectivities and adsorption 

capacities.  This large scale study revealed that structures with 

pore sizes that can fit a single Xe atom along with 

morphologies resembling tubes (LCD/PLD ratio between 1 and 

2) maximize selectivity.  See Figure 14. 
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Figure 14.  MOFs with tube-like pore morphologies show high selectivity for Xe 

over Kr.  Reproduced from Ref 46.   

 Kinetic separations based on different rates of molecular 

diffusion have been studied by Haldoupis et al.62 and First et 

al.131  Haldoupis et al.62 used a combination of PLDs, LCDs and 

Henry’s constants to study the kinetic separation of CH4/H2 

mixtures in over 500 MOFs (Figure 15).  Figure 16 shows the 

LCD and PLD for > 500 MOFs.  It also shows PLD ranges 

(arrows) where the adsorbates will have significant diffusion 

activation energies.62  From this information, one can identify 

structures that should be capable of separating adsorbates 

through molecular sieving (one molecule can go in the structure 

but the other cannot).  Similarly, First et al.131 characterized the 

portals, cages, and connectivity (using MOFomics79) of over 

1800 microporous materials including zeolites, MOFs, ZIFs, 

and hypothetical MOFs.  Subsequent calculation of the energy 

needed for various adsorbates to pass through portals led to the 

identification of promising materials for various separations: 

CO2/N2, CO2/CH4, CO2/H2, O2/N2, propane/propylene, 

ethane/ethylene, styrene/ethylbenzene, and xylene 

separations.131 

 
Figure 15.  LCD and PLD values for 504 MOFs.  Arrows indicate ranges where 
adsorbates show significant diffusion activation energy. Reprinted with 

permission from Ref 62. Copyright 2010 American Chemical Society. 

 Separations of mixtures containing CO2 are important for 

upgrading of natural gas (mainly separating CO2 from CH4) and 

for carbon capture (mainly separating CO2 from N2).  In 

contrast to noble gases and methane, which are usually 

modelled with no charges, Coulombic interactions are 

important for CO2.  Traditionally, atomic charges for the MOF 

atoms have been assigned using quantum mechanical 

calculations.41, 89, 90, 132  (It should be kept in mind that partial 

charges are not an experimental observable, and there are a 

variety of methods for extracting atomic charges from the 

results of a quantum mechanical calculation.)  However, 

performing quantum mechanical calculations for thousands (or 

millions) of MOFs may not be feasible.  Thus, other techniques 

for accurately and efficiently assigning charges have been 

developed in recent years, particularly for high-throughput 

screening studies.  Figure 16 shows that ignoring Coulombic 

interactions provides very poor estimates of the Henry’s 

constant of CO2 in some representative MOFs.133   

 
Figure 16.  CO2 Henry’s constant for 6 different MOFs calculated with no 
charges, PQeq charges, and DDEC charges.  Reprinted with permission from Ref 
133. Copyright 2010 American Chemical Society. 

 Zhong and co-workers developed a very fast method for 

estimating MOF partial charges known as the connectivity-

based atom contribution (CBAC) method.134, 135  The method is 

based on the observation that although the number of possible 

MOF structures is infinite, the elements used are not.  The key 

assumption is that atoms with same bonding connectivity have 

the same charge in different MOFs.  Using a training set of 30 

MOFs and a validating set of 13 MOFs, CBAC charges were 

used to calculate pure component isotherms for CO2, CO, and 

N2 and the isotherms agreed well with those obtained using 

DFT charges.134   

 Several groups133, 136-138 have explored the use of charge 

equilibration methods (Qeq)139 to calculate the partial charges 

of MOF atoms.  Qeq uses the experimentally determined 

ionization potential and electronegativity of the atoms and the 

molecular geometry to predict the charges.  Wilmer and co-

workers138 developed their own variant of Qeq and compared 

the charges on representative fragments of MOFs calculated 

from Qeq and ChelpG, a quantum mechanical method.  As 

shown in Figure 17, there is reasonable agreement between the 

charges from the two methods.  
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Figure 17.  Charges calculated using Qeq and ChelpG for an IRMOF-3 

representative cluster.  Adapted from Ref 138 with permission from Elsevier. 

 Haldoupis and co-workers133 introduced a periodic version 

of Qeq (PQeq)133, 140 and used it to assign framework charges 

for 500 MOFs obtained from the CSD.  They then calculated 

Henry’s constant to obtain the CO2/N2 and CO2/CH4 

selectivities at low loading (Figure 18).  The structures that 

were deemed promising were subjected to more detailed 

GCMC and molecular dynamics (MD) simulations.     

 
Figure 18.  Henry’s constants calculated using PQeq charges (left), which were 
used to narrow down the number of structures and calculate more detailed pure 
component isotherms using GCMC simulations. IAST was then used to predict 
mixture isotherms and selectivities (right). Reprinted with permission from Ref. 
133 Copyright 2010 American Chemical Society. 

