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Abstract

Rechargeable batteries are promising for transition to clean energy. This study investigates 
microstructural dynamics of LiNi0.8Mn0.1Co0.1O2 (NMC811)-based cathodes over cycling using X-ray 
computed tomography (XCT). There is a long-standing imaging challenge of compromising between 
large field-of-view (FoV) to be representative of the electrodes and high resolution to observe fine 
details of individual particles. Here, we provide a framework that mitigates this trade-off by comparing 
two deep learning models—convolutional neural networks (CNNs) and generative adversarial 
networks (GANs)—for super-resolution enhancement of the XCT data to achieve both a large FoV (4 
times larger) and sub-micron resolutions. We fabricated NMC811 cathodes containing different initial 
porosity (0.46–0.85) and tortuosity (1.24–2.74) by two different methods, directional ice templating 
(DIT) and dry processing to eliminate toxic organic solvent during fabrication. Micro-cracks inside 
individual NMC811 secondary particles and shifts in pixel intensity distributions were observed after 
100 (dis)charge cycles. The DIT cathode exhibited a larger irreversible volume expansion due to the 
more favorable ion diffusion kinetics and higher active material utilization. Interestingly, the higher 
pore volume and carbon binder domain (CBD) surrounding the NMC811 particles effectively 
accommodated the volume expansion, and the DIT cathode exhibited a higher capacity retention over 
cycling than the dry coated cathode that exhibited initial lower porosity and higher tortuosity. A linear 
regression model was used to correlate the various microstructural properties such as porosity and 
tortuosity in the pristine state, and expansion after cycling to develop a framework of predicting 
optimal initial microstructure and electrochemical performance over cycling.

Keywords: energy storage, lithium-ion batteries, porosity, tortuosity, X-ray computed tomography, 
convolutional neural network

Introduction

Over the past decade, batteries play a crucial role in the global effort to achieve zero emissions and 
enable the transition from fossil fuels to renewable energy sources [1, 2]. Batteries have facilitated 
the widespread adoption of electric transportation and grid storage of intermittent renewable energy 
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[3]. To meet diverse energy storage needs, a range of battery types have been developed [4, 5]. For 
lithium-ion batteries, LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material has gained significant interest 
due to its balance between energy density, power output, longevity, and thermal stability [6, 7]. 

Understanding how NMC811 behaves over cycling is essential for optimizing battery performance and 
longevity. At the crystal lattice scale, cycling-induced mechanical degradation is caused by anisotropic 
lattice expansion of NMC811 during lithium insertion [8]. Over the course of cycling, NMC811 
undergoes microstructural changes that can impact the integrity and efficiency of the electrodes [9, 
10]. Crack formation is an important degradation mechanism that reduces battery performance. 
Recent electrochemical-mechanical modelling results show that during delithiation, although the 
primary NMC811 particles shrink, a volumetric expansion of the secondary particles occurs because 
of cracking due to the strain anisotropy of the primary particles [11]. The incompatible deformation 
from grain to grain induces large self-stresses that drives to cracks/fracture inside secondary particles 
and larger cracks between the secondary particles in the electrode microstructure [12]. 

Our group has developed two sustainable methodologies of making electrodes with different 
microstructures, directional ice templating (DIT) of making electrodes with vertical pore arrays to 
improve ion diffusion kinetics [13-15] and dry processing of making electrodes that eliminate toxic, 
combustible organic solvent n-methyl-2-pyrrolidone (NMP). The DIT electrode improves active 
material utilization in energy storage, but in turn the active material particles may exhibit larger 
volume changes over lithiation and delithiation [12]. On the other hand, the dry coated electrodes are 
more compact with higher pore tortuosity, but the compact microstructure may cause more strain 
during active material expansion, leading to cracks and reducing NMC811 capacity dramatically from 
~190 mAh g-1 to <60 mAh g-1 over 80 cycles at a slow C/3 rate [12, 16]. 

To quantify spatially-resolved microstructural change during cycling, X-ray computed tomography 
(XCT) imaging, neutron imaging, white light interferometry, etc. have been used [17, 18]. XCT has 
emerged as a powerful technique widely used to visualize internal microstructures [19-26]. XCT 
reveals material degradation mechanisms, structural and phase changes, etc. that affect battery 
performance and longevity [19-21]. One key challenge in XCT is the inherent trade-off between 
resolution and field-of-view (FoV) [20, 27]. High-resolution imaging is necessary for capturing fine 
structural details but often focuses on a small area of the electrode that may not be completely 
representative of the sample. Conversely, imaging larger areas provides a broader FoV, but sacrifices 
resolution, making it difficult to discern finer details. Experimental methods have reached physical 
resolution limitations of existing XCT instruments [28]. 

