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Construction of an Artificial-Intelligence Agent for the
Discovery of Next-Generation White-LED Phosphors’

Zichun Zhou,%? Han Zhang,®? Chi Song,® Chen Ming*®” and Yi-Yang Sun*®?

Large language models have been extensively employed for scientific research from different aspects,
yet their performance is often limited by gaps in highly specialized knowledge. To bridge this divide,
in this perspective we take phosphor materials for white LED applications as a model system and
construct a domain-specific knowledge base that couples Retrieval-Augmented Generation with a
numerical-querying Model Context Protocol. By automatically extracting and structuring data from
more than 5,400 publications—including chemical compositions, crystallographic parameters, exci-
tation—emission wavelengths, and synthesis conditions—we construct an artificial-intelligence agent
that delivers both broad semantic search and exact parameter lookup, each answer accompanied by
verifiable references. This hybrid approach mitigates hallucinations, improves recall and precision in
expert-level question-answering. Finally, we outline how linking this curated corpus to lightweight
machine-learning models and even automated experimental synthesis facilities can close the loop
from target specification to experimental validation, offering a blueprint for accelerated materials

discovery.

1 Introduction

Since the technological breakthrough of blue light-emitting
diodes (LEDs) in the 19905m, phosphor-converted white LEDs
(pc-wLEDs) have rapidly replaced traditional lighting technolo-
gies due to their high energy efficiency, environmental friendli-
ness and long lifespan®™. The pc-wLEDs typically comprise a
high-efficiency blue LED chip with one or more phosphors. In this
configuration, the blue light emitted by the chip excites the phos-
phors, which then emit yellow or other visible lights, ultimately
producing white light. For this purpose, phosphors activated by
lanthanide ions, Eu®* and Ce3*, have attracted great attention
due to the tunability of emitting light wavelength and the wide
spectrum, which are particularly desired properties for making
the pc-wLEDs.

The continued evolution of lighting technologies demands the
development of new phosphors with advanced features, such as
a broader color gamut, high quantum efficiency and excellent
thermal stability. Recently, violet-light-excited phosphors have
garnered significant attention for surpassing conventional blue-
light-excited systems, as they hold promise for improving color
renderingZand eye protection from high content of blue light®.
Traditionally, the search for novel phosphors has been guided by
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empirical guidelines based on crystal field theory and existing ex-
perimental results210, Recently, the field is increasingly embrac-
ing data-driven discovery, leveraging computational tools and ma-
chine learning to accelerate the identification and optimization of
next-generation phosphors.

However, the design and development of phosphors face many
challenges at the level of computational simulation. For example,
the 4f-5d electronic transitions of the rare-earth ions are influ-
enced by complex physical processes, such as crystal field split-
ting, electron-phonon coupling and the Jahn-Teller effect1718,
Consequently, the positions of their energy levels are sensitive to
the local crystal environment and hard to fully capture by the em-
pirical rules. In this sense, density functional theory (DFT) based
first-principles calculations have become the workhorse method
in this field, but still face the challenge of treating the strong cor-
relation effect of 4f electrons of the lanthanide ionsT31419 Re.
cently, machine learning methods have been adopted to predict
properties of materials. 2022

With the rapid development of Large Language Models (LLMs),
their applications have broken through the scope of traditional
text processing. LLMs now demonstrate potential for constructing
domain-specific intelligent systems and have attracted increasing
attention in interdisciplinary areas such as information mining,
knowledge reasoning and scientific discovery workflows2325
Compared with traditional models, LLMs possess multimodal
comprehension and language generation capabilities, which pro-
vide new possibilities for building domain-specific intelligent sys-
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Fig. 1 Schematic of rare-earth doped phosphor agent architecture.

tems based on literature and databases.

However, the direct application of LLMs to precision-driven sci-
entific domains, such as rare-earth-doped luminescent materials,
is hindered by several key bottlenecks stemming from their lim-
itations. First, at the data level, these models are confronted
with two primary challenges: the lack of high-quality, special-
ized datasets and the temporal cutoff inherent in their training.
The latter means they lack knowledge of the latest scientific dis-
coveries and experimental data that have emerged after their
training was completed, preventing timely updates on the state-
of-the-art. Second, at the algorithmic level, the general hallu-
cination problem of LLMs evolves into a more critical challenge
in scientific applications: a lack of grounding in physical and
chemical laws. Lacking an understanding of underlying physical
principles, a model may propose synthesis routes that violate the
laws of thermodynamics or physically unstable material compo-
sitions“®, Furthermore, their precision in quantitative prediction
is also severely lacking—while LLMs excel at qualitative descrip-
tions, they perform poorly when predicting key performance pa-
rameters such as spectral peak positions and quantum yields. In
this perspective, we discuss strategies to address these issues and
construct a basic framework, as shown in Fig. 1. This framework
aims to implement a specialized intelligent agent based on LLMs
for the design of rare-earth doped luminescent materials.

