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Abstract

Rechargeable batteries are promising for transition to clean energy. This study investigates
microstructural dynamics of LiNipsMnp1C0010, (NMC811)-based cathodes over cycling using X-ray
computed tomography (XCT). There is a long-standing imaging challenge of compromising between
large field-of-view (FoV) to be representative of the electrodes and high resolution to observe fine
details of individual particles. Here, we provide a framework that mitigates this trade-off by comparing
two deep learning models—convolutional neural networks (CNNs) and generative adversarial
networks (GANs)—for super-resolution enhancement of the XCT data to achieve both a large FoV (4
times larger) and sub-micron resolutions. We fabricated NMC811 cathodes containing different initial
porosity (0.46-0.85) and tortuosity (1.24-2.74) by two different methods, directional ice templating
(DIT) and dry processing to eliminate toxic organic solvent during fabrication. Micro-cracks inside
individual NMC811 secondary particles and shifts in pixel intensity distributions were observed after
100 (dis)charge cycles. The DIT cathode exhibited a larger irreversible volume expansion due to the
more favorable ion diffusion kinetics and higher active material utilization. Interestingly, the higher
pore volume and carbon binder domain (CBD) surrounding the NMC811 particles effectively
accommodated the volume expansion, and the DIT cathode exhibited a higher capacity retention over
cycling than the dry coated cathode that exhibited initial lower porosity and higher tortuosity. A linear
regression model was used to correlate the various microstructural properties such as porosity and
tortuosity in the pristine state, and expansion after cycling to develop a framework of predicting
optimal initial microstructure and electrochemical performance over cycling.
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Introduction

Over the past decade, batteries play a crucial role in the global effort to achieve zero emissions and
enable the transition from fossil fuels to renewable energy sources [1, 2]. Batteries have facilitated
the widespread adoption of electric transportation and grid storage of intermittent renewable energy
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[3]. To meet diverse energy storage needs, a range of battery types have been developed, [4, 515FQt; S L0

lithium-ion batteries, LiNipsMno1C0010, (NMC811) cathode material has gained significant interest
due to its balance between energy density, power output, longevity, and thermal stability [6, 7].

Understanding how NMC811 behaves over cycling is essential for optimizing battery performance and
longevity. At the crystal lattice scale, cycling-induced mechanical degradation is caused by anisotropic
lattice expansion of NMC811 during lithium insertion [8]. Over the course of cycling, NMC811
undergoes microstructural changes that can impact the integrity and efficiency of the electrodes [9,
10]. Crack formation is an important degradation mechanism that reduces battery performance.
Recent electrochemical-mechanical modelling results show that during delithiation, although the
primary NMC811 particles shrink, a volumetric expansion of the secondary particles occurs because
of cracking due to the strain anisotropy of the primary particles [11]. The incompatible deformation
from grain to grain induces large self-stresses that drives to cracks/fracture inside secondary particles
and larger cracks between the secondary particles in the electrode microstructure [12].

Our group has developed two sustainable methodologies of making electrodes with different
microstructures, directional ice templating (DIT) of making electrodes with vertical pore arrays to
improve ion diffusion kinetics [13-15] and dry processing of making electrodes that eliminate toxic,
combustible organic solvent n-methyl-2-pyrrolidone (NMP). The DIT electrode improves active
material utilization in energy storage, but in turn the active material particles may exhibit larger
volume changes over lithiation and delithiation [12]. On the other hand, the dry coated electrodes are
more compact with higher pore tortuosity, but the compact microstructure may cause more strain
during active material expansion, leading to cracks and reducing NMC811 capacity dramatically from
~190 mAh g* to <60 mAh g over 80 cycles at a slow C/3 rate [12, 16].

To quantify spatially-resolved microstructural change during cycling, X-ray computed tomography
(XCT) imaging, neutron imaging, white light interferometry, etc. have been used [17, 18]. XCT has
emerged as a powerful technique widely used to visualize internal microstructures [19-26]. XCT
reveals material degradation mechanisms, structural and phase changes, etc. that affect battery
performance and longevity [19-21]. One key challenge in XCT is the inherent trade-off between
resolution and field-of-view (FoV) [20, 27]. High-resolution imaging is necessary for capturing fine
structural details but often focuses on a small area of the electrode that may not be completely
representative of the sample. Conversely, imaging larger areas provides a broader FoV, but sacrifices
resolution, making it difficult to discern finer details. Experimental methods have reached physical
resolution limitations of existing XCT instruments [28].