 Kadantsev et al.137 developed a Qeq method (MEPO-Qeq) 

in which the parameters were trained to reproduce DFT-derived 

electrostatic potentials.  A training set of 543 hypothetical 

MOFs was used, and the parameterization was validated by 

comparing CO2 uptake and heats of adsorption calculated using 

MEPO-Qeq to those calculated using DFT (Figure 19).  All of 

the methods mentioned for calculating partial charges of MOF 

atoms seek a compromise between time efficiency and the rigor 

of the method. 

 
Figure 19.  CO2 uptake (left) and heat of adsorption (right) at 298 K and 0.15 bar 
calculated for various MOFs using different charge methods.  Reprinted with 

permission from Ref. 137.  Copyright 2013 American Chemical Society.   

 Many studies of separations in MOFs focus on the 

selectivity as a metric for ranking materials.  However, the 

selectivity is not the only property that determines the 

effectiveness of a material in a separation process.  As noted 

above, it is ultimately the performance of the combined 

material plus process that matters.  To avoid the need for a full 

process design to evaluate each candidate material, researchers 

have developed various short-cut metrics for materials 

screening.  Bae and Snurr18 discussed five adsorbent evaluation 

criteria from the engineering literature and used them to assess 

over 40 MOFs for their potential in four related CO2 

separations.  To calculate the adsorbent evaluation criteria, they 

used experimental, pure-component isotherm data for CO2, 

CH4, and N2 from the literature.  The evaluation criteria are 

described in Table 1.  None of them is perfect, and they are best 

considered together.  Recently, Wilmer et al.141 used these 

metrics to screen their database of 137,000 hypothetical MOFs.  

Framework charges for the MOFs were calculated very quickly 

using an extended charge equilibration method (EQeq) that they 

developed.136  Using GCMC simulations, pure component 

adsorption data were obtained for CO2, CH4, and N2.  The 

results were then used to calculate the five adsorbent evaluation 

criteria for four different separation cases.141  

 

Table 1.  Adsorbent evaluation criteria.  The subscripts 1 and 2 

indicate CO2 and the other, more weakly adsorbing component, 

respectively.  The superscripts ads and des indicate adsorption 

and desorption conditions, respectively, and y is the mole 

fraction in the gas phase. 

Criterion Definition 

CO2 uptake (mol kg-1) N1
ads 

Working capacity (mol kg-1) ∆N1 = N1
ads - N1

des 

Regenerability (%) R = ∆N1 / N1
ads x 100% 

Selectivity α12
ads= (N1

ads/N2
ads)/(y1/y2) 

Sorbent selection parameter S = (α12
ads)2/(α12

ads)(∆N1/∆N2) 

 

 Both Bae and Snurr18 and Wilmer et al.141 used their data to 

look for relationships between the adsorbent evaluation criteria 

and the physical properties of the MOFs.  Figure 20 shows an 

example relating the amount of CO2 adsorbed at 2.5 bar and the 

isosteric heat of adsorption.  As shown in the figure, it can be 

difficult to establish whether any relationships exist if there are 

only a small number of data points.  However, with over 
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137,000 data points, clear trends emerge.  This highlights one 

of the biggest advantages and potential impacts of high-

throughput computational screening:  the ability to discover 

structure/property relationships that were previously impossible 

to discern due to the small sample size available.141     

 
Figure 20.  CO2 uptake at 2.5 bar versus the isosteric heat of adsorption.  The 
graph on the left plots experimental data collected from the literature by Bae and 
Snurr and shows no clear trend between uptake and heat of adsorption.  The graph 
on the right shows simulation results from over 130,000 hypothetical MOFs and 
shows a clear trend. Left adapted from Ref 18.  Copyright 2011 WILEY-VCH 

Verlag GmBH & Co. KGaA, Weinheim.  Right adapted from Ref 141.   

 In evaluating materials for CO2 capture from power plant 

exhaust, Lin et al. adopted another approach for material 

evaluation.52  They calculated the parasitic energy, i.e., the 

additional electrical energy needed from the power plan to 

operate the process for separating CO2 from the flue gas. They 

screened both real and hypothetical zeolites and ZIFs to find 

materials with minimum parasitic energy.  Charges for the 

structures were determined using the CBAC method, and 

Widom insertions were used to calculate Henry’s coefficients 

and isosteric heats of adsorption at low loading.  Using the 

Henry’s coefficients and saturation loadings obtained from a 

correlation with the pore volume, single or dual-site Langmuir 

models were fit for pure-component N2 and CO2 isotherms.  In 

contrast to the studies highlighted above, the mixture isotherms 

were predicted using competitive Langmuir isotherms instead 

of IAST or multicomponent GCMC simulations.  Lin et al. 

found that materials should have CO2 binding energies that are 

strong enough to be selective but not so strong that the CO2 

cannot be desorbed, to avoid an energy penalty in the 

regeneration of the material (Figure 21).52  Furthermore, this 

screening established a theoretical limit for the lowest parasitic 

energy of this particular class of materials.  This highlights 

another attractive feature of large-scale, high-throughput 

screening:  performance limits of a material class may be 

found. 