Deep learning models can improve image resolutions, e.g. convolutional neural networks (CNNs) rely 
on a feature-based approach to learn the mapping between low- and high-resolution data, focusing 
on enhancing structural fidelity [29, 30], and generative adversarial networks (GAN) incorporate an 
adversarial component, where a generator produces high-resolution images and a discriminator 
evaluates their quality, often resulting in superior perceptual quality [31, 32]. However, they have not 
been investigated in detail for XCT of different electrode microstructure for batteries. Further, 
electrode microstructure includes multiple properties such as porosity, pore tortuosity, particle 
volume changes, etc., quantification and finding a relationship among these interlinked parameters is 
critical for optimising electrode microstructure and minimising degradation, but it is challenging to 
find the complex relationship among the multiple property metrics using conventional methods. [19-
21]. 
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Here, we fabricate NMC811-based cathodes by both DIT and dry processing methodologies with 
different microstructural characteristics. We employ XCT imaging to observe and quantify NMC811-
based electrode microstructural changes over 100 charge-discharge cycles. By monitoring critical 
microstructural parameters, we gain valuable insights into the extent of active material particle 
volume expansion, cracking, and its subsequent impact on battery degradation. We employ both deep 
learning approaches of CNN and GAN to transform low-resolution, large FoV XCT data of the NMC811 
electrodes into high-resolution, large FoV images to mitigate the main resolution-FoV trade-off 
challenge of imaging. We then employ a liner regression model to quantify and find the complex 
relationship among the different microstructural properties such as pristine porosity and tortuosity 
and volume expansion after cycling in order to guide the initial optimal microstructure design to 
minimise degradation over battery cycling. These advancements significantly enhance the capability 
of XCT imaging and analysis in battery research, providing deeper insights into material behaviour and 
degradation mechanisms. 

Results and discussion

Machine learning procedures 

Each solid, free-standing NMC811 cathode was scanned twice, one at a low resolution of 2.3 µm per 
pixel and the other at a higher resolution of 0.74 µm per pixel. The resolution was adjusted by 
modifying the distance between the X-ray source and the electrode, with the closer proximity enabling 
the higher resolution scan.

To prepare the data for training the super-resolution models, we extracted 128×128 pixel sub-samples 
from 3D XCT image stacks. The data consisted of paired low-resolution (input) and high-resolution 
(ground truth) images that were pre-registered and scaled to ensure identical dimensions, enabling 
direct comparison (Figure 1). A total of 182,976 sub-samples were extracted, with each patch 
measuring 128×128 pixels. The resulting datasets had dimensions of (182976, 128, 128) for both the 
low-resolution and high-resolution data. This approach enabled efficient preparation of a large 
number of image patches, providing a comprehensive dataset to train deep learning models for the 
super-resolution tasks.
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Figure 1. (a) Example of experimental low-resolution image of NMC811 cathode acquired at 2.3 μm 
per pixel, (b) corresponding scaled-up version of the low-resolution image, and (c) experimental high-
resolution image obtained at 0.74 μm per pixel.  
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The CNN architecture employed in this study is based on the Super-Resolution Convolutional Neural 
Network (SRCNN) framework, which has been used in image super-resolution tasks [33-36]. To further 
improve the quality of low-resolution images through pixel-wise refinement, we enhanced the 
standard SRCNN by incorporating residual connections and additional convolutional layers for more 
effective feature extraction. The architecture, depicted in Figure 2, illustrates how the convolutional 
and residual layers work together to enhance image resolution.

Figure 2. Architecture of the SRCNN model utilized in this study, illustrating the convolutional and 
residual layers.

The proposed deep learning model is designed for super-resolution of grayscale images of dimensions 
128×128. The network architecture is an enhanced SRCNN with residual blocks to improve training 
stability and feature learning. The model input is a single-channel image, and the output is a 
reconstructed image of the same size. The network begins with an initial convolutional layer 
containing 64 filters of size 9×9 and ReLU activation, which extracts low-level features from the input 
image. This is followed by three residual blocks, each consisting of two 3×3 convolutional layers with 
ReLU activation and skip connections to preserve the input signal and mitigate vanishing gradient 
issues. After the residual blocks, an additional convolutional layer with 32 filters of size 5×5 and ReLU 
activation further refines the features. A final convolutional layer with a single 5×5 filter and linear 
activation reconstructs the output image. The network also effectively balances computational 
efficiency and reconstruction quality, making it well-suited for super-resolution tasks.

The GAN model developed for super-resolution of XCT images consists of two key components: the 
generator and the discriminator. The generator is responsible for transforming low-resolution images 
into high-resolution outputs, while the discriminator assesses the quality of the generated images by 
distinguishing between real and fake (generated) samples. As shown in Figure 3, the architecture of 
the generator is designed for image resolution enhancement, with the discriminator following a 
similar structure.
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Figure 3. The GAN model architecture used for image resolution enhancement, illustrating (a) the 
generator and (b) the discriminator components.