Deep learning models can improve image resolutions, e.g. convolutional neural networks (CNNs) rely
on a feature-based approach to learn the mapping between low- and high-resolution data, focusing
on enhancing structural fidelity [29, 30], and generative adversarial networks (GAN) incorporate an
adversarial component, where a generator produces high-resolution images and a discriminator
evaluates their quality, often resulting in superior perceptual quality [31, 32]. However, they have not
been investigated in detail for XCT of different electrode microstructure for batteries. Further,
electrode microstructure includes multiple properties such as porosity, pore tortuosity, particle
volume changes, etc., quantification and finding a relationship among these interlinked parameters is
critical for optimising electrode microstructure and minimising degradation, but it is challenging to
find the complex relationship among the multiple property metrics using conventional methods. [19-
21].
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Here, we fabricate NMC811-based cathodes by both DIT and dry processing methodglogies With .0
different microstructural characteristics. We employ XCT imaging to observe and quantify NMC811-
based electrode microstructural changes over 100 charge-discharge cycles. By monitoring critical
microstructural parameters, we gain valuable insights into the extent of active material particle
volume expansion, cracking, and its subsequent impact on battery degradation. We employ both deep
learning approaches of CNN and GAN to transform low-resolution, large FoV XCT data of the NMC811
electrodes into high-resolution, large FoV images to mitigate the main resolution-FoV trade-off
challenge of imaging. We then employ a liner regression model to quantify and find the complex
relationship among the different microstructural properties such as pristine porosity and tortuosity
and volume expansion after cycling in order to guide the initial optimal microstructure design to
minimise degradation over battery cycling. These advancements significantly enhance the capability
of XCT imaging and analysis in battery research, providing deeper insights into material behaviour and
degradation mechanisms.

Results and discussion
Machine learning procedures

Each solid, free-standing NMC811 cathode was scanned twice, one at a low resolution of 2.3 um per
pixel and the other at a higher resolution of 0.74 um per pixel. The resolution was adjusted by
modifying the distance between the X-ray source and the electrode, with the closer proximity enabling
the higher resolution scan.

To prepare the data for training the super-resolution models, we extracted 128x128 pixel sub-samples
from 3D XCT image stacks. The data consisted of paired low-resolution (input) and high-resolution
(ground truth) images that were pre-registered and scaled to ensure identical dimensions, enabling
direct comparison (Figure 1). A total of 182,976 sub-samples were extracted, with each patch
measuring 128x128 pixels. The resulting datasets had dimensions of (182976, 128, 128) for both the
low-resolution and high-resolution data. This approach enabled efficient preparation of a large

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

number of image patches, providing a comprehensive dataset to train deep learning models for the
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(c) High resolution (grounghtruth)zo,n51A052578

(b) Low resolution

Figure 1. (a) Example of experimental low-resolution image of NMC811 cathode acquired at 2.3 um
per pixel, (b) corresponding scaled-up version of the low-resolution image, and (c) experimental high-
resolution image obtained at 0.74 um per pixel.
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The CNN architecture employed in this study is based on the Super-Resolution Convolutignal N ‘;‘8502”5%
Network (SRCNN) framework, which has been used in image super-resolution tasks [33-36]. To further
improve the quality of low-resolution images through pixel-wise refinement, we enhanced the
standard SRCNN by incorporating residual connections and additional convolutional layers for more
effective feature extraction. The architecture, depicted in Figure 2, illustrates how the convolutional

and residual layers work together to enhance image resolution.

Residual Residual Residual Conv2D+
block reLU
block Conv2D+ block convap+ Conv2D+
Input data ReLU ReLU ReLU Output data
Conv2D
Conv2D+ Conv2D+
RelLU Linear

Figure 2. Architecture of the SRCNN model utilized in this study, illustrating the convolutional and
residual layers.

The proposed deep learning model is designed for super-resolution of grayscale images of dimensions
128x128. The network architecture is an enhanced SRCNN with residual blocks to improve training
stability and feature learning. The model input is a single-channel image, and the output is a
reconstructed image of the same size. The network begins with an initial convolutional layer
containing 64 filters of size 9x9 and RelLU activation, which extracts low-level features from the input
image. This is followed by three residual blocks, each consisting of two 3x3 convolutional layers with
RelLU activation and skip connections to preserve the input signal and mitigate vanishing gradient
issues. After the residual blocks, an additional convolutional layer with 32 filters of size 5x5 and RelLU
activation further refines the features. A final convolutional layer with a single 5x5 filter and linear

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

activation reconstructs the output image. The network also effectively balances computational
efficiency and reconstruction quality, making it well-suited for super-resolution tasks.

Open Access Article. Published on 11 névember 2025. Downloaded on 14.11.2025 12:32:40.

The GAN model developed for super-resolution of XCT images consists of two key components: the
generator and the discriminator. The generator is responsible for transforming low-resolution images
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into high-resolution outputs, while the discriminator assesses the quality of the generated images by
distinguishing between real and fake (generated) samples. As shown in Figure 3, the architecture of
the generator is designed for image resolution enhancement, with the discriminator following a
similar structure.
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Figure 3. The GAN model architecture used for image resolution enhancement, illustrating (a) the
generator and (b) the discriminator components.