 
Figure 21.  Parasitic energy for CO2 capture versus Henry coefficient of CO2.  
The green line gives the parasitic energy of current MEA technology, while the 
black line is the minimal parasitic energy calculated in the all-silica zeolite 
structures.  Diamonds are predicted ZIF structures; only a diverse, representative 
set are shown.  Reprinted by permission from Macmillan Publishers Ltd:  Nature 

Materials Ref. 52, copyright 2012.   

6. Data mining 

 An interesting aspect of large-scale, high-throughput 

screening is the large amount of data that is generated.  Often, 

even plotting the data can prove difficult because of the high 

dimensionality of the data sets.  Simple plots such as those in 

Figures 11, 12, and 14 can be used to test hypotheses about how 

different variables are correlated.  However, it may be unclear 

which variables to plot.  More sophisticated data mining tools 

can be very useful in obtain new insights and understanding 

from the large amount of data generated in high-throughput 

screening.  For instance, Fernandez et al.142 employed 

quantitative structure-property relationship (QSPR) tools to 

analyse methane uptake data in 137,000 hypothetical MOF 

structures.42  Nonlinear supported vector machines (SVMs) 

were found to predict methane storage adequately.  The two 

descriptors that were found to be most strongly correlated with 

methane uptake were the void fraction and pore diameter.  

Figure 22 shows the results obtained from the SVM model.142  

Interestingly, the predictions showed a maximum in an 

unexplored regime (red arrow in Figure 22). 
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Figure 22.  Response surface of SVM model for methane storage at 100 bar using 
void fraction and dominant pore size.  Blue dots are GCMC results.  Color of 
surface represents methane storage value: blue is low and red is high.  Arrows 
indicate maxima. Reprinted with permission from Ref. 142.  Copyright 2013 

American Chemical Society.   

 

 Similarly, Wu et al.143 developed QSPR models to predict 

CO2/N2 selectivity. The important descriptors in the model 

were the difference in heat of adsorption between CO2 and N2 

(∆Qºst) and the porosity (φ) of the structure.  Simultaneously 

increasing the difference in heat of adsorption and decreasing 

the porosity was found to be a promising strategy as shown in 

Figure 23.   

 
Figure 23.  Interplay map of φ and ∆Qºst on their impact on selectivity at 0.1 MPa 
for CO2/N2 mixture in MOFs.  Reprinted with permission from Ref. 143 

Copyright 2012 American Chemical Society.   

 Other descriptors have also been introduced and used to 

predict the isosteric heat of adsorption, such as the number of 

functional groups, dipole moment of the adsorbed gas, boiling 

temperature of the adsorbed gas and the mean curvature of the 

pore.144, 145  These descriptors are nice because they can be 

calculated more quickly than Qst. Another descriptor that has 

been introduced is the atomic property radial distribution 

function (AP-RDF), which is tailored for large scale QSPR.146  

Approximately 58,000 hypothetical MOFs were used to 

calibrate correlation models for CH4, N2, and CO2 uptake 

capacities obtained from GCMC simulations.  These predictive 

tools can be found on-line via MOF informatics analysis 

(MOFIA).146   

 

7. Summary and future directions 

 With the increasing number of MOF structures being 

generated both computationally and experimentally, high-

throughput computational screening techniques are poised to 

play an important role in the development of new MOFs for 

particular applications.  The structures of existing MOFs can be 

obtained from the CSD, and new hypothetical structures can be 

generated computationally using bottom-up or top-down 

approaches.  Structural characterization in an automated and 

high-throughput fashion has been the area of most development 

in this burgeoning field, with various software packages readily 

available.  These characterization tools have been used to pre-

screen and narrow down the list of materials for more detailed 

simulations.  For some simple classes of molecules, reliable 

force fields allow for high-throughput simulations with results 

that have good predictive power.  A growing number of studies 

dealing with the adsorption of methane, hydrogen, and CO2 

have employed high-throughput screening and suggested 

promising new candidates for gas storage and separations.  In 

addition, these studies have revealed useful structure/property 

relationships.  For molecules such as CO2, where Coulombic 

interactions are important, there have been significant efforts to 

develop methods to calculate MOF framework charges in an 

efficient, but accurate, manner.  Data mining techniques are 

proving useful for obtaining new insights and understanding 

from the enormous amount of data generated in high-

throughput screening.  Table 2 summarizes some of the 

resources that are readily available on-line.  