The generator follows a fully convolutional design tailored for 128×128 grayscale low-resolution input 
images. It begins with a convolutional layer of 64 filters using a kernel size of (3, 3), ReLU activation, 
and ‘same’ padding to retain spatial dimensions. This is followed by a second convolutional layer with 
128 filters and ReLU activation, also using ‘same’ padding. Finally, a third convolutional layer with a 
single filter (1 channel) and linear activation produces the high-resolution output, preserving the real-
valued nature of the image. The generator is trained to learn a pixel-to-pixel mapping from low-
resolution to high-resolution images. The discriminator is designed to assess the authenticity of 
images. It accepts 128×128 grayscale images and starts with a convolutional layer of 64 filters (3×3 
kernel, ReLU activation, ‘same’ padding), followed by a MaxPooling layer to reduce spatial dimensions. 
A second convolutional layer with 128 filters and ReLU activation is applied before flattening the 
feature maps. The final layer is a single-node dense layer with linear activation that outputs a 
continuous scalar representing the “realness” of the input image. The discriminator is trained to 
distinguish between real high-resolution images and generator outputs. During generator training, the 
discriminator weights are frozen to ensure that only the generator is updated. The combination of 
architectural design, adversarial training, evaluation with multiple quantitative metrics, and 
qualitative analysis ensures a comprehensive assessment of the ability of the models to generate high-
quality high-resolution images suitable for downstream tasks such as segmentation.

For training both models, the dataset is split into 80% for training and 20% for validation. The images 
are normalized to the range [0, 1] to facilitate faster convergence. Both models were trained using the 
Adam optimizer with a learning rate of 0.0001, a batch size of 32, and for 28 epochs, containing 
approximately one million trainable parameters. To improve training efficiency and prevent 
overfitting, callbacks are used, including a learning rate scheduler that reduces the learning rate when 
validation loss plateaus are reached and a model checkpoint to save the best-performing model based 
on validation loss. Performance of the model is evaluated using pixel-wise metrics such as mean 
squared error (MSE) as the primary loss function and mean absolute error (MAE) as an additional 
metric. Another two quantitative metrics used are structural similarity index measure (SSIM) and peak 
signal-to-noise ratio (PSNR) [37-39]. SSIM is a perceptual metric that assesses similarity between 
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generated and ground truth images, considering luminance, contrast, and structural information. A 
higher SSIM indicates that the generated image preserves important structural details of the high-
resolution reference. PSNR measures the ratio between the maximum pixel intensity and the 
reconstruction error; higher PSNR values indicate better fidelity to the original image. In addition to 
these metrics, a qualitative comparison is performed by analyzing histogram distributions of pixel 
intensities in both the original high-resolution images and the generated outputs. Training of both 
models also incorporate random mini-batch sampling to improve generalization. During each epoch, 
the training and validation metrics are tracked and saved. The model that performs best on the 
validation set is retained for future use. 

While both the CNN and GAN models demonstrate strong performance in super-resolution tasks, 
certain limitations should be considered. Although the models are trained on 128×128 sub-samples 
extracted from larger images, reconstructing the full-size images from these patches may occasionally 
introduce boundary artifacts. The CNN is designed for single-channel grayscale images, and while 
highly effective for the current dataset, extending it to multi-channel or colour images may require 
additional adaptation [40, 41]. To prevent overfitting and underfitting, both models incorporate 
validation-based monitoring, early stopping, learning rate scheduling, and mini-batch training, 
ensuring stable and generalized performance [42-44]. Adversarial training introduces inherent 
challenges such as careful tuning of hyperparameters, but it also enables the GAN to learn richer 
representations compared to standard CNNs [45]. Finally, as with all data-driven models, performance 
depends on the diversity and quality of the training dataset. Despite these considerations, both 
models provide reliable and robust super-resolution results, significantly enhancing image quality and 
structural detail, and offering a strong foundation for future improvements and applications.

Evaluation of CNN and GAN models for super-resolution performance

We observed distinct learning behaviour between the GAN and CNN models, as depicted in Figure 4. 
The GAN model (Figure 4a, b) demonstrated a rapid decline in both training and validation errors, 
stabilizing around epoch 10. The MSE and MAE error plateaued at approximately 0.015 and 0.05, 
respectively. This indicates an efficient early learning phase, suggesting that the GAN architecture 
quickly captures the essential features for super-resolution tasks. The CNN model (Figure 4c, d) 
demonstrated a sharp decrease in both MSE and MAE even earlier at around epoch 8. The training 
MSE for the CNN model settled lower at approximately 0.0019, with the validation MSE following 
closely, indicating robust learning with minimal overfitting. Similarly, the training MAE stabilized at 
about 0.03. The CNN model achieved an MSE reduction of nearly 90% compared to the GAN model, 
and its MAE was ~40% lower. Therefore, the CNN model provides higher accuracy compared to the 
GAN model in image super-resolution in this application.
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Figure 4. (a) Mean squared error (MSE); and (b) mean absolute error (MAE) versus epochs for both 
the training and validation datasets for the GAN model. (c) MSE; and (d) MAE versus epochs for the 
CNN model. 