The generator follows a fully convolutional design tailored for 128x128 grayscale low-resolution input
images. It begins with a convolutional layer of 64 filters using a kernel size of (3, 3), ReLU activation,
and ‘same’ padding to retain spatial dimensions. This is followed by a second convolutional layer with
128 filters and RelU activation, also using ‘same’ padding. Finally, a third convolutional layer with a
single filter (1 channel) and linear activation produces the high-resolution output, preserving the real-
valued nature of the image. The generator is trained to learn a pixel-to-pixel mapping from low-
resolution to high-resolution images. The discriminator is designed to assess the authenticity of
images. It accepts 128x128 grayscale images and starts with a convolutional layer of 64 filters (3x3
kernel, ReLU activation, ‘same’ padding), followed by a MaxPooling layer to reduce spatial dimensions.
A second convolutional layer with 128 filters and RelLU activation is applied before flattening the
feature maps. The final layer is a single-node dense layer with linear activation that outputs a
continuous scalar representing the “realness” of the input image. The discriminator is trained to
distinguish between real high-resolution images and generator outputs. During generator training, the
discriminator weights are frozen to ensure that only the generator is updated. The combination of
architectural design, adversarial training, evaluation with multiple quantitative metrics, and
qualitative analysis ensures a comprehensive assessment of the ability of the models to generate high-
quality high-resolution images suitable for downstream tasks such as segmentation.

For training both models, the dataset is split into 80% for training and 20% for validation. The images
are normalized to the range [0, 1] to facilitate faster convergence. Both models were trained using the
Adam optimizer with a learning rate of 0.0001, a batch size of 32, and for 28 epochs, containing
approximately one million trainable parameters. To improve training efficiency and prevent
overfitting, callbacks are used, including a learning rate scheduler that reduces the learning rate when
validation loss plateaus are reached and a model checkpoint to save the best-performing model based
on validation loss. Performance of the model is evaluated using pixel-wise metrics such as mean
squared error (MSE) as the primary loss function and mean absolute error (MAE) as an additional
metric. Another two quantitative metrics used are structural similarity index measure (SSIM) and peak
signal-to-noise ratio (PSNR) [37-39]. SSIM is a perceptual metric that assesses similarity between
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generated and ground truth images, considering luminance, contrast, and structural ing%m@géjj% ‘;‘5502”5‘%
higher SSIM indicates that the generated image preserves important structural details of the high-
resolution reference. PSNR measures the ratio between the maximum pixel intensity and the
reconstruction error; higher PSNR values indicate better fidelity to the original image. In addition to
these metrics, a qualitative comparison is performed by analyzing histogram distributions of pixel
intensities in both the original high-resolution images and the generated outputs. Training of both
models also incorporate random mini-batch sampling to improve generalization. During each epoch,
the training and validation metrics are tracked and saved. The model that performs best on the

validation set is retained for future use.

While both the CNN and GAN models demonstrate strong performance in super-resolution tasks,
certain limitations should be considered. Although the models are trained on 128x128 sub-samples
extracted from larger images, reconstructing the full-size images from these patches may occasionally
introduce boundary artifacts. The CNN is designed for single-channel grayscale images, and while
highly effective for the current dataset, extending it to multi-channel or colour images may require
additional adaptation [40, 41]. To prevent overfitting and underfitting, both models incorporate
validation-based monitoring, early stopping, learning rate scheduling, and mini-batch training,
ensuring stable and generalized performance [42-44]. Adversarial training introduces inherent
challenges such as careful tuning of hyperparameters, but it also enables the GAN to learn richer
representations compared to standard CNNs [45]. Finally, as with all data-driven models, performance
depends on the diversity and quality of the training dataset. Despite these considerations, both
models provide reliable and robust super-resolution results, significantly enhancing image quality and
structural detail, and offering a strong foundation for future improvements and applications.

