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Abstract

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

The growing environmental challenge of non-recyclable thermosets underscores the urgent need

for sustainable alternatives. Covalent adaptable networks (CANs) containing dynamic f-amino
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amide moieties have emerged as promising reprocessable polymer networks, combining

(cc)

mechanical robustness with recyclability. In this work, we elucidate the exchange kinetics of both
the well-established (retro) aza-Michael addition and a newly identified transamidation pathway
that is operative in B-amino amides. Systematic catalyst screening reveals that acidic catalysts
significantly enhance viscoelastic control, thereby improving (re)processing efficiency.
Furthermore, we introduce a chemical recycling protocol that enables the recovery of the original
amino building blocks with up to 86 % purity, demonstrating their direct use as feedstock in

material (re)synthesis. These insights advance the fundamental understanding of dynamic bond
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exchange in f-amino amide based CANs and establish a viable route towards circular thermoset

materials for numerous applications.

Introduction

Since their first introduction in the early 20™ century, synthetic thermosets have undergone a
remarkable development, playing a pivotal role in modern industry nowadays.! Their cross-linked
polymeric structures impart a unique combination of low weight and high mechanical strength,
making them indispensable in demanding applications ranging from aviation components to wind
turbine blades.? However, the permanent network structure also renders thermosets intrinsically
non-reprocessable, consequently consigning them to permanent waste at their end-of-life. This fact

results in widespread challenges from both environmental and regulatory perspectives.>*

Covalent adaptable networks (CANs), also referred to as dynamic covalent polymer networks,
have emerged in recent decades as a promising approach to reconcile the durability of thermosets
with reprocessability.>~’ By incorporating exchangeable (or dynamic) linkages, CANs facilitate
reprocessability of thermosets under specific stimuli such as heat or light, while (ideally) retaining
the superior properties of polymeric networks.®® A wide range of dynamic chemistry platforms
have been introduced in CANs, including transesterifications,’!? vinylogous urethanes, !> Diels—
Alder,31* dithioacetal,’” and imine exchange,'®!” a few of which have progressed toward
commercial products.'®!® Despite this progress, their practical adoption is still constrained due to
their dynamicity-performance trade-off.?%2! While dynamic bonds endow CANs with
recyclability, they are typically labile (low activation energies - E,), which can lead to premature
bond exchange (i.e., flow or creep) under service conditions.?? As a consequence, this phenomenon
leads to an undesirable loss in designated performance of CANSs, thus often not making them

suitable to replace conventional thermosets. Addressing this long-standing limitation requires the

2
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development of suitable dynamic covalent chemistry (DCC) and/or technologies that combine

robustness with controlled exchange reactivity.

Polyamides, long recognized for their outstanding thermal and chemical stability, are particularly
attractive for advancing CAN performance.? However, this inherent stability of amide bonds also
implies their relative inertness towards exchange reactions, resulting in their limited exploration
as DCC-platform in CANSs to date. In 2021, one of the first amide-based DCCs for CAN was
reported by us and others through a dicarboxamide-imide equilibrium, governed by the imide ring
size as an entropic factor,>*?° facilitating reprocessing of materials through dissociative
transamidation at elevated temperatures (> 150 °C) with high E, ranging from 120 to 200 kJ-mol-
I, In the meantime, this DCC has shown its industrial potential in providing both creep resistance
and recyclability, applicable for a wide range of applications.?® Subsequently, Xu et al. introduced
dynamic maleic acid-tertiary amide linkages, where reversible amidation between maleic

anhydrides and secondary amines enabled efficient monomer recovery (> 94% yield) and closed-

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

loop chemical recycling of cross-linked polymeric materials.?’” Although both platforms
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demonstrate the feasibility of recycling polyamide networks, their reliance on specific monomers
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(e.g., glutarate ester or secondary amine building blocks) may restrict broader applicability.

Building on our earlier investigation of dynamic B-amino esters (BAEs),?® we recently developed
reversible B-amino amides (BAAs) as the next-generation platform for recyclable polyamide
networks (Figure 1A).2° BAA-based CANs (BAANs) and their epoxy-derived materials exhibit
excellent creep resistance (up to 120 °C) and hydrolytic stability under both acidic and basic
conditions, while maintaining reprocessability.??° Our initial study showed that BAAs undergo
reversible dissociation into acrylamides and amines above 140 °C. However, their exchange

kinetics and the effect of catalysis have not been studied in detail so far. Notably, in the related
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BAE networks, neighboring amino groups act as internal catalysts that also promote
transesterification in the presence of hydroxyl groups in addition to retro-Michael reactions,?8-!
raising the question whether an analogous transamidation process could occur in BAA-promoted

DCC.