 

Table 2. Resources available on-line for high-throughput 

screening of MOFs 

Resource Web address 

Cambridge 

Structural 

Database (CSD) 

http://www.ccdc.cam.ac.uk/ 

Reticular 

Chemistry 

Structure Resource 

(RCSR) 

http://rcsr.anu.edu.au/ 

Hypothetical MOF 

Database 

http://hmofs.northwestern.edu/ 

MOF-5 Analogues 

and other porous 

materials 

http://www.nanoporousmaterials.org/data

bases/ 

Zeo++ http://www.maciejharanczyk.info/Zeopp/ 

Poreblazer http://www.see.ed.ac.uk/~lsarkiso/ 

MOFOMICS http://helios.princeton.edu/mofomics/ 

TOPOS http://www.topos.ssu.samara.ru/ 
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MOFIA http://titan.chem.uottawa.ca/woolab/MO

FIA/ 

 

 There is a need for continued development of a robust 

software infrastructure for high-throughput computational 

screening.  For example, obtaining MOF structures from the 

CSD sounds simple enough, but if structures have high degrees 

of disorder, or other problems, they are sometimes discarded in 

high-throughput screening.  Finding automated ways to “fix” 

these structures would allow for more comprehensive 

screening.  For structures generated computationally, there are 

still open questions about how well the generated structures 

agree with experimental structures.  This has been tested for 

only a limited number of MOFs, and wider testing is needed.  

In addition, proposed structures are sometimes energetically 

minimized after the generation process using a variety of 

methods, including classical mechanics,85 semi-empirical 

methods,56 and quantum mechanics.51, 54 Will this always be 

required, or could improved generation schemes make this 

unnecessary?  Are the structures really better after 

minimization, especially if a generic force field is used?  These 

are still open questions. Methods for quantifying the diversity78, 

85 of a given set of structures are also needed and could be used 

to improve the diversity of future databases of hypothetical 

MOFs.   

 Continued development of predictive and efficient 

simulation methods is also needed.  This includes both efficient 

simulation algorithms and accurate and transferable force 

fields.  Already GCMC simulations are being performed on 

GPUs, as a way of speeding up the simulations.147  Coarse 

grained models have been developed for adsorption in some 

systems and shown to agree well with fully atomistic 

simulations while offering 2 to 3 orders-of-magnitude 

acceleration for non-polar and polar adsorbates.95  This sort of 

approach seems promising for high-throughput applications.  

Other methods for accelerating GCMC simulations, such as 

grand canonical-transition matrix Monte Carlo (GC-TMMC), 

could also be promising.  With this technique, an entire 

adsorption isotherm can be generated from a single GC-TMMC 

simulation.148  This may hold particular promise for adsorbates 

where adsorption isotherms are time consuming and difficult to 

equilibrate.    Improved force fields will improve the accuracy 

of simulations and allow screening of materials with open-

metal sites and other interesting functional groups.  Generating 

force fields from quantum mechanical results in an automated 

manner is an active area of research that will greatly benefit 

high-throughput screening. 

 Other areas of need include new metrics to rank material 

performance and better descriptors for QSPR and ways to 

generate the descriptors automatically rather than relying on 

intuition about the important properties.149  Computational 

methods or descriptors that predict the stability (water, thermal, 

chemical) of MOFs would be very useful – not only for high-

throughput screening. 

 It is likely that in the near future, we will see new MOFs 

identified by high-throughput computational screening 

synthesized and tested experimentally for gas storage and 

separation applications.  Additionally, high-throughput 

screening techniques are being applied to amorphous structures 

such as porous polymer networks (PPNs).150  Already these 

methods are providing new insights and structure/property 

relationships that small scale studies simply cannot.  

Furthermore, high-throughput computational screening can tell 

us the ultimate performance limits of MOF materials for 

particular applications.   

 
 

Acknowledgements 
This work was supported by the National Science Foundation 
(DMR-1308799).  Y.J.C. gratefully acknowledges an NSF Graduate 
Research Fellowship (grant DGE-0824162). 
 

 

Notes and references 
a Department of Chemical and Biological Engineering, Northwestern 

University, Evanston, IL 60208, USA email: snurr@northwestern.edu  

 
1. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 

402, 276-279. 
2. M. O’Keeffe, M. A. Peskov, S. J. Ramsden and O. M. Yaghi, 

Accounts of Chemical Research, 2008, 41, 1782-1789. 
3. G. Ferey, Chemical Society Reviews, 2008, 37, 191-214. 
4. S. Horike, S. Shimomura and S. Kitagawa, Nature Chemistry, 

2009, 1, 695-704. 
5. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. 

O'Keeffe and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319-330. 
6. B. Arstad, H. Fjellvåg, K. Kongshaug, O. Swang and R. Blom, 

Adsorption, 2008, 14, 755-762. 
7. K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant and J. T. 

Hupp, J. Am. Chem. Soc., 2009, 131, 3866-3868. 
8. D. Himsl, D. Wallacher and M. Hartmann, Angew. Chem. Int. Ed., 

2009, 48, 4639-4642. 
9. C. Volkringer, T. Loiseau, N. Guillou, G. r. Férey, M. Haouas, F. 

Taulelle, E. Elkaim and N. Stock, Inorganic Chemistry, 2010, 49, 
9852-9862. 

10. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, 
A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydın and J. 
T. Hupp, Journal of the American Chemical Society, 2012, 134, 
15016-15021. 