2 Comparison of current technical routes

To address the above-mentioned issues of LLMs for applications in
specialized (or sometimes referred to as vertical) fields, a key re-
quirement is to expand the corpora of the LLMs by including the
scientific literature for these fields. For this purpose, Retrieval-
Augmented Generation (RAG)4Z and fine-tuning2822
accessible approaches, which exhibit distinct trade-offs with re-
spect to data dependency, computational cost, knowledge updat-
ing mechanisms and model performance.

(1) In terms of data dependency, RAG relies on external knowl-
edge bases, which consist of purposely prepared documents2°,
The collection of literature in PDF format from a specialized field
could be directly used as the knowledge base for RAG. For better
performance, however, structured literature files as described in
Section 3 could be used. In contrast, fine-tuning typically requires
a substantial dataset of task-specific labeled data (e.g., question-
answer pairs), similar to training an LLM=22-31,

(2) In terms of computational cost, RAG does not require ad-
justment of the LLM parameters. Its main expenses lie in building

are two
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a vector database via embedding models and performing retrieval
during inference. Detailed implementation will be introduced in
Section 4. RAG demands modest hardware resources, but it in-
curs lower initial costs. In contrast, fine-tuning offers lower infer-
ence costs, but it entails much higher initial training costs than
RAG. Moreover, as foundational LLMs are frequently updated,
each new version often necessitates repeated fine-tuning, increas-
ing resource consumption and maintenance complexity=2.

(3) In terms of the knowledge updating mechanism, RAG lever-
ages external knowledge bases built from domain-specific cor-
pora to provide up-to-date and context-relevant information dur-
ing inference. By contrast, fine-tuning integrates new corpora di-
rectly into the parameters (or weights) of the LLMs, allowing the
model to internalize and generate knowledge from that vertical
field without external retrieval during inference. In short, RAG
updates the knowledge of the LLMs through dynamic retrieval,
while fine-tuning through static parameter updates20:27,

(4) In terms of model performance, by acquiring information
from external knowledge bases, RAG reduces the incidence of hal-
lucinations of the LLMs through the retrieval process. It is worth
mentioning that RAG generates responses that are traceable to
the original literature, which makes it particularly suitable for
scientific Q&A23. In comparison, by integrating the new corpora
into the parameters of LLMs, fine-tuning not only improves the
model performance on reducing hallucinations, but also extends
the generative capability of the LLMs to the specialized field 3433l

3 Literature structuring preprocessing strategies

The application of LLMs in specialized scientific fields like lumi-
nescent materials depends on the availability of a high-quality,
structured database. Currently, no such comprehensive public
database exists for phosphors, and their key performance met-
rics—such as luminescence spectra and quantum efficiency—are
difficult to obtain through high-throughput, first-principles calcu-
lations in the same way as properties like bandgap or formation
energy. For this field, the vast body of scattered experimental
literature is the primary source of data, making efficient data
acquisition a critical bottleneck. Creating structured databases
from the ever-expanding corpus of published research remains a
complex endeavor. Although LLMs and RAG provide a promising
framework, their effectiveness is undermined when raw, unpro-
cessed literature is used as the knowledge base.

Firstly, when processing long, information-dense scientific pa-
pers, LLMs often face the problem of context loss. A paper’s core
arguments, key data, and experimental details—the information
needed for a database—are often buried in the middle of the text.
During retrieval, the model may excessively focus on the sum-
mary content at the beginning and end, thereby overlooking the
core evidence that determines the study’s validity and reliability.
This leads to the extraction of incomplete data and the genera-
tion of one-sided or inaccurate insights. Secondly, the inherent
rigor and complexity of scientific literature pose a huge obstacle
to information extraction. These documents contain not only pre-
cise terminology and complex logical relationships but also rely
heavily on non-textual, structured data such as tables, figures,
chemical structures, and mathematical equations to present key
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results. Current LLMs, which are primarily text-based, struggle to
directly and accurately parse this multimodal information. This
can easily lead to misinterpretation, distortion of data, or even
groundless hallucinations, severely compromising the reliability
of any database built upon it.