Figure 5b,c show the GAN and CNN models, respectively, transform the experimental low-resolution 
XCT image of a fabricated NMC811 electrode (Figure 5a) into high-resolution images with the FoV 
covering an electrode sample of 1 mm in diameter (Figure 5a-c show images of 554 µm x 554 µm). To 
facilitate visual comparison, Figure 5d-f presents the images of the same FoV covering the electrode 
sample of 1 mm in diameter (images of 554 µm x 554 µm) but cropped to allow easier comparison of 
the fine details in the images. The term zoomed-in does not indicate optical magnification but rather 
cropped regions of the yellow box in Figure 5c. The images show that the CNN model preserves finer 
details and more accurately maintains the integrity of individual particles (blue boxes in Figure 5d–f). 
In contrast, the GAN model tends to merge some of the NMC particles that were separate in the 
ground truth image, whereas the CNN model successfully resolves them.
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Figure 5. (a) Experimental low-resolution image. (b) GAN model-generated; and (c) CNN model-
generated high-resolution images. The yellow square in (c) shows the position of the zoom-in section 
in (d-f). Cropped section to show the zoomed-in section of (d) experimental high-resolution image 
(ground truth); (e) GAN model-generated; and (f) CNN model-generated high-resolution images. The 
term zoomed-in does not indicate optical magnification but rather cropped regions (highlighted by 
the yellow box in Figure 5c) to allow easier comparison of the fine details in the images. The blue 
rectangles in (d-f) indicate the same regions for better comparison. Normalized histograms of intensity 
distributions for experimental low-resolution, experimental high-resolution (ground truth), and 
predicted images by (g) GAN; and (h) CNN.

Figure 5g, h presents normalized histograms of intensity distributions for low-resolution images (red), 
ground truth images (green), and model predictions (blue) from both the GAN and CNN. In both plots, 
the low-resolution images display a narrower intensity distribution, with most values concentrated 
around lower intensity levels. The ground truth images, on the other hand, exhibit a broader intensity 
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range, reflecting the higher quality and more detailed information. Both the GAN and CNN models 
shifted the intensity distribution of the low-resolution images toward that of the ground truth. The 
results confirmed the CNN model shows a broader range and closer alignment with the ground truth 
distribution than the GAN model. 

Table 1 shows the calculated SSIM and PSNR for the GAN- and CNN-generated images compared with 
the experimental high-resolution ground truth image, where SSIM indicates how similar two images 
are by focusing on their structure, brightness, and contrast; and PSNR shows how much noise is in the 
image compared to the original, with higher values meaning the image is closer to the ground truth 
for both SSIM and PSNR. The “No Model” scenario, which directly compares experimental low-
resolution images with experimental high-resolution ground truth, shows the lowest performance, 
with SSIM of 0.66 and PSNR of 22.15. These values highlight the significant disparity in quality between 
the low- and high-resolution images of the same electrode region. The GAN model achieved SSIM of 
0.82 and PSNR of 26.45. The CNN model outperformed the GAN, achieving SSIM of 0.92 and PSNR of 
30.12, again confirming the CNN model excels in preserving fine details and reducing noise, making it 
more effective for high-resolution image reconstruction. 

Table 1. Quantitative comparison of the performance of the GAN and CNN models using SSIM and 
PSNR. 

Model SSIM PSNR
No Model (experimental low-resolution) 0.66 22.15
GAN 0.82 26.45
CNN 0.92 30.12

  

To further assess the performance of the GAN and CNN models in enhancing image resolution, we 
analyzed the particle sizes, porosity, and tortuosity from matched regions of interest (ROIs) in different 
datasets. To avoid potential data leakage due to correlations between patches from the same 3D scan, 
all reported results (SSIM, PSNR, and microstructural parameters including particle sizes, porosity, and 
tortuosity) were evaluated on fully unseen datasets at the sample level. No patches from the same 
electrode were used during training or testing. Error! Reference source not found. compares the 
particle sizes extracted from the original high-resolution and low-resolution images with those 
obtained from the super-resolved images generated by the CNN and GAN models from the low-
resolution input. The low-resolution image (Error! Reference source not found.b) shows a noticeably 
shifted and a wider particle size distribution compared to that of the high-resolution reference (Error! 
Reference source not found.a), indicating loss of fine structural details in the low-resolution data. 
Both the super-resolution models improved the particle size representation, but the CNN-generated 
image (Error! Reference source not found.c) more closely matches the high-resolution distribution, 
capturing the peak and spread of particle diameters with higher accuracy. The GAN-generated image 

Page 10 of 22Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
nó

ve
m

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

4.
11

.2
02

5 
12

:3
2:

40
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5TA05257B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta05257b


11

(Error! Reference source not found.d) also improves over the low-resolution data, but the distribution 
shows a slight deviation from the high-resolution reference. 