Evaluation of CNN and GAN models for super-resolution performance

We observed distinct learning behaviour between the GAN and CNN models, as depicted in Figure 4.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

The GAN model (Figure 4a, b) demonstrated a rapid decline in both training and validation errors,
stabilizing around epoch 10. The MSE and MAE error plateaued at approximately 0.015 and 0.05,
respectively. This indicates an efficient early learning phase, suggesting that the GAN architecture

Open Access Article. Published on 11 névember 2025. Downloaded on 14.11.2025 12:32:40.

quickly captures the essential features for super-resolution tasks. The CNN model (Figure 4c, d)
demonstrated a sharp decrease in both MSE and MAE even earlier at around epoch 8. The training
MSE for the CNN model settled lower at approximately 0.0019, with the validation MSE following
closely, indicating robust learning with minimal overfitting. Similarly, the training MAE stabilized at
about 0.03. The CNN model achieved an MSE reduction of nearly 90% compared to the GAN model,
and its MAE was ~40% lower. Therefore, the CNN model provides higher accuracy compared to the
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GAN model in image super-resolution in this application.
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Figure 4. (a) Mean squared error (MSE); and (b) mean absolute error (MAE) versus epochs for both
the training and validation datasets for the GAN model. (c) MSE; and (d) MAE versus epochs for the
CNN model.

Figure 5b,c show the GAN and CNN models, respectively, transform the experimental low-resolution
XCT image of a fabricated NMC811 electrode (Figure 5a) into high-resolution images with the FoV
covering an electrode sample of 1 mm in diameter (Figure 5a-c show images of 554 um x 554 um). To
facilitate visual comparison, Figure 5d-f presents the images of the same FoV covering the electrode
sample of 1 mm in diameter (images of 554 um x 554 um) but cropped to allow easier comparison of
the fine details in the images. The term zoomed-in does not indicate optical magnification but rather
cropped regions of the yellow box in Figure 5c. The images show that the CNN model preserves finer
details and more accurately maintains the integrity of individual particles (blue boxes in Figure 5d—f).
In contrast, the GAN model tends to merge some of the NMC particles that were separate in the
ground truth image, whereas the CNN model successfully resolves them.
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Figure 5. (a) Experimental low-resolution image. (b) GAN model-generated; and (c) CNN model-
generated high-resolution images. The yellow square in (c) shows the position of the zoom-in section
in (d-f). Cropped section to show the zoomed-in section of (d) experimental high-resolution image
(ground truth); (e) GAN model-generated; and (f) CNN model-generated high-resolution images. The
term zoomed-in does not indicate optical magnification but rather cropped regions (highlighted by
the yellow box in Figure 5c) to allow easier comparison of the fine details in the images. The blue
rectangles in (d-f) indicate the same regions for better comparison. Normalized histograms of intensity
distributions for experimental low-resolution, experimental high-resolution (ground truth), and
predicted images by (g) GAN; and (h) CNN.

Figure 5g, h presents normalized histograms of intensity distributions for low-resolution images (red),
ground truth images (green), and model predictions (blue) from both the GAN and CNN. In both plots,
the low-resolution images display a narrower intensity distribution, with most values concentrated
around lower intensity levels. The ground truth images, on the other hand, exhibit a broader intensity
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range, reflecting the higher quality and more detailed information. Both the GAN and &g\l@o%égjﬂ
shifted the intensity distribution of the low-resolution images toward that of the ground truth. The
results confirmed the CNN model shows a broader range and closer alignment with the ground truth
distribution than the GAN model.

Table 1 shows the calculated SSIM and PSNR for the GAN- and CNN-generated images compared with
the experimental high-resolution ground truth image, where SSIM indicates how similar two images
are by focusing on their structure, brightness, and contrast; and PSNR shows how much noise is in the
image compared to the original, with higher values meaning the image is closer to the ground truth
for both SSIM and PSNR. The “No Model” scenario, which directly compares experimental low-
resolution images with experimental high-resolution ground truth, shows the lowest performance,
with SSIM of 0.66 and PSNR of 22.15. These values highlight the significant disparity in quality between
the low- and high-resolution images of the same electrode region. The GAN model achieved SSIM of
0.82 and PSNR of 26.45. The CNN model outperformed the GAN, achieving SSIM of 0.92 and PSNR of
30.12, again confirming the CNN model excels in preserving fine details and reducing noise, making it
more effective for high-resolution image reconstruction.

Table 1. Quantitative comparison of the performance of the GAN and CNN models using SSIM and
PSNR.

Model SSIM PSNR
No Model (experimental low-resolution) 0.66 22.15
GAN 0.82 26.45
CNN 0.92 30.12

To further assess the performance of the GAN and CNN models in enhancing image resolution, we
analyzed the particle sizes, porosity, and tortuosity from matched regions of interest (ROls) in different
datasets. To avoid potential data leakage due to correlations between patches from the same 3D scan,
all reported results (SSIM, PSNR, and microstructural parameters including particle sizes, porosity, and
tortuosity) were evaluated on fully unseen datasets at the sample level. No patches from the same
electrode were used during training or testing. Error! Reference source not found. compares the
particle sizes extracted from the original high-resolution and low-resolution images with those
obtained from the super-resolved images generated by the CNN and GAN models from the low-
resolution input. The low-resolution image (Error! Reference source not found.b) shows a noticeably
shifted and a wider particle size distribution compared to that of the high-resolution reference (Error!
Reference source not found.a), indicating loss of fine structural details in the low-resolution data.
Both the super-resolution models improved the particle size representation, but the CNN-generated
image (Error! Reference source not found.c) more closely matches the high-resolution distribution,
capturing the peak and spread of particle diameters with higher accuracy. The GAN-generated image
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(Error! Reference source not found.d) also improves over the low-resolution data, but the djstribtiion’ <505

shows a slight deviation from the high-resolution reference.