We take Eu?* doped phosphors as a representative case to illus-
trate these obstacles. Over 50 years of research on Eu®* doped
phosphors has produced a wealth of experimental data. How-
ever, these results are scattered across more than 400 academic
journals, as illustrated in Fig. 2, creating significant barriers to
systematic integration. The core challenge lies in the extreme
heterogeneity of this literature: record formats, terminology, and
measurement methods vary widely, leading to severe information
fragmentation. This knowledge silos phenomenon hinders the
development of comprehensive knowledge in the field. More crit-
ically, key performance parameters—such as excitation/emission
wavelengths, quantum efficiencies, and thermal quenching tem-
peratures—are rarely presented in a structured format. Instead,
they are typically embedded within unstructured text, figure
captions, footnotes, or even supplementary information. This
severely impedes automated extraction and large-scale analysis.
To compound the issue, the reported properties for the same ma-
terial often vary between publications, further undermining the
overall consistency and credibility of the data.

Therefore, building an efficient and reliable database from sci-
entific literature cannot be achieved by simply feeding raw docu-
ments to a model. A more viable path is to implement a dedicated
information extraction and knowledge structuring stage before-
hand. By using a data mining approach to transform relationships
and core data from text and tables into a structured knowledge
base, we can effectively overcome the aforementioned drawbacks
and ensure the accuracy, completeness, and reliability of the data
foundation for any subsequent RAG system or analysis.

In the past, scientific data mining primarily relied on two ap-
proaches: manual annotation and rule-based natural language
processing (NLP) systems. Manual annotation is inefficient and
prone to subjective bias, making it unsuitable for meeting the
growing demand to process high-throughput scientific litera-
ture. Rule-based systems, such as ChemDataExtractor=?, OS-
CAR43”and ChemTagger=® , possess basic term recognition capa-
bilities. However, they struggle with complex scientific texts that
require the interpretation of implicit information, cross-sentence
relationships and contextual reasoning. Moreover, these systems
depend heavily on domain experts for their construction and
maintenance, resulting in high costs and limited portability across
domains.

Due to the limitations of traditional methods, generative ap-
proaches based on LLMs have emerged as a promising direc-
tion for scientific information extraction in recent yearsS24l,
Our methodology is built upon this foundation, with a pro-
cess that begins with the structured preprocessing of literature.
First, we employ Optical Character Recognition (OCR) and lay-
out analysis tools to batch-convert the original PDF documents
into Markdown format. This step is crucial as it preserves the
document structure—including headings, paragraphs, tables, and
lists—providing a high-quality text source for the subsequent pre-
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Fig. 2 Top 20 journals ranked by number of publications in Eu?* doped
phosphor research.

cise information extraction. Next, we proceed to the core knowl-
edge extraction phase. We utilize an LLM combined with de-
signed prompt engineering to perform an analysis of the Mark-
down text. For the phosphor domain, our prompts are designed
to automatically extract several key categories of information:

(1) Material Compositions: For example, the chemical formula
of the host material (e.g., Y3A4l501,, CaAlSiN3), the activator ions
(e.g., Ce3*, Eu?t) and their doping concentrations, as well as
any potential co-dopants or sensitizer ions.

(2) Synthesis Methods: Identifying the specific prepara-
tion process, such as the high-temperature solid-state reaction
method, co-precipitation, or the sol-gel method, and extracting
key process parameters like sintering temperature, holding time,
and the use of a reducing or oxidizing atmosphere.

(3) Performance Parameters: Precisely capturing core optical
and thermal performance data, including the peak wavelengths
of excitation and emission spectra (1ex, Aem), internal and exter-
nal quantum efficiency (IQE/EQE), color coordinates (CIE), and
thermal quenching behavior (e.g., thermal stability at 150°C).

Finally, these extracted discrete information elements are sys-
tematically organized into standardized Structured Knowledge
Units (SKUs). Each SKU can be considered a digital profile for
a specific phosphor sample, clearly documenting the material’s
entire identity-synthesis-performance information chain in a key-
value format. These standardized SKUs serve as the cornerstone
for building our phosphor knowledge database, enabling efficient
support for complex downstream queries and Q&A applications.
The overall process, as illustrated in Fig. 3.