11. L. Sarkisov, Advanced Materials, 2012, 24, 3130-3133. 
12. R. L. Martin and M. Haranczyk, Chemical Science, 2013, 4, 1781-

1785. 
13. L. J. Murray, M. Dinca and J. R. Long, Chemical Society Reviews, 

2009, 38, 1294-1314. 
14. J. Sculley, D. Yuan and H.-C. Zhou, Energy & Environmental 

Science, 2011, 4, 2721-2735. 
15. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chemical Society Reviews, 

2009, 38, 1477-1504. 
16. J. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010, 132, 38. 
17. J.-R. Li, J. Sculley and H.-C. Zhou, Chemical Reviews, 2011, 112, 

869-932. 
18. Y.-S. Bae and R. Q. Snurr, Angewandte Chemie International 

Edition, 2011, 50, 11586-11596. 
19. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. T. Houk, 

Chemical Society Reviews, 2009, 38, 1330-1352. 
20. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van 

Duyne and J. T. Hupp, Chemical Reviews, 2011, 112, 1105-1125. 
21. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle 

and G. Férey, Angewandte Chemie, 2006, 118, 6120-6124. 

Page 13 of 15 Chemical Society Reviews



ARTICLE Journal Name 

14 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

22. J. Della Rocca, D. Liu and W. Lin, Accounts of Chemical 

Research, 2011, 44, 957-968. 
23. M. C. Bernini, D. Fairen-Jimenez, M. Pasinetti, A. J. Ramirez-

Pastor and R. Q. Snurr, Journal of Materials Chemistry B, 2014, 
2, 766-774. 

24. C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer and 
W. Lin, Journal of the American Chemical Society, 2010, 132, 
12767-12769. 

25. C. A. Kent, D. Liu, L. Ma, J. M. Papanikolas, T. J. Meyer and W. 
Lin, Journal of the American Chemical Society, 2011, 133, 
12940-12943. 

26. C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant, S. T. Nguyen 
and J. T. Hupp, Journal of the American Chemical Society, 2011, 
133, 15858-15861. 

27. D. Farrusseng, S. Aguado and C. Pinel, Angewandte Chemie-
International Edition, 2009, 48, 7502-7513. 

28. L. Ma, C. Abney and W. Lin, Chemical Society Reviews, 2009, 
38, 1248-1256. 

29. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. 
T. Hupp, Chemical Society Reviews, 2009, 38, 1450-1459. 

30. O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen and J. T. 
Hupp, Journal of the American Chemical Society, 2011, 133, 
5652-5655. 

31. H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, 
Science, 2013, 341. 

32. Materials Genome Initiative, http://www.whitehouse.gov/mgi, 
Accessed March, 2014. 

33. J. J. de Pablo, B. Jones, C. Lind-Kovacs, V. Ozolins and A. 
Ramirez, THE MATERIALS GENOME INITIATIVE THE 

INTERPLAY OF EXPERIMENT, THEORY AND 
COMPUTATION June 23, 2013, 2013. 

34. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. 
Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. 
Persson, APL Materials, 2013, 1, 011002. 

35. F. Allen, Acta Crystallographica Section B, 2002, 58, 380-388. 
36. J. Goldsmith, A. G. Wong-Foy, M. J. Cafarella and D. J. Siegel, 

Chemistry of Materials, 2013, 25, 3373-3382. 
37. T. Watanabe and D. S. Sholl, Langmuir, 2012, 28, 14114-14128. 
38. C. Mellot Draznieks, J. M. Newsam, A. M. Gorman, C. M. 

Freeman and G. Férey, Angewandte Chemie International Edition, 
2000, 39, 2270-2275. 

39. X. Kong, H. Deng, F. Yan, J. Kim, J. A. Swisher, B. Smit, O. M. 
Yaghi and J. A. Reimer, Science, 2013, 341, 882-885. 

40. M. Li, D. Li, M. O’Keeffe and O. M. Yaghi, Chemical Reviews, 
2013, 114, 1343-1370. 

41. C. Wilmer and R. Snurr, in Topics in Current Chemistry, Springer 
Berlin Heidelberg, 2013, pp. 1-33. 

42. C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. 
Hupp and R. Q. Snurr, Nature Chem., 2012, 83-89. 

43. S. Amirjalayer, M. Tafipolsky and R. Schmid, The Journal of 
Physical Chemistry C, 2011, 115, 15133-15139. 

44. S. Bureekaew and R. Schmid, CrystEngComm, 2013, 15, 1551-
1562. 

45. R. Chakrabarty, P. S. Mukherjee and P. J. Stang, Chemical 

Reviews, 2011, 111, 6810-6918. 
46. B. J. Sikora, C. E. Wilmer, M. L. Greenfield and R. Q. Snurr, 

Chemical Science, 2012, 3, 2217-2223. 
47. K. E. Jelfs, E. G. B. Eden, J. L. Culshaw, S. Shakespeare, E. O. 

Pyzer-Knapp, H. P. G. Thompson, J. Bacsa, G. M. Day, D. J. 
Adams and A. I. Cooper, Journal of the American Chemical 

Society, 2013, 135, 9307-9310. 
48. M. E. Briggs, K. E. Jelfs, S. Y. Chong, C. Lester, M. 