and tortuosity derived from high-resolution and low-resolution electrode scans and CNN super-solved
and GAN super-resolved images. The bar plots show mean values calculated across multiple ROls, with
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Figure 7. Comparison of (a) porosity and (b) tortuosity for matched ROIs in different datasets: high-
resolution (HR), low-resolution (LR), CNN super-resolved, and GAN super-resolved images. Bars
represent the mean values across different ROls, and error bars indicate the standard deviation.

Figure 7 shows porosity and tortuosity values derived from the CNN super-resolved images closely
align with those obtained from the high-resolution dataset both in terms of mean values and
variability across different ROls, further supporting the superior performance of the CNN model in
preserving structural features. The GAN-generated metrics show slightly larger deviations, particularly
in tortuosity. The error bars, representing standard deviations across ROIls, also indicate that the CNN
model maintains consistency in structural quantification, reinforcing its reliability for downstream
analysis. Future work can extend to the incorporation of nano-CT or FIB-SEM on selected ROls.

Given the superior preservation of particle details by the CNN model, we applied the best-trained CNN
to unseen experimental XCT images of NMC811 cathodes acquired at low resolution but with a larger
FoV covering an electrode sample of 2 mm in diameter. The experimental low-resolution image
(Figure 8a) reveals limited particle-level detail due to physical resolution constraints. Achieving high-
resolution imaging typically requires placing the sample closer to the X-ray source, which inherently
reduces the FoV and makes it impractical to scan large samples. By applying our best-trained CNN
model to the low-resolution image of this larger sample, we were able to reconstruct high-quality
features that preserve particle boundaries, reduce noise, and enhance structural clarity of the same
large FoV covering the electrode sample of 2 mm in diameter (Figure 8b). This demonstrates that our
deep learning approach can effectively generate high-resolution representations while increasing FoV
by 4 times (compared with the same experimentally achievable high-resolution images), even when
direct experimental high-resolution imaging is not feasible due to hardware limitations. This approach
mitigates the conventional resolution—FoV trade-off and enabling detailed analysis of large-scale
samples without compromising resolution. Separately, the workflow could also be applied to
accelerate scanning by acquiring low-resolution images and enhancing them to high resolution using
a trained model, thereby reducing total scan time. While this time-saving application was not
implemented here, approximate timings indicate that acquiring a high-resolution scan (0.74 um voxel
size) using the Micro XCT scanner settings takes ~3.5 hours, a low-resolution scan (2.3 um voxel size)
takes ~45 minutes, and applying the trained CNN to enhance resolution requires <10 minutes per
volume. The one-off setup, including paired ROl acquisition, registration, curation, and model training,
represents the initial effort. These numbers suggest that, for similar electrodes, super-resolution could
substantially reduce scan time. We also plan to extend our comparisons by incorporating more
advanced GAN architectures, such as enhanced deep super-resolution network (EDSR), residual
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channel attention network (RCAN), and enhanced super-resolution regenerative advers%r@llg_%ygﬁ)@
(ESRGAN), which employ perceptual and adversarial losses and may further improve reconstruction
quality for the GAN model.

(@)

Figure 8. (a) Experimental low-resolution, large field of view (FoV) unseen image of NMC811 cathode.
(b) Enhanced resolution, large FoV image generated by using the trained CNN model, improving the
level of detail of particle and microstructural characteristics.

NMC material expansion analysis

We investigated microstructure changes of NMC811 electrodes made by two different methods of DIT
and dry processing over 100 cycles with high resolution and large representative FoV. Figure 9
illustrates the XCT images along the x-y plane of the two types of electrodes in the pristine state and
after cycling. Figure S1 in the Supplementary Information (SI) shows two more datasets of XCT images
along the x-y plane of two other electrodes fabricated by dry processing before and after cycling to
demonstrate reproducibility and provide statistics for subsequent data analysis. Figure S2 shows the
XCT images along the x-z plane (cross-section) of the four electrodes. We measured porosity and pore
tortuosity in the through-electrode thickness direction (the kinetically favourable direction for ion
diffusion) of each electrode at their pristine state and after 100 cycles, as summarized in Table 2. All
images shown in Figure 9, Figure S1 and Figure S2 are original experimental XCT scans. No deep
learning-based enhancement was applied to these images.