Figure 6. Particle sizes for different datasets: (a) original experimental high-resolution image, (b) 
original experimental low-resolution image, (c) CNN super-resolved image, and (d) GAN super-
resolved image, (c) and (d) were generated from the low-resolution image.

To further assess metric-level validation on matched ROIs, Figure 7 presents a comparison of porosity 
and tortuosity derived from high-resolution and low-resolution electrode scans and CNN super-solved 
and GAN super-resolved images. The bar plots show mean values calculated across multiple ROIs, with 
error bars indicating the standard deviation, highlighting the variability within each dataset.
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Figure 7. Comparison of (a) porosity and (b) tortuosity for matched ROIs in different datasets: high-
resolution (HR), low-resolution (LR), CNN super-resolved, and GAN super-resolved images. Bars 
represent the mean values across different ROIs, and error bars indicate the standard deviation.

Figure 7 shows porosity and tortuosity values derived from the CNN super-resolved images closely 
align with those obtained from the high-resolution dataset both in terms of mean values and 
variability across different ROIs, further supporting the superior performance of the CNN model in 
preserving structural features. The GAN-generated metrics show slightly larger deviations, particularly 
in tortuosity. The error bars, representing standard deviations across ROIs, also indicate that the CNN 
model maintains consistency in structural quantification, reinforcing its reliability for downstream 
analysis. Future work can extend to the incorporation of nano-CT or FIB-SEM on selected ROIs.

Given the superior preservation of particle details by the CNN model, we applied the best-trained CNN 
to unseen experimental XCT images of NMC811 cathodes acquired at low resolution but with a larger 
FoV covering an electrode sample of 2 mm in diameter. The experimental low-resolution image 
(Figure 8a) reveals limited particle-level detail due to physical resolution constraints. Achieving high-
resolution imaging typically requires placing the sample closer to the X-ray source, which inherently 
reduces the FoV and makes it impractical to scan large samples. By applying our best-trained CNN 
model to the low-resolution image of this larger sample, we were able to reconstruct high-quality 
features that preserve particle boundaries, reduce noise, and enhance structural clarity of the same 
large FoV covering the electrode sample of 2 mm in diameter (Figure 8b). This demonstrates that our 
deep learning approach can effectively generate high-resolution representations while increasing FoV 
by 4 times (compared with the same experimentally achievable high-resolution images), even when 
direct experimental high-resolution imaging is not feasible due to hardware limitations. This approach 
mitigates the conventional resolution–FoV trade-off and enabling detailed analysis of large-scale 
samples without compromising resolution. Separately, the workflow could also be applied to 
accelerate scanning by acquiring low-resolution images and enhancing them to high resolution using 
a trained model, thereby reducing total scan time. While this time-saving application was not 
implemented here, approximate timings indicate that acquiring a high-resolution scan (0.74 µm voxel 
size) using the Micro XCT scanner settings takes ~3.5 hours, a low-resolution scan (2.3 µm voxel size) 
takes ~45 minutes, and applying the trained CNN to enhance resolution requires ≤10 minutes per 
volume. The one-off setup, including paired ROI acquisition, registration, curation, and model training, 
represents the initial effort. These numbers suggest that, for similar electrodes, super-resolution could 
substantially reduce scan time. We also plan to extend our comparisons by incorporating more 
advanced GAN architectures, such as enhanced deep super-resolution network (EDSR), residual 
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channel attention network (RCAN), and enhanced super-resolution regenerative adversarial network 
(ESRGAN), which employ perceptual and adversarial losses and may further improve reconstruction 
quality for the GAN model.

Figure 8. (a) Experimental low-resolution, large field of view (FoV) unseen image of NMC811 cathode. 
(b) Enhanced resolution, large FoV image generated by using the trained CNN model, improving the 
level of detail of particle and microstructural characteristics. 

NMC material expansion analysis 

We investigated microstructure changes of NMC811 electrodes made by two different methods of DIT 
and dry processing over 100 cycles with high resolution and large representative FoV. Figure 9 
illustrates the XCT images along the x-y plane of the two types of electrodes in the pristine state and 
after cycling. Figure S1 in the Supplementary Information (SI) shows two more datasets of XCT images 
along the x-y plane of two other electrodes fabricated by dry processing before and after cycling to 
demonstrate reproducibility and provide statistics for subsequent data analysis. Figure S2 shows the 
XCT images along the x-z plane (cross-section) of the four electrodes. We measured porosity and pore 
tortuosity in the through-electrode thickness direction (the kinetically favourable direction for ion 
diffusion) of each electrode at their pristine state and after 100 cycles, as summarized in Table 2. All 
images shown in Figure 9, Figure S1 and Figure S2 are original experimental XCT scans. No deep 
learning-based enhancement was applied to these images.