The method not only effectively reduces the interference of ir-
relevant information by the generative model, but also enhances
the readability, controllability and embedding quality of the data.
The advantages of structured processing are mainly reflected in
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Fig. 3 Framework for building a structured database based on intelligent
literature mining.

two aspects: (1) improving the relevance and precision of infor-
mation retrieval: similarity calculation based on structured se-
mantic units significantly improves the retrieval recall rate and
matching effect; (2) enhancing the contextual support capabil-
ity: compared with the traditional text input, the structured data
provides a clearer contextual context for LLMs to improve the
accuracy and rationality of the generated content, which is espe-
cially suitable for multi-round Q&A and cross-document integra-
tion tasks.

4 Implementations

As discussed above, compared with fine-tuning LLMs to incor-
porate new knowledge, the RAG architecture offers advantages
in cost and scalability. It reduces demands on computational re-
sources and maintenance costs while enabling independent up-
dates of the knowledge base. This allows for more frequent up-
dates, easier customization and better support for data isolation
across diverse application scenarios. Here, we suggest an imple-
mentation of the phosphor agent, as shown in Fig. 1, by adopting
RAG as the core framework to support intelligent Q&A, knowl-
edge retrieval and scientific assistance.

Further, a hybrid system with RAG and model context protocol
(MCP) is constructed, which combines the high recall capability
of vectorized semantic search with the high-precision matching
capability of queries on the structured knowledge base. This en-
ables a layered information retrieval process that transitions from
fuzzy matching to precise extraction.

4.1 RAG

We generated a structured knowledge base for the RAG system,
which consists of the research articles representing the whole spe-
cialized field. Each article is indexed by its DOI number. We ex-
tracted the key information from the article, including but not
limited to the basic information of materials (e.g., chemical for-
mula, atomic structure, doping element and doping sites), pho-
toluminescence properties (e.g., excitation/emission wavelength,
quantum efficiency, and CIE), and synthesis method. Compared
with an unstructured knowledge base, the structured approach
not only enhances the retrievability and the quality of data em-
bedding, but also provides a more accurate and higher quality
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input corpora to the LLMs for the intelligent Q&A.

Based on the structured knowledge base, we built a vector
database and indexing system. To improve semantic match-
ing, we adopted Alibaba’s open-source embedding model Qwen3-
Embedding-8B42, which is currently the SOTA of open-source
embedding models, according to the HuggingFace MTEB leader-
board®3. During querying, user questions are vectorized using the
same model and matched against the vector database, as shown

in Fig. 4.

1 2
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Fig. 4 Schematic of RAG implementation.

/

To improve retrieval accuracy, we used a hybrid scoring mech-
anism that combines keyword similarity and vector cosine simi-
larity through weighted fusion. This approach balances seman-
tic understanding with precise keyword alignment, reducing false
positives caused by overgeneralization. A similarity threshold is
also applied to filter out irrelevant results, ensuring that the top-k
retrieved documents are semantically relevant. The system shows
promising recall and efficiency across multiple test cases, suggest-
ing the potential of the RAG framework for scientific Q&A appli-
cations.

In the answer generation phase, new prompts from the re-
trieved document blocks will be constructed to supplement the
user queries. Prompt engineering techniques can be used to guide
the foundational LLM to generate professional answers.
tomized outputs can be required. For example, the model can
be assigned to play the role of an expert in the field of rare-earth
doped phosphors, with an adjustable format and degree of scien-
tific rigor for its answers. After considering the cost and perfor-
mance, we selected Deepseek-R144 as the generative model, con-
sidering its relatively strong reasoning capabilities and support for
the Chain-of-Thought mechanism, which can help produce more
coherent and insightful responses. An example of the actual Q&A
output is illustrated in Fig. 5.

Cus-

To validate the effectiveness and reliability of our RAG system,
we designed a multi-faceted evaluation framework targeting two
critical capabilities: novel information processing, precision of
knowledge updates.

(1) To evaluate our RAG system’s ability to process novel in-
formation, we constructed a specialized test corpus using con-
tent published after the baseline LLM’s knowledge cutoff. This
corpus consists of eight recent phosphor-related papers from
2025, sourced from journals such as Advanced Optical Materials.
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Against this corpus, we crafted 40 questions meticulously strati-
fied into three types to assess distinct capabilities: precise numer-
ical extraction, recitation of experimental methods, and summa-
rization or inferential tasks. This corpus was ingested into our
RAG system, and all 40 questions were posed to both our system
and a standalone Deepseek-R1 baseline.

A panel of domain experts then conducted a blind review of all
outputs. Each response was scored on the following three core
metrics using a three-point scale: Accuracy Score (0-2): Assesses
if the core information in the answer is correct. A score of 2 in-
dicates complete correctness, 1 for partial correctness, and O for
an incorrect answer. Faithfulness Score (0-2): Measures if the
answer is fully based on the provided literature. A score of 2
indicates the answer is entirely based on the source text, 1 for
being partially based on some extrapolation, and O for fabrica-
tion or contradiction. Completeness Score (0-2): Evaluates if the
answer comprehensively addresses all aspects of the question. A
score of 2 is given for a complete answer, 1 for a partial answer,
and O for missing key information. The results, listed in Table 1,
demonstrated a marked performance advantage for our system;
our RAG model achieved an average score of 1.825 in both Ac-
curacy and Faithfulness, significantly outperforming the baseline
model’s accuracy of 0.625. The fact that both systems provided
complete answers indicates that the baseline model can under-
stand our questions.

Table 1 Summary of model evaluation results

Model Accuracy Faithfulness Completeness
Baseline model 0.625 / 2
RAG system 1.825 1.825 2

(2) To evaluate the dynamic update capability of our system’s
knowledge base, we conducted an assessment experiment. The
methodology involved augmenting the system’s vector knowledge
base with multiple synthetic knowledge entries to test its capacity
for persistent knowledge integration. Each entry, representing
a distinct fictitious fact, was injected as a standalone document.
The evaluation was performed by querying the system with two
sets of ten questions each: a relevant set directly related to the
injected knowledge, and an irrelevant set on unrelated topics. We
measured system performance using two core metrics: update
success Rate and knowledge stability rate.

The experimental results show that the system can absorb new
knowledge, achieving an Update Success Rate of 90%. The fail-
ure occurred when the system was asked about a recent technol-
ogy; it presented both the old and new answers simultaneously,
indicating a lack of definitive decision-making capability when
handling potentially conflicting or outdated information. On the
other hand, the system’s knowledge stability was excellent. It
was not influenced by the new information in any of the tests
with irrelevant questions, achieving a Knowledge Stability Rate
of 100%.

In summary, the system possesses the ability to integrate new
knowledge, and the introduction of this knowledge does not con-
taminate the pre-existing knowledge corpus. However, the ex-
periment revealed the system’s shortcomings in managing knowl-
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edge version conflicts and timeliness issues. To address this lim-
itation, we plan to implement a more sophisticated arbitration
mechanism in our future work. This will involve incorporating
metadata such as publication dates and impact factors for knowl-
edge sources and performing weighted calculations, thereby en-
abling the system to automatically identify and select the most
authoritative or current information.

o]
L User

How is K,LuSi,0,:Eu* synthesized?

@ System

Raw Materials:

K,COj;, Lu,0,, SiO,, Eu,0,

Mixing and Grinding of Raw Materials:
Weigh the raw materials according to
the stoichiometric ratio for
K;LuSi,0,:Eu* (with an optimal doping
concentration of 0.01 mol%). Mix and
grind them uniformly in an agate
mortar for 30 minutes.
High-Temperature Sintering:

Put the mixture in an alumina crucible
and transfer it into a tube furnace.
Sintering Conditions:

Temperature: 1300 °C (heating rate:

5 °C/min)

Duration: 6 hours

Atmosphere: 5% H, — 95% N,

DOI: 10.1038.s41467-019-13293-0.md

Fig. 5 RAG-based agent for synthesis condition recommendation.

Although a structured knowledge base is effective in improving
retrieval accuracy and system efficiency, there are still limitations
in handling numerical exact matches, as it mainly relies on se-
mantic similarity search. To balance accuracy and flexibility, we
constructed a service system based on MCP and kept the complete
PDF database as a supplementary resource. Through the hybrid
search strategy of structured knowledge base and original docu-
ments, the system not only supports precise queries but also can
cope with complex scientific Q&A scenarios that require divergent
thinking or contextual reasoning.

4.2 MCP

MCP is a standardized communication protocol for LLMs, en-
abling dynamic access to external resources for enhanced task
execution. It adopts a three-tier “host-client-server” architecture,
streamlining integration between models and external tools or
data sources via a unified interface. While RAG mitigates gen-
eral knowledge gaps in LLMs, it struggles with the high-precision
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numerical retrieval required in specialized scientific domains. To
address this limitation, we have developed a service architecture
based on MCP. This framework equips LLMs with capabilities for
precise querying and multi-dimensional perception through two
core services.

(1) Precise Query Service: This service is engineered to over-
come the numerical inaccuracies of traditional RAG, especially for
querying specific data in fields like rare-earth doped phosphors
(e.g., excitation/emission wavelengths). We selected MongoDB,
a document-based NoSQL database, for its flexible schema and
high scalability, which support real-time data updates. Its na-
tive JSON-like format is perfectly compatible with our structured
semantic units, simplifying data parsing and manipulation. We
encapsulated the database within an MCP server using the mcp-
mongo-server module. This architecture enables highly accurate,
database-level queries based on specific numerical ranges. Unlike
conventional vector search, our approach transcends the top-k
limitation, returning a complete set of all results that satisfy the
query conditions.

(2) Multimodal Visualization Service: This service primarily
provides visualization for crystal structures, implemented by in-
tegrating the JSMol tool. We have designed a dual-call process:
when a user queries a crystal structure using a chemical for-
mula, the model first calls the query server to precisely match
the formula to its corresponding ICSD (Inorganic Crystal Struc-
ture Database) number. Subsequently, it calls the resource server
to retrieve the CIF (Crystallographic Information File) for that
number and completes the 3D visualization rendering. This not
only significantly enhances the model’s cross-modal understand-
ing capabilities (from text to 3D images) but also establishes a
standardized interface for integrating more modalities in the fu-
ture, such as spectral diagrams and electron microscopy images.

MCP Host -
: / database Structured
7IN\ MCP database
Wl Server
w -
LLM 0]
\ CIF MCP
. Server

Fig. 6 Schematic of MCP implementation.

Both servers access the MCP client, which is realized by the
Cline plugin of VS Code and the overall system architecture is
shown in Fig. 6. In the actual invocation, the LLM will judge the
task type according to the system prompts and select the corre-
sponding MCP server to initiate the request.An example of the
actual Q&A output is illustrated in Fig. 7.
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The following phosphors (a total of 75)
have been identified with emission
wavelengths in the 400-500 nm range.

1.NaZr,(PO,);:Eu?* (ICSD 467) - 495 nm
2.CaAl,Si,04:Eu?* (ICSD 654) - 430 nm
3.BalF:Eu?* (ICSD 1128) - 405 nm
4.Sr;(PO,);Cl:Eu?* (ICSD 2089) - 445 nm
5.KBa,(PO,)s: Eu?* (ICSD 2919) - 460 nm
6.RbMgCl,: Eu?* (ICSD 4036) - 444 nm
7.CaMgSi,Og: Eu?* (ICSD 5205) - 447 nm
8.5r,B,0.: Eu* (ICSD 7157) - 468 nm
...(The remaining 67 materials have been
L omitted.)

Fig. 7 MCP-based agent for phosphors luminescence performance.

5 Discussion

We introduced above a working Q&A agent for the field of rare-
earth-doped phosphors, which has basic functionalities: integrat-
ing existing knowledge, performing preliminary reasoning and
correlating information from multiple sources. The system in its
current form falls short of being a true intelligent agent. It oper-
ates more like a specialized search engine with a Q&A interface,
offering a consolidated view of established knowledge. A key
limitation is the inability to auto-verify the accuracy of its pre-
dictions, and it lacks the mechanisms for continuous learning and
self-correction. The next direction of development is to further
integrate several key components, including a vectorized knowl-
edge base, machine learning models and an automated experi-
mental system, based on the MCP technology. Through this in-
tegration, an intelligent agent with autonomous exploration and
synthesis capabilities, as illustrated in Fig. 8, can be expected.
The operational flow of the system is as follows: (1) The
user inputs the target performance requirements for the phos-
phors. (2) The system combining LLM, RAG and MCP queries
the knowledge base for materials meeting these requirements; if
none are found, it recommends potential candidate materials. (3)
Lightweight machine learning models are employed to carry out
performance predictions on the candidate materials, serving as
a correction to the LLM-RAG-MCP system. (4) The system pre-
dicts possible synthesis pathways and integrates them with an
experimental protocol and some attached equipment to enable
intelligent material synthesis. If the synthesized material meets
the target performance, the process concludes. Otherwise, the
experimental results are fed back into the agent for further opti-