Figure 9, S1, and S2 and Table 2 show the DIT electrode exhibited higher porosity (0.85) and lower
pore tortuosity (1.236) than the dry coated electrodes with lower porosity (0.46-0.51) and higher pore
tortuosity (2.623-2.743). The lower porosity and higher tortuosity with more random microstructure
of the dry coated electrodes may be caused by compression during the dry processing fabrication [46].
The NMC811 particles in the DIT electrode exhibited higher volume expansion (26%) after 100
(dis)charge cycles than 5-8% volume expansion for the dry coated electrodes. The yellow circle in
Figure 9d shows an example of a significantly expanded NMC811 particle after cycling in the DIT
electrode. The yellow circle in Figure 9b shows that while most of the NMC811 particles in the dry
coated electrode expanded, the expansion rate was lower. Figure 9b also shows cracks formation
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between the secondary particles in the electrode (blue circle), indicating significant, straffysotrs

accumulation in the more compact dry coated electrode after cycling led to microscale cracks.

y

Figure 9. XCT images along the x-y plane of the NMC811 cathodes fabricated by different methods,
cycled at 0.2 C. (a) Pristine dry coated electrode; (b) dry coated electrode after 100 cycles. (c) Pristine
DIT electrodes; (d) DIT electrode after 100 cycles. The yellow circles indicate examples of NMC811
particle expansion after 100 cycles. All these images are original experimental XCT scans and no deep
learning processing was applied.

Table 2. Porosity and pore tortuosity of NMC811 cathodes made by DIT and dry processing methods
in the pristine states and after 100 cycles at different (dis)charge rates, along with the corresponding
electrode expansion after cycling.

Sample Porosity at | Tortuosity at| Porosity after | Tortuosity after| NMC811 Particle
pristine pristine 100 cycles 100 cycles Expansion after 100
charge-discharge
cycles compared to
the pristine volume

(%)
Dry coated 1 0.49 2.653 0.42 3.251 7
Dry coated 2 0.46 2.743 0.41 3.216 5
Dry coated 3 0.51 2.623 0.43 3.195 8
DIT 0.85 1.236 0.59 2.071 26

To quantify the expansion of individual NMC811 particles, we plotted the particle size distributions for
the four electrodes in Table 2 in their pristine state and after 100 charge-discharge cycles in Figure S3.
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After 100 cycles, there was a noticeable shift in the distribution for all electrodes tog@rﬂ;ﬂé@%@ﬁé%@%
particle sizes, e.g. the dry coated 1 electrode showed a peak moving from 3-4 um to 4-5 um. Figure
10 presents a comparative analysis of the normalized frequency distributions of pixel intensity for the
XCT images of the two types of cathodes before (pristine) and after 100 cycles. In their pristine states,
both types of electrodes exhibit distributions centered around lower pixel intensity values, indicating
a uniform initial material structure with consistent X-ray attenuation. After 100 cycles, both types of
electrodes show a shift in the pixel intensity distribution toward higher values, which are directly
related to the X-ray attenuation and, consequently, suggesting an increase in the average of electrode
density due to the irreversible expansion of the NMC811 particles [47, 48]. The DIT electrode exhibits
higher material expansion (Figure 9b), in agreement with Table 2. In contrast, the dry electrode with
lower expansion shows a lower shift. We also noticed micro-cracks appeared inside some of the
secondary particles after cycling, as shown in Figure S4. The formation of micro-cracks inside
secondary particles may be due to repeated volume expansion and contraction during ion insertion
and extraction particularly as NMC811 exhibits anisotropic volume expansion and shrinkage during
(de)lithiation [49].

> ]
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Figure 10. Normalized frequency distribution of pixel intensity comparing the pristine state (red) and
after 100 cycles (blue) for: (a) dry coated electrode; and (b) DIT electrode.
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Electrochemical performance analysis

The galvanostatic (dis)charge curves of the DIT and dry coated NMC811 cathodes (Figure 11a) show
the dry coated cathode exhibited a slightly higher discharge capacity of 215 mAh g in the 1% cycle
compared with 202 mAh g* for the DIT cathode at 0.2 C. Both capacities are comparable with the
NMC811 capacities achieved by the conventional slurry coating method using toxic NMP solvent [50],
indicating the potential for using more sustainable methods to engineer electrode microstructure. The
slightly higher capacity of the dry coated electrode in the 1t cycle may be because the NMC811
particles in the pristine dry coated cathode are more connected together with higher electrical
conductivities where the cohesion between the NMC811 particles in the pristine DIT cathode may be
lower due to the higher porosity [51]. However, the discharge capacity of the dry coated cathode was
reduced drastically to 64 mAh g after 100 cycles while the discharge capacity of the DIT cathode was
maintained at 148 mAh g (more than double of that of the dry coated electrode, Figure 11b). Figure
11b shows both electrodes maintained near 100% Coulombic efficiency at the 100t cycle. The large
capacity drop for the dry coated cathode is in line to the capacity decrease of other dry coated