The current study started with an explicit study of the reversible Michael addition kinetics, further
investigating the dynamic exchange, influence of catalysts, and the chemical recyclability of
BAANSs (Figure 1B). Initially, small-molecule model studies have been conducted to elucidate
exchange pathways and their kinetics. Then, catalysts of different chemical nature - ranging from
acidic to basic nature have been introduced into BAANS, followed by rheological analysis to assess
their effect on the viscoelasticity behavior. Based on the newly acquired insights, we also
investigated chemical degradation strategies to recover original amino building blocks from the
BAAN:S as recycled feedstock resources. These studies provide mechanistic insights into BAA-
based DCC, including the experimental verification of an unusual transamidation pathway, and
further identify BAANSs as high-performance polyamide networks with the potential for recycling

and reprocessing.
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Figure 1. (A) Schematic representation of the previous study on materials including dynamic

covalent B-amino amide chemistry.?’ (B) Representation of the present work: investigating

transamidation, catalytic effects, and chemical recycling of CANs based on -amino amide groups.

Results and discussion

Insights into dynamicity of the f-amino amide group

Although the dissociation of BAA was reported to occur at elevated temperatures beyond 140 °C,%°

we further investigate herein the exchange kinetics through small-molecule studies. For this

purpose, N-benzyl-3-(methyl(octyl)amino)propenamide (M) was synthesized as the model BAA

compound via the straightforward aza-Michael addition (details are given in Section S3, Figure

S1-S3). Firstly, the (retro) aza-Michael exchange was studied in a controlled exchange reaction

between M and excess benzylamine (10 eq). As shown in Figure 2A, the exchange was monitored
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via proton nuclear magnetic resonance ('H-NMR), by following the conversion over time of proton
A (from M at 2.3 ppm) into proton R (at 2.9 ppm), which is attributed to (retro) aza-Michael
exchange product RA. The formation of RA was further confirmed by electrospray ionization
mass spectrometry (ESI-MS, Figure S4).

A. (Retro) aza-Michael exchange
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Figure 2. Reaction schemes and representative "H-NMR spectra with inset Arrhenius plots of the

kinetic studies for: (A) reversible aza-Michael and (B) transamidation exchange of f-amino amide.

Kinetic studies were conducted at varying temperatures from 120 to 180 °C, enabling the
determination of reaction constants at each temperature (Figure SS, Table S1). Based on these
data, an Arrhenius plot was constructed, revealing an activation energy (E,) of 61.5 kJ-mol!,
consistent with reported values for (most of) reversible Michael adducts ranging from 50 to 80

kJ-mol-! 283233
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Subsequently, we uncovered an unsuspected transamidation pathway operating in these reactions
by repeating the same exchange experiment with BAA M and an excess of octylamine (10 eq).
Interestingly, alongside the expected (reversible) aza-Michael exchange product, analysis of the
reaction mixture by "H-NMR spectroscopy also revealed new resonances that are characteristic of
a transamidation reaction: benzylic proton B at 4.4 ppm (from M) is indeed being converted into
methylene proton T (at 3.3 ppm) belonging to trans-amidated adduct TA (Figure 2B). The
formation of TA was observed at temperatures above 140 °C, and thus showed similar kinetics
compared to the (retro)-aza-Michael pathway. It is worth noting that the asymmetric structure of
model compound M - with aliphatic and benzylic substituents - allowed for the exclusive
monitoring of transamidation by 'H-NMR, since the possible (retro) aza-Michael product (i.e., N-
benzyl-3-(octylamino)propanamide) would exhibit identical proton resonances. The formation of
the transamidation product TA was additionally confirmed by ESI-MS (Figure S6). From the

integration in the NMR measurements, Arrhenius plots (Figure S7 and Table S2) revealed an E,

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

of 47.4 kJ-mol™!, which is a bit higher than the one reported for the transesterifications of BAE

(35 kJ'mol 1).28
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Unlike transesterification, such direct transamidation is more challenging and typically requires
catalysts, or high temperatures, and is thus unexpected in these systems.>*38 Herein, we propose
two possible reasonable mechanistic pathways, which are presented in Figure 3 and are both

related to a neighbouring group effect of the B-amine functionality.
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A. (Retro) aza-Michael exchange
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Figure 3. Proposed mechanism of the exchange of B-amino amide: (A) (retro) aza-Michael

addition and (B) transamidation via two possible pathways.