Figure 9, S1, and S2 and Table 2 show the DIT electrode exhibited higher porosity (0.85) and lower 
pore tortuosity (1.236) than the dry coated electrodes with lower porosity (0.46-0.51) and higher pore 
tortuosity (2.623-2.743). The lower porosity and higher tortuosity with more random microstructure 
of the dry coated electrodes may be caused by compression during the dry processing fabrication [46]. 
The NMC811 particles in the DIT electrode exhibited higher volume expansion (26%) after 100 
(dis)charge cycles than 5-8% volume expansion for the dry coated electrodes. The yellow circle in 
Figure 9d shows an example of a significantly expanded NMC811 particle after cycling in the DIT 
electrode. The yellow circle in Figure 9b shows that while most of the NMC811 particles in the dry 
coated electrode expanded, the expansion rate was lower. Figure 9b also shows cracks formation 
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between the secondary particles in the electrode (blue circle), indicating significant strain 
accumulation in the more compact dry coated electrode after cycling led to microscale cracks. 

Figure 9. XCT images along the x-y plane of the NMC811 cathodes fabricated by different methods, 
cycled at 0.2 C. (a) Pristine dry coated electrode; (b) dry coated electrode after 100 cycles. (c) Pristine 
DIT electrodes; (d) DIT electrode after 100 cycles. The yellow circles indicate examples of NMC811 
particle expansion after 100 cycles. All these images are original experimental XCT scans and no deep 
learning processing was applied.

Table 2. Porosity and pore tortuosity of NMC811 cathodes made by DIT and dry processing methods 
in the pristine states and after 100 cycles at different (dis)charge rates, along with the corresponding 
electrode expansion after cycling.

Sample Porosity at 
pristine

Tortuosity at 
pristine 

Porosity after 
100 cycles

Tortuosity after 
100 cycles

NMC811 Particle 
Expansion after 100 

charge-discharge 
cycles compared to 
the pristine volume 

(%) 
Dry coated 1 0.49 2.653 0.42 3.251 7
Dry coated 2 0.46 2.743 0.41 3.216 5 
Dry coated 3 0.51 2.623 0.43 3.195 8 

DIT 0.85 1.236 0.59 2.071 26 

To quantify the expansion of individual NMC811 particles, we plotted the particle size distributions for 
the four electrodes in Table 2 in their pristine state and after 100 charge-discharge cycles in Figure S3. 
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After 100 cycles, there was a noticeable shift in the distribution for all electrodes towards larger 
particle sizes, e.g. the dry coated 1 electrode showed a peak moving from 3-4 μm to 4-5 μm. Figure 
10 presents a comparative analysis of the normalized frequency distributions of pixel intensity for the 
XCT images of the two types of cathodes before (pristine) and after 100 cycles. In their pristine states, 
both types of electrodes exhibit distributions centered around lower pixel intensity values, indicating 
a uniform initial material structure with consistent X-ray attenuation. After 100 cycles, both types of 
electrodes show a shift in the pixel intensity distribution toward higher values, which are directly 
related to the X-ray attenuation and, consequently, suggesting an increase in the average of electrode 
density due to the irreversible expansion of the NMC811 particles [47, 48]. The DIT electrode exhibits 
higher material expansion (Figure 9b), in agreement with Table 2. In contrast, the dry electrode with 
lower expansion shows a lower shift. We also noticed micro-cracks appeared inside some of the 
secondary particles after cycling, as shown in Figure S4. The formation of micro-cracks inside 
secondary particles may be due to repeated volume expansion and contraction during ion insertion 
and extraction particularly as NMC811 exhibits anisotropic volume expansion and shrinkage during 
(de)lithiation [49]. 

Figure 10. Normalized frequency distribution of pixel intensity comparing the pristine state (red) and 
after 100 cycles (blue) for: (a) dry coated electrode; and (b) DIT electrode.