15


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta05257b

Open Access Article. Published on 11 névember 2025. Downloaded on 14.11.2025 12:32:40.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

cathodes [52], as the compression during dry electrode processing may cause microscalg&rﬁﬂgﬁg@?
the NMC secondary particles that degraded performance over cycling [51]. The DIT electrode with
higher porosity in the pristine state provided free space for expansion of the NMC811 individual
particles over cycling and the carbon binder domain surrounding each secondary particle provided
flexibility and buffered excessive strain. In contrast, the secondary particles are stacked in closer
contact with each other in the low porosity dry coated electrode, causing local stress, initiating
degradation process, and leading to capacity loss over long-term cycling.
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Figure 11. (a) Galvanostatic charge and discharge curves of the 15t cycle at 0.2 C; and (b) cycling stability
and Coulombic efficiency at 0.2 C over 100 cycles; both for the NMC811 cathodes made by the DIT
and dry processing methods.

The low tortuosity of the DIT electrode improved lithium ion diffusion kinetics and increased NMC811
active material utilization during (dis)charging, leading to larger NMC811 particle expansion [53, 54].
Nevertheless, the DIT microstructure with higher porosity accommodated the larger volume
expansion and strain more efficiently than the dry coated electrodes. The investigation provided
valuable insights into the relationship between porosity and pore tortuosity in the pristine state and
the level microstructural changes after cycling and material degradation mechanisms. The relationship
among the multiple interconnected properties is challenging to be formulated by conventional
methods. Hence, we performed a linear regression analysis using the porosity and tortuosity values
as predictors, and the observed expansion percentages as the target variable. The fitted regression
model provided the following equation for predicting material expansion:

Expansion = —0.0491 + (0.7286 X Porosity) +(— 0.0902 X Tortuosity) (Equation 1)

The fitted equation shows the positive relationship between porosity and expansion and the negative
relationship between tortuosity and expansion. The performance of the model was evaluated by
calculating MSE and the R? score. MSE was found to be 0.0001, and the R? score was 0.9982, suggesting
that 99.82% of the variance in material expansion is based on porosity and tortuosity. Figure S5 shows
the fitted plate of expansion based on porosity and tortuosity.

In this study, the linear regression is presented as a descriptive observation, not predictive. The
correlation among porosity and tortuosity in the pristine state and volume expansion over cycling
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suggest that higher porosity and lower tortuosity influence ion transport and_ meghatijcelssirs
accommodation during battery cycling. Hence, optimizing the initial electrode microstructural
properties is one of the viable strategies for reducing degradation and enhancing the durability of

battery electrodes.

Conclusions

This study showcases the power of integrating X-ray computed tomography (XCT) imaging with
advanced deep learning models to explore the microstructural dynamics of NMC811-based cathodes
during (de)lithiation cycling for lithium-ion batteries. To address the persistent challenge of trade-off
between field of view (FoV) and resolution in imaging, we provide a framework leveraging
convolutional neural networks (CNNs) and generative adversarial networks (GANs) for super-
resolution enhancement of low-resolution XCT data to achieve both large FoV and high resolution.
The CNN model outperformed the GAN, achieving a structural similarity index measure (SSIM) of 0.92
versus 0.82 and a peak signal-to-noise ratio (PSNR) of 30.12 versus 26.45, enabling precise
reconstruction of high-quality images with preserved fine details. Furthermore, this approach allowed
us to enhance high-resolution data for larger, more representative electrodes, with a four times larger
volume, offering more comprehensive visualization of active material particles and microelectrode
structure. We quantified material phase expansion ranging from 5% to 26% after 100 cycles for two
different types of cathodes fabricated by different methodologies, corroborated by imaging pixel
intensity shifts. The cathode fabricated by directional ice templating (DIT) that contained higher
porosity and lower tortuosity in the pristine state exhibited significantly higher particle expansion after
100 cycles, indicating the microstructure improved ion diffusion kinetics and active material
utilization, while exhibited higher material phase expansion. Interestingly, the DIT electrode also
exhibited higher capacity retention after 100 cycles compared with the electrode fabricated by dry

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

processing with lower initial porosity and higher tortuosity. This may be because the higher initial
porosity of the DIT electrode buffered the volume expansion and strain more effectively. We also
developed a linear regression model to find the relationship among the interlinked properties in order

Open Access Article. Published on 11 névember 2025. Downloaded on 14.11.2025 12:32:40.

to predict properties after cycling based on pristine microstructural metrics such as initial porosity and
tortuosity to guide electrode microstructure design and selection of fabrication methods. This

(cc)

research underscores the transformative potential of combining advanced imaging with Al-driven
techniques in battery research, offering deeper insights into microstructural behavior and facilitate
the design of more durable and efficient energy storage solutions.