While the dissociation of BAA is linked to the reversible nature of Michael nucleophilic addition
via the formation of a zwitterionic intermediate after a proton transfer (Figure 3A),%° the
transamidation can possibly be enhanced by intramolecular hydrogen bonding between a
protonated P-amino group and the amide carbonyl (Figure 3B-top). Although direct
transamidation begins with a high-enthalpy nucleophilic attack of an amine on the carbonyl
carbon,* the resulting tetrahedral intermediate is stabilized by an intramolecular hydrogen bond
and thus a general acid catalysis, thereby lowering the energy barrier. In B-amino amides, such
intramolecular interactions form an entropically favorable, six-membered pseudo-ring via
hydrogen bonding,*! potentially accelerating the transamidation exchange. Interestingly, a

benchmark exchange reaction performed on an amide lacking this B-amino group (i.e., n-
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octyloctanamide) also showed a minor conversion to the trans-amidated product after 2h at 160 °C
(Figure S8). This observation suggests that the effect of hydrogen bonding by a protonated amine
moiety, i.e., the general acid catalysis ‘charge relay’ type acylation mechanism between amide and
an additional (partially) protonated amine group, can also facilitate transamidation at elevated
temperature. This effect is further enhanced by the proximity of neighboring amino groups in 3-

amino amides (vide supra).

Alternatively, in a scenario that cannot be definitely excluded at this time, the transamidation
pathway can possibly also proceed via the formation of a zwitterionic lactam intermediate (Figure
3B-bottom). While such lactamization is expected to show a high enthalpic barrier due to the
involved ring strain, the intramolecular nucleophilic attack of the B-amino group to a carbonyl
carbon could be accelerated through a favorable entropic factor, also known as the neighboring
group participation effect.*>4> The low activation enthalpy seen in the kinetic plots (Figure 2B) is

thus actually not indicative of such a reversible ring formation scenario, as is the already mentioned

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

slow exchange in simple amides. In an attempt to further probe our mechanistic rationales, we

Open Access Article. Published on 05 névember 2025. Downloaded on 9.11.2025 06:13:36.

performed studies to force the formation of B-lactam intermediates, but these transient species

(cc)

could not be isolated or observed due to their unstable (short-lived) nature in our various

attempts.*°

Overall, these model studies reveal that the dynamic behavior of BAANSs not only arises from the
reversible nature of BAA but also from a significant, kinetically comparable transamidation in the
presence of f-amino groups. Although free amines are absent in our designated BAA networks,
they could be released during BAA dissociation at elevated temperatures and potentially

participate in transamidation exchange (vide supra).
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Catalytic effects on viscoelasticity of BAAN

Due to the highly endothermic nature of their exchange reactions, most CANs derived from aza-
Michael adducts, especially BAAN, require high (re)processing temperatures (typically above 180
°C), implying limitations in terms of energy demand and risk of thermal degradation.?*’ With the
aim to lower this thermal processing window, we therefore sought to exploit catalytic effects on
the viscoelastic behavior of BAAN. A series of BAAN were prepared from (2,2,4- and 2.,4,4)
trimethyl hexamethylenediamine tetra-ester functional crosslinker (TMH-4E, Figure S9) and
Priamine as illustrated in Figure 4A. Various catalysts (5 mol% relative to BAA moieties) were
added during network formation, including one organic base (i.e.,
1,5,7-triazabicyclo[4.4.0]dec-5-ene, TBD) and three acids (i.e., p-toluenesulfonic acid, pTsOH,
methane sulfonic acid, MSA and trifluoromethanesulfonic acid, TfOH). As protonated amines
possibly play a role in both exchange pathways (see Figure 3), the addition of protic acids could
be beneficial for the exchange. Synthetic details are provided in Section S3, and the complete
cross-linking reactions were confirmed by Fourier-transform infrared spectroscopy (FTIR)
(Figure S10). The obtained polymer networks are further referred to as N-X, where X is the
additional catalyst, and N-Blank refers to the catalyst-free reference network. These networks were
shaped into 1-2 mm thick samples via compression molding (180 °C, 3 tons, 30 min) and
subsequently subjected to rheological stress relaxation measurements. The relaxation behavior was
evaluated using the Kohlrausch—Williams—Watts (KWW) stretched exponential model to

construct Arrhenius plots (Figure S11-15).