Schmidtmann, D. J. Adams and A. I. Cooper, Crystal Growth & 

Design, 2013, 13, 4993-5000. 
49. B. Lukose, A. Kuc, J. Frenzel and T. Heine, Beilstein journal of 

nanotechnology, 2010, 1, 60-70. 
50. B. Lukose, A. Kuc and T. Heine, J Mol Model, 2013, 19, 2143-

2148. 
51. I. A. Baburin and S. Leoni, CrystEngComm, 2010, 12, 2809-2816. 
52. L.-C. Lin, Berger, A. H., Martin, R. L., Kim, J., Swisher, J. A., 

Jariwala, K., Rycroft, C. H., Bhown, A. S., Deem, M. W., 
Haranczyk, M., and Smit B., Nature Materials, 2012, 11, 9. 

53. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe and O. M. 
Yaghi, Nature Materials, 2007, 6, 501. 

54. D. W. Lewis, A. R. Ruiz-Salvador, A. Gomez, L. M. Rodriguez-
Albelo, F.-X. Coudert, B. Slater, A. K. Cheetham and C. Mellot-
Draznieks, CrystEngComm, 2009, 11, 2272-2276. 

55. T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza and M. 
Haranczyk, Microporous and Mesoporous Materials, 2012, 149, 
134-141. 

56. R. L. Martin and M. Haranczyk, Crystal Growth & Design, 2014. 
57. O. D. Friedrichs, A. W. M. Dress, D. H. Huson, J. Klinowski and 

A. L. Mackay, Nature, 1999, 400, 644-647. 
58. S. T. Hyde, O. Delgado Friedrichs, S. J. Ramsden and V. Robins, 

Solid State Sciences, 2006, 8, 740-752. 
59. G. L. McColm, W. E. Clark, M. Eddaoudi, L. Wojtas and M. 

Zaworotko, Crystal Growth & Design, 2011, 11, 3686-3693. 
60. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe and 

O. M. Yaghi, Chemical Society Reviews, 2009, 38, 1257-1283. 
61. M. O’Keeffe and O. M. Yaghi, Chemical Reviews, 2011, 112, 

675-702. 
62. E. Haldoupis, S. Nair and D. S. Sholl, Journal of the American 

Chemical Society, 2010, 132, 7528-7539. 
63. T. Van Heest, S. L. Teich-McGoldrick, J. A. Greathouse, M. D. 

Allendorf and D. S. Sholl, The Journal of Physical Chemistry C, 
2012, 116, 13183-13195. 

64. E. M. Sevick, P. A. Monson and J. M. Ottino, The Journal of 

Chemical Physics, 1988, 88, 1198-1206. 
65. A. L. Myers and P. A. Monson, Langmuir, 2002, 18, 10261-

10273. 
66. T. Düren, F. Millange, G. Ferey, K. S. Walton and R. Q. Snurr, J. 

Phys. Chem. C, 2007, 111, 15350. 
67. T. Düren, Y.-S. Bae and R. Q. Snurr, Chemical Society Reviews, 

2009, 38, 1237-1247. 
68. Y.-S. Bae, A. O. z. r. Yazaydın and R. Q. Snurr, Langmuir, 2010, 

26, 5475-5483. 
69. L. D. Gelb and K. E. Gubbins, Langmuir, 1998, 15, 305-308. 
70. L. Sarkisov and A. Harrison, Molecular Simulation, 2011, 37, 

1248-1257. 
71. D. D. Do, L. F. Herrera and H. D. Do, Journal of Colloid and 

Interface Science, 2008, 328, 110-119. 
72. M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia and 

M. Haranczyk, Journal of Molecular Graphics and Modelling, 
2013, 44, 208-219. 

73. L. R. Dodd and D. N. Theodorou, Molecular Physics, 1991, 72, 
1313-1345. 

74. M. L. Greenfield and D. N. Theodorou, Macromolecules, 1993, 
26, 5461-5472. 

75. M. Tanemura, T. Ogawa and N. Ogita, Journal of Computational 
Physics, 1983, 51, 191-207. 

76. A. R. Leach, Molecular Modelling: Principles and Applications, 

2nd ed., Prentice Hall, Harlow, England, 2001. 
77. M. Pinheiro, R. L. Martin, C. H. Rycroft and M. Haranczyk, 

Crystal Engineering Communications, 2013, 15, 7531-7538. 
78. R. L. Martin, B. Smit and M. Haranczyk, Journal of Chemical 

Information and Modeling, 2011, 52, 308-318. 
79. E. L. First and C. A. Floudas, Microporous and Mesoporous 

Materials, 2013, 165, 32-39. 
80. M. Haranczyk and J. A. Sethian, Journal of Chemical Theory and 

Computation, 2010, 6, 3472-3480. 
81. E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov and D. M. 

Proserpio, CrystEngComm, 2011, 13, 3947-3958. 
82. T. R. Cook, Y.-R. Zheng and P. J. Stang, Chemical Reviews, 

2012, 113, 734-777. 
83. R. L. Martin, Prabhat, D. D. Donofrio, J. A. Sethian and M. 