Experimental
Cathode fabrication and battery cell assembly

Cathodes in this study were fabricated by two methods, one by DIT [13, 14], and the other by dry
electrode processing. For DIT, a slurry was first prepared by mixing NMC811, carbon black Super P
C65, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) in weight proportions of
90:5:3:2 in water as reported before [55]. The solid-to-solvent ratio was 40:60 (wt%). The mixture was
homogenized using a planetary mixer at 2000 rpm for 20 minutes at room temperature (15 °C). The
slurry was poured into a 3D-printed mould placed on a copper finger which was surrounded by liquid
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nitrogen, enabled rapid directional freezing of the slurry. The frozen cathode was immedidtely; oL0s

transferred to a freeze dryer at -40 °C and 0.1 mbar for 3 hours to completely sublime the solvent
while preserving the ice-templated microstructure [15].

For dry electrode processing, NMC811, carbon black, and polytetrafluoroethylene (PTFE) in weight
proportions of 94:2:4 was first mixed by a Thinky mixer. The mixed powder was heated to 90°C to
activate PTFE. The heated dry powder was then kneaded into a dough-like consistency, the free-
standing electrodes were fabricated by applying continuous pressure, followed by laminating onto the
current collectors using a hot roller at 130°C.

For the DIT electrodes (NMC811:carbon black:styrene-butadiene rubber:carboxymethyl cellulose,
90:5:3:2), the thickness was 1100 um, the areal loading was 70 mg cm™2, the density was 0.64 g cm™3,
For the dry electrodes (NMC811:carbon black:PTFE, 94:2:4), the thickness was 91 um, the areal loading
was 31.2 mg cm™?, the density was 3.42 g cm~3 to show the model can be applied to electrodes with a
variety of properties. For both electrodes, no post-treatment calendering procedure was applied,
electrochemical cycling was performed in the voltage window of 3.0-4.3 V, and the formation protocol
consisted of initial activation at 0.05-0.1 C for three cycles, achieving a coulombic efficiency greater
than 99% and capacity retention variation of 4% after 100 cycles.

The electrochemical performance of the cathodes was evaluated in a half-cell configuration using
CR2032 coin cells, with lithium foil serving as the counter electrode. The coin cells were assembled in
an argon-filled glovebox, where H,O and O, levels were controlled below 0.1 ppm to minimize
contamination. The electrolyte was 1 M lithium hexafluorophosphate (LiPF¢) in a 1:1 (v/v) mixture of
ethylene carbonate (EC) and ethyl methyl carbonate (EMC), Celgard 2400 separator was used. The
configuration of the coin cells is shown in Figure S6 in the Supporting Information (Sl).

X-ray computed tomography

X-ray imaging was performed using a Zeiss Versa 510 Micro Computed Tomography scanner. All the
samples used in this study are solid, free-standing cathodes that were fabricated using commercial
NMC811 cathode active material, providing representative analysis to real-world applications. The
system was operated at a power of 7 W, with a source energy of 80 kV, an object magnification of 4x,
an exposure time of 5 seconds, and a binning factor of 1. A photograph of the inside of the XCT scanner
with the mounted sample is shown in Figure S7. The cathodes were disassembled and cropped to a
diameter of 1 mm for the low FoV experiments and 2.76 mm for the larger FoV experiments, then
carefully mounted on the sample holder to ensure stability and alignment during scanning.

The resolution and FoV of the XCT images were adjusted through adjusting the distance between the
sample and X-ray source. Following the completion of the scans, the acquired projection data was
reconstructed. The reconstructed 3D image volumes were saved as TIFF files for analysis.

3D watershed segmentation was performed using Avizo software. For each dataset, the intensity
threshold separating NMC811 particles from the background was selected adaptively to achieve the
clearest phase distinction between the material phase and pore phase. The carbon binder domain
(CBD) was not segmented as a separate phase because the resolution of the XCT used was not able to
image the CBD phase clearly and the focus of this study is on cathode active material NMC811 particles
volume expansion over battery charge and discharge cycling. An example of the results of this
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segmentation are shown in Figure S8. Tortuosity and porosity were quantified using image;based; 2i0s

analysis of the segmented image using the PoreSpy library in python. Tortuosity is defined as the ratio
of the actual transport path length through the pore space to the straight-line distance, reflecting the
complexity of the pore network. Porosity refers to the fraction of the volume occupied by void spaces,
indicating how much of the material is porous.
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