10
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Figure 4. (A) Synthesis of B-amino amide-based dynamic networks prepared using the catalysts
displayed in the frame, and (B) their relaxation times at 200 °C determined from the KWW
stretched exponential model. (C) Visualization of the compression molding of N-MSA and N-

blank at varying temperatures.

In general, the addition of catalyst(s) linearly shifted the Arrhenius plots to a modified relaxation
time (1), while it maintained the temperature-dependent viscoelasticity (i.e., E,) comparable to that
of the benchmark network (N-Blank) (Figure S16A). While all acidic catalysts lower the stress
relaxation time (), the base TBD hampers BAAN’s dynamicity, resulting in slower relaxation
profiles, indeed indicating a kinetic role for protonated amine intermediates. More specifically, in
comparison to the catalyst-free network N-Blank with t of 138 s at 200 °C, the addition of 5 mol%

TBD into the network resulted in T of 194 s ( Figure 4B, Figure S16B). In contrast, the addition

11
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of an identical molar amount of acidic catalyst significantly accelerated stress relaxation, reducing
the relaxation time by more than fourfold for the N-MSA network (t = 29 s). It should be noted
here that the most pronounced acceleration was not observed for the network incorporating the
stronger acid TfOH ( pK,(H,0) = -14, compared to pK, (H,O) = -1.9 for MSA). In fact, this
observation is attributed to strong interactions between TfOH and amino moieties in the network,

which are known to reduce molecular mobility and thus limit catalytic effectiveness.*®

As can be observed from the dissociation pathway of BAA (Figure 3A), the f-amino group must
be protonated to complete the dissociation, although the reversion of BAA is initiated by the
deprotonation at the a-carbon position. Therefore, the Bronsted acids here act as proton source,
which favors such reversion. On the other hand, the strongly basic catalyst or additive DBU will
compete for protons with the amines, thereby reducing the abundance of protonated amines and
hampering the exchange process. Moreover, the amines released during BAA dissociation can
enable further transamidation exchange, enhancing the overall network dynamicity and stress
relaxation behavior. This increased relaxation ability implies improved processability, such as
reduced processing time or lower processing temperature. To examine this, the N-Blank and N-
MSA networks were cut into small pieces and subjected to the same compression molding process
at variable temperatures ranging from 180 to 160 °C. While both samples were fully processable
at 180 °C, cut samples of N-Blank failed to heal completely after 30 min at 170 °C (Figure 4C).
In contrast, N-MSA retained its (re)processability, resulting in homogeneous remolded samples at
lower temperatures (160 °C). Notably, although the presence of catalysts might compromise the
thermal stability of the materials, no significant impact was observed at the catalyst loading used

(5 mol %), as revealed by thermogravimetric analysis of N-MSA and N-Blank (Figure S17). This

12
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demonstrates the enhanced (re)processability of the acid-catalysed CAN, implying beneficial

energy savings.

Chemical recycling

At the final stage of this study, it was attempted to chemically degrade the BAANSs for the recovery
of amino building blocks, which was previously demonstrated in a related BAE platform.**-! This
chemical degradation process was expected to be enhanced by the double exchange pathway
described earlier. The degradation tests were performed on a P-BAAN network, prepared using
only Priamine as an amino building block (Figure S18-19). The tests were conducted by
immersing P-BAAN in an amino compound, either octylamine or ethanolamine, at 140 °C. As
shown in Figure 7A, depolymerization should involve both possible amine exchange reaction
pathways: (retro) aza-Michael pathway (RP) and/or fransamidation pathway (7P), in which an

additional excess of amines acts as a kinetic trap to enable the recovery of the amino building block

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

of the CANs (Priamine).
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Figure 5. The chemical degradation of the P-BAAN. (A) Schematic overview of the network
depolymerization pathways; (B) Overlayed 'H-NMR spectra of pristine (top) and recovered

(bottom) Priamine. (C) Visualization of pristine P-BAAN and chemically recycled P-BAAN.