Electrochemical performance analysis 

The galvanostatic (dis)charge curves of the DIT and dry coated NMC811 cathodes (Figure 11a) show 
the dry coated cathode exhibited a slightly higher discharge capacity of 215 mAh g-1 in the 1st cycle 
compared with 202 mAh g-1 for the DIT cathode at 0.2 C. Both capacities are comparable with the 
NMC811 capacities achieved by the conventional slurry coating method using toxic NMP solvent [50], 
indicating the potential for using more sustainable methods to engineer electrode microstructure. The 
slightly higher capacity of the dry coated electrode in the 1st cycle may be because the NMC811 
particles in the pristine dry coated cathode are more connected together with higher electrical 
conductivities where the cohesion between the NMC811 particles in the pristine DIT cathode may be 
lower due to the higher porosity [51]. However, the discharge capacity of the dry coated cathode was 
reduced drastically to 64 mAh g-1 after 100 cycles while the discharge capacity of the DIT cathode was 
maintained at 148 mAh g-1 (more than double of that of the dry coated electrode, Figure 11b). Figure 
11b shows both electrodes maintained near 100% Coulombic efficiency at the 100th cycle. The large 
capacity drop for the dry coated cathode is in line to the capacity decrease of other dry coated 
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cathodes [52], as the compression during dry electrode processing may cause microscale cracking of 
the NMC secondary particles that degraded performance over cycling [51]. The DIT electrode with 
higher porosity in the pristine state provided free space for expansion of the NMC811 individual 
particles over cycling and the carbon binder domain surrounding each secondary particle provided 
flexibility and buffered excessive strain. In contrast, the secondary particles are stacked in closer 
contact with each other in the low porosity dry coated electrode, causing local stress, initiating 
degradation process, and leading to capacity loss over long-term cycling. 

Figure 11. (a) Galvanostatic charge and discharge curves of the 1st cycle at 0.2 C; and (b) cycling stability 
and Coulombic efficiency at 0.2 C over 100 cycles; both for the NMC811 cathodes made by the DIT 
and dry processing methods. 

The low tortuosity of the DIT electrode improved lithium ion diffusion kinetics and increased NMC811 
active material utilization during (dis)charging, leading to larger NMC811 particle expansion [53, 54]. 
Nevertheless, the DIT microstructure with higher porosity accommodated the larger volume 
expansion and strain more efficiently than the dry coated electrodes. The investigation provided 
valuable insights into the relationship between porosity and pore tortuosity in the pristine state and 
the level microstructural changes after cycling and material degradation mechanisms. The relationship 
among the multiple interconnected properties is challenging to be formulated by conventional 
methods. Hence, we performed a linear regression analysis using the porosity and tortuosity values 
as predictors, and the observed expansion percentages as the target variable. The fitted regression 
model provided the following equation for predicting material expansion:

𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 = ―0.0491 + (0.7286 × 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦) +( ― 0.0902 × 𝑇𝑜𝑟𝑡𝑢𝑜𝑠𝑖𝑡𝑦)              (Equation 1)

The fitted equation shows the positive relationship between porosity and expansion and the negative 
relationship between tortuosity and expansion. The performance of the model was evaluated by 
calculating MSE and the R² score. MSE was found to be 0.0001, and the R² score was 0.9982, suggesting 
that 99.82% of the variance in material expansion is based on porosity and tortuosity. Figure S5 shows 
the fitted plate of expansion based on porosity and tortuosity.

In this study, the linear regression is presented as a descriptive observation, not predictive. The 
correlation among porosity and tortuosity in the pristine state and volume expansion over cycling 
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suggest that higher porosity and lower tortuosity influence ion transport and mechanical 
accommodation during battery cycling. Hence, optimizing the initial electrode microstructural 
properties is one of the viable strategies for reducing degradation and enhancing the durability of 
battery electrodes.

Conclusions

This study showcases the power of integrating X-ray computed tomography (XCT) imaging with 
advanced deep learning models to explore the microstructural dynamics of NMC811-based cathodes 
during (de)lithiation cycling for lithium-ion batteries. To address the persistent challenge of trade-off 
between field of view (FoV) and resolution in imaging, we provide a framework leveraging 
convolutional neural networks (CNNs) and generative adversarial networks (GANs) for super-
resolution enhancement of low-resolution XCT data to achieve both large FoV and high resolution. 
The CNN model outperformed the GAN, achieving a structural similarity index measure (SSIM) of 0.92 
versus 0.82 and a peak signal-to-noise ratio (PSNR) of 30.12 versus 26.45, enabling precise 
reconstruction of high-quality images with preserved fine details. Furthermore, this approach allowed 
us to enhance high-resolution data for larger, more representative electrodes, with a four times larger 
volume, offering more comprehensive visualization of active material particles and microelectrode 
structure. We quantified material phase expansion ranging from 5% to 26% after 100 cycles for two 
different types of cathodes fabricated by different methodologies, corroborated by imaging pixel 
intensity shifts. The cathode fabricated by directional ice templating (DIT) that contained higher 
porosity and lower tortuosity in the pristine state exhibited significantly higher particle expansion after 
100 cycles, indicating the microstructure improved ion diffusion kinetics and active material 
utilization, while exhibited higher material phase expansion. Interestingly, the DIT electrode also 
exhibited higher capacity retention after 100 cycles compared with the electrode fabricated by dry 
processing with lower initial porosity and higher tortuosity. This may be because the higher initial 
porosity of the DIT electrode buffered the volume expansion and strain more effectively. We also 
developed a linear regression model to find the relationship among the interlinked properties in order 
to predict properties after cycling based on pristine microstructural metrics such as initial porosity and 
tortuosity to guide electrode microstructure design and selection of fabrication methods. This 
research underscores the transformative potential of combining advanced imaging with AI-driven 
techniques in battery research, offering deeper insights into microstructural behavior and facilitate 
the design of more durable and efficient energy storage solutions. 