Haranczyk, International Journal of High Performance 

Computing Applications, 2012, 26, 347-357. 
84. J. Kim, R. L. Martin, O. Rübel, M. Haranczyk and B. Smit, 

Journal of Chemical Theory and Computation, 2012, 8, 1684-
1693. 

85. B. J. Sikora, R. Winnegar, D. M. Proserpio and R. Q. Snurr, 
Microporous and Mesoporous Materials, 2014, 186, 207-213. 

86. R. B. Getman, Y.-S. Bae, C. E. Wilmer and R. Q. Snurr, Chemical 
Reviews, 2011, 112, 703-723. 

Page 14 of 15Chemical Society Reviews



 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 15  

87. S. S. Han, J. L. Mendoza-Cortes and W. A. Goddard, Chemical 

Society Reviews, 2009, 38, 1460-1476. 
88. D. Dubbeldam and R. Q. Snurr, Molecular Simulation, 2007, 33, 

305-325. 
89. S. Keskin, J. Liu, R. B. Rankin, J. K. Johnson and D. S. Sholl, 

Industrial & Engineering Chemistry Research, 2009, 48, 2355-
2371. 

90. R. Q. Snurr, A. O. Yazaydin, D. Dubbeldam and H. Frost, in 
Metal-Organic Frameworks: Design and Application, ed. L. R. 
MacGillivray, John Wiley & Sons, Inc., Hoboken, NJ, USA, 
2010. 

91. H. Fang, H. Demir, P. Kamakoti and D. S. Sholl, Journal of 
Materials Chemistry A, 2014, 2, 274-291. 

92. L. Sarkisov, R. L. Martin, M. Haranczyk and B. Smit, Journal of 

the American Chemical Society, 2014, 136, 2228-2231. 
93. S. L. Mayo, B. D. Olafson and W. A. Goddard, Journal of 

Physical Chemistry, 1990, 94, 8897. 
94. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. G. III and W. M. 

Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10035. 
95. K. Yu, J. G. McDaniel and J. R. Schmidt, The Journal of 

Chemical Physics, 2012, 137, 244102. 
96. T. Pham, K. A. Forrest, P. Nugent, Y. Belmabkhout, R. Luebke, 

M. Eddaoudi, M. J. Zaworotko and B. Space, The Journal of 

Physical Chemistry C, 2013, 117, 9340-9354. 
97. J. G. McDaniel, K. Yu and J. R. Schmidt, The Journal of Physical 

Chemistry C, 2011, 116, 1892-1903. 
98. J. S. Grosch and F. Paesani, Journal of the American Chemical 

Society, 2012, 134, 4207-4215. 
99. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B, 1999, 103, 

4508-4517. 
100. N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M. O'Keeffe and O. 

M. Yaghi, Journal of the American Chemical Society, 2005, 127, 
1504. 

101. P. D. C. Dietzel, V. Besikiotis and R. Blom, Journal of Materials 

Chemistry, 2009, 19, 7362-7370. 
102. S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, Journal of the 

American Chemical Society, 2008, 130, 10870. 
103. P. Canepa, C. A. Arter, E. M. Conwill, D. H. Johnson, B. A. 

Shoemaker, K. Z. Soliman and T. Thonhauser, Journal of 
Materials Chemistry A, 2013, 1, 13597-13604. 

104. J. Park, H. Kim, S. S. Han and Y. Jung, The Journal of Physical 
Chemistry Letters, 2012, 3, 826-829. 

105. H. S. Koh, M. K. Rana, J. Hwang and D. J. Siegel, Physical 

Chemistry Chemical Physics, 2013, 15, 4573-4581. 
106. D. Yu, A. O. Yazaydin, J. R. Lane, P. D. C. Dietzel and R. Q. 

Snurr, Chemical Science, 2013, 4, 3544-3556. 
107. Y. Peng, G. Srinivas, C. E. Wilmer, I. Eryazici, R. Q. Snurr, J. T. 

Hupp, T. Yildirim and O. K. Farha, Chemical Communications, 
2013, 49, 2992-2994. 

108. T. Düren, L. Sarkisov, O. M. Yaghi and R. Q. Snurr, Langmuir, 
2004, 20, 2683-2689. 

109. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe 
and O. M. Yaghi, Science, 2002, 295, 469. 

110. S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan and H.-C. 
Zhou, J. Am. Chem. Soc., 2008, 130, 1012-1016. 

111. S. Ma and H.-C. Zhou, Chemical Communications, 2010, 46, 44-
53. 

112. S. Q. Ma, D. F. Sun, J. M. Simmons, C. D. Collier, D. Q. Yuan 
and H. C. Zhou, Journal of the American Chemical Society, 2008, 
130, 1012. 

113. Y.-S. Bae and R. Q. Snurr, Microporous Mesoporous Mater., 
2010, 132, 300-303. 

114. A. Blomqvist, C. M. Araujo, P. Srepusharawoot and R. Ahuja, 
Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 20173. 

115. B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras and O. 
M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4745-4749. 

116. D. J. Collins and H. C. Zhou, Journal of Materials Chemistry, 
2007, 17, 3154. 

117. M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. 
R. Long, J. Am. Chem. Soc., 2006, 128, 16876-16883. 

118. M. Dinca and J. R. Long, Angew. Chem. Int. Ed., 2008, 47, 6766-
6779. 

119. H. Frost and R. Q. Snurr, J. Phys. Chem. C, 2007, 111, 18794. 

120. S. S. Han, W. Q. Deng and W. A. Goddard, Angewandte Chemie-

International Edition, 2007, 46, 6289-6292. 
121. M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chemical 

Reviews, 2011, 112, 782-835. 
122. R. B. Getman, J. H. Miller, K. Wang and R. Q. Snurr, J. Phys. 

Chem. C, 2011, 115, 2066-2075. 
123. S. K. Brand, Y. J. Colón, R. B. Getman and R. Q. Snurr, 

Microporous and Mesoporous Materials, 2013, 171, 103-109. 
124. T. Stergiannakos, E. Tylianakis, E. Klontzas and G. E. Froudakis, 

The Journal of Physical Chemistry C, 2010, 114, 16855-16858. 
125. J. Lan, D. Cao, W. Wang, T. Ben and G. Zhu, The Journal of 

Physical Chemistry Letters, 2010, 1, 978-981. 
126. T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, 

Energy & Environmental Science, 2011, 4, 3991-3999. 
127. Y. J. Colón, D. Fairen-Jimenez, C. E. Wilmer and R. Q. Snurr, 

The Journal of Physical Chemistry C, 2014, 118, 5383-5389. 
128. J. Marshall and A. C. Bird, British Journal of Ophthalmology, 

1979, 63, 657-668. 
129. S. C. Cullen and E. G. Gross, Science, 1951, 113, 580-582. 
130. A. L. Myers and J. M. Prausnitz, AIChE Journal, 1965, 11, 121. 
131. E. L. First, C. E. Gounaris and C. A. Floudas, Langmuir, 2013, 

29, 5599-5608. 
132. Q. Yang, D. Liu, C. Zhong and J.-R. Li, Chemical Reviews, 2013, 

113, 8261-8323. 
133. E. Haldoupis, S. Nair and D. S. Sholl, Journal of the American 

Chemical Society, 2012, 134, 4313-4323. 
134. Q. Xu and C. Zhong, The Journal of Physical Chemistry C, 2010, 

114, 5035-5042. 
135. C. Zheng and C. Zhong, The Journal of Physical Chemistry C, 

2010, 114, 9945-9951. 
136. C. E. Wilmer, K. C. Kim and R. Q. Snurr, The Journal of Physical 

Chemistry Letters, 2012, 3, 2506-2511. 
137. E. S. Kadantsev, P. G. Boyd, T. D. Daff and T. K. Woo, The 

Journal of Physical Chemistry Letters, 2013, 4, 3056-3061. 
138. C. E. Wilmer and R. Q. Snurr, Chemical Engineering Journal, 

2011, 171, 775-781. 
139. A. K. Rappé and W. A. Goddard, J. Phys. Chem., 1991, 95, 3358-

3363. 
140. S. Ramachandran, T. G. Lenz, W. M. Skiff and A. K. Rappé, The 

Journal of Physical Chemistry, 1996, 100, 5898-5907. 
141. C. E. Wilmer, O. K. Farha, Y.-S. Bae, J. T. Hupp and R. Q. Snurr, 

Energy & Environmental Science, 2012, 5, 9849-9856. 
142. M. Fernandez, T. K. Woo, C. E. Wilmer and R. Q. Snurr, The 

Journal of Physical Chemistry C, 2013, 117, 7681-7689. 
143. D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang and G. 

Maurin, Langmuir, 2012, 28, 12094-12099. 
144. H. Amrouche, B. Creton, F. Siperstein and C. Nieto-Draghi, RSC 

Advances, 2012, 2, 6028-6035. 
145. E. J. Garcia, J. Perez-Pellitero, C. Jallut and G. D. Pirngruber, 

Physical Chemistry Chemical Physics, 2013, 15, 5648-5657. 
146. M. Fernandez, N. R. Trefiak and T. K. Woo, The Journal of 

Physical Chemistry C, 2013, 117, 14095-14105. 
147. J. Kim and B. Smit, Journal of Chemical Theory and 

Computation, 2012, 8, 2336-2343. 
148. D. W. Siderius and V. K. Shen, The Journal of Physical 

Chemistry C, 2013, 117, 5861-5872. 
149. T. Le, V. C. Epa, F. R. Burden and D. A. Winkler, Chemical 

Reviews, 2012, 112, 2889-2919. 
150. R. L. Martin, C. M. Simon, B. Smit and M. Haranczyk, Journal of 

the American Chemical Society, 2014. 

 

Page 15 of 15 Chemical Society Reviews