Full dissolution of P-BAAN was observed to be significantly faster when heating was done in
ethanolamine (after 2 h at 140 °C) than in octylamine (after 4 h at 140 °C), which could be
attributed to the acceleration effect of the (proton-donating) hydroxyl group in ethanolamine

(Figure S20).5> Moreover, a benchmark experiment conducted with DMSO as an ‘inert’ solvent
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did not affect the integrity of the network under identical conditions, even after 24 h at 140 °C
(Figure S21). To isolate the recovered Priamine, the degraded crude product in ethanolamine was
further subjected to DCM-water extraction. Although the dissolution was visualized after 2 h, the
depolymerization proceeded at a much longer time scale. Specifically, incomplete
depolymerization was observed by matrix-assisted laser desorption/ionization time-of-flight
analysis, which primarily detected mono- and di-Michael adducts of Priamine after 3 days (Figure
S22). The purity of recovered Priamine, assuming Michael adducts as impurities, was quantified

by 'H-NMR spectroscopy (Figure 6).

After 3 days, Priamine was recovered with 48% purity, which gradually increased over time. After
10 days of depolymerization, a recovery purity of 86% was achieved with a yield of 84 wt.%
relative to the total Priamine used for P-BAAN synthesis, in which mono-Michael adduct was the
main residual impurity (Figure 5B and Figure S23). It is recognized that such impurity may

potentially influence material properties (e.g., crosslink density), especially over multiple

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

recycling cycles. On the other hand, as a proof of concept, this recovered amino compound was

Open Access Article. Published on 05 névember 2025. Downloaded on 9.11.2025 06:13:36.

subsequently used as a feedstock to (re)synthesize recycled P-BAAN (Figure SC and Table 1).
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(purity = a/(a + b) x 100%) by considering the Michael adducts as impurities (left structures).

Table 1. Overall properties of the pristine and recycled B-amino amide network.

Swelling Soluble

Miso180, 1h° . Modulus v (1073
Samples T, *(°C) Tas%" (°C) AN degree 9 fraction ¢ . Vel
(%) (%) (%) (MPa) mol-m~)
;giﬁ; -25 320 1.4 477 £ 09 32+2.2 0.286 0.029
IP}?];XCENd -26 319 1.2 436+36  44+19 0.292 0.027

@ Determined from DSC analysis with a heating rate of 10 °C.min™".
b TGA onset temperatures after 5% weight loss (T ;5.,) under an air atmosphere.

¢ Weight loss after isothermal TGA at 200 °C for 1 hour under an air atmosphere.

4 Swelling degree and soluble fraction obtained from solubility tests in chloroform using at least four samples at room

temperature.

¢ Storage modulus and cross-link density (ve) from dynamic mechanical thermal analysis. v, was calculated using the

rubber elasticity equation: E' = 3v,RT, where R is the gas constant, T is the absolute temperature at Tg + 50 °C.
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While a brownish coloration and slightly increased soluble fraction (attributed to residual
impurities) were observed, the recycled P-BAAN showed desirable chemical characteristics
comparable to pristine P-BAAN, as shown using FTIR spectroscopy analysis (Figure S24).
Moreover, the chemically recycled P-BAAN largely retained its thermal and thermomechanical
properties (Figure S25-28), highlighting the potential for the chemical recycling of BAA-derived

CANS.

Conclusion

In summary, this work has elucidated the bond exchange kinetics and further reveals an interesting
transamidation exchange pathway in B-amino amides. Catalyst screening highlights the advantage
of using acidic catalysis for the acceleration of stress relaxation and consequently enhancing
processability, and points toward mechanisms that involve protonated amine species. Notably, the

addition of 5 mol% methane sulfonic acid enables the obtained f-amino amide network to relax

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

applied stress up to four times faster at 200 °C, while extending the processability window in

comparison to the catalyst-free network. Furthermore, capitalizing on the finding of dual amine

Open Access Article. Published on 05 névember 2025. Downloaded on 9.11.2025 06:13:36.

exchange reactions on BAAs, the chemical recycling of the amino building block (Priamine) from

(cc)

the cross-linked material was demonstrated. Priamine could be restored with a purity of 86% and
a yield of 84 wt.%, which was successfully employed to resynthesize CANs without significant
changes in chemical and thermal properties. The findings in this study not only expand the
mechanistic understanding of B-amino amide dynamic chemistry but also establish a more

practical route toward recyclable, high-performance thermosets.
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