Experimental 

Cathode fabrication and battery cell assembly

Cathodes in this study were fabricated by two methods, one by DIT [13, 14], and the other by dry 
electrode processing. For DIT, a slurry was first prepared by mixing NMC811, carbon black Super P 
C65, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) in weight proportions of 
90:5:3:2 in water as reported before [55]. The solid-to-solvent ratio was 40:60 (wt%). The mixture was 
homogenized using a planetary mixer at 2000 rpm for 20 minutes at room temperature (15 °C). The 
slurry was poured into a 3D-printed mould placed on a copper finger which was surrounded by liquid 
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nitrogen, enabled rapid directional freezing of the slurry. The frozen cathode was immediately 
transferred to a freeze dryer at -40 °C and 0.1 mbar for 3 hours to completely sublime the solvent 
while preserving the ice-templated microstructure [15]. 

For dry electrode processing, NMC811, carbon black, and polytetrafluoroethylene (PTFE) in weight 
proportions of 94:2:4 was first mixed by a Thinky mixer. The mixed powder was heated to 90°C to 
activate PTFE. The heated dry powder was then kneaded into a dough-like consistency, the free-
standing electrodes were fabricated by applying continuous pressure, followed by laminating onto the 
current collectors using a hot roller at 130°C.

For the DIT electrodes (NMC811:carbon black:styrene-butadiene rubber:carboxymethyl cellulose, 
90:5:3:2), the thickness was 1100 µm, the areal loading was 70 mg cm⁻², the density was 0.64 g cm⁻³. 
For the dry electrodes (NMC811:carbon black:PTFE, 94:2:4), the thickness was 91 µm, the areal loading 
was 31.2 mg cm⁻², the density was 3.42 g cm⁻³ to show the model can be applied to electrodes with a 
variety of properties. For both electrodes, no post-treatment calendering procedure was applied, 
electrochemical cycling was performed in the voltage window of 3.0–4.3 V, and the formation protocol 
consisted of initial activation at 0.05-0.1 C for three cycles, achieving a coulombic efficiency greater 
than 99% and capacity retention variation of ±4% after 100 cycles.

The electrochemical performance of the cathodes was evaluated in a half-cell configuration using 
CR2032 coin cells, with lithium foil serving as the counter electrode. The coin cells were assembled in 
an argon-filled glovebox, where H₂O and O₂ levels were controlled below 0.1 ppm to minimize 
contamination. The electrolyte was 1 M lithium hexafluorophosphate (LiPF₆) in a 1:1 (v/v) mixture of 
ethylene carbonate (EC) and ethyl methyl carbonate (EMC), Celgard 2400 separator was used. The 
configuration of the coin cells is shown in Figure S6 in the Supporting Information (SI). 

X-ray computed tomography

X-ray imaging was performed using a Zeiss Versa 510 Micro Computed Tomography scanner. All the 
samples used in this study are solid, free-standing cathodes that were fabricated using commercial 
NMC811 cathode active material, providing representative analysis to real-world applications. The 
system was operated at a power of 7 W, with a source energy of 80 kV, an object magnification of 4×, 
an exposure time of 5 seconds, and a binning factor of 1. A photograph of the inside of the XCT scanner 
with the mounted sample is shown in Figure S7. The cathodes were disassembled and cropped to a 
diameter of 1 mm for the low FoV experiments and 2.76 mm for the larger FoV experiments, then 
carefully mounted on the sample holder to ensure stability and alignment during scanning. 

The resolution and FoV of the XCT images were adjusted through adjusting the distance between the 
sample and X-ray source. Following the completion of the scans, the acquired projection data was 
reconstructed. The reconstructed 3D image volumes were saved as TIFF files for analysis.

3D watershed segmentation was performed using Avizo software. For each dataset, the intensity 
threshold separating NMC811 particles from the background was selected adaptively to achieve the 
clearest phase distinction between the material phase and pore phase. The carbon binder domain 
(CBD) was not segmented as a separate phase because the resolution of the XCT used was not able to 
image the CBD phase clearly and the focus of this study is on cathode active material NMC811 particles 
volume expansion over battery charge and discharge cycling. An example of the results of this 
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segmentation are shown in Figure S8. Tortuosity and porosity were quantified using image-based 
analysis of the segmented image using the PoreSpy library in python. Tortuosity is defined as the ratio 
of the actual transport path length through the pore space to the straight-line distance, reflecting the 
complexity of the pore network. Porosity refers to the fraction of the volume occupied by void spaces, 
indicating how much of the material is porous.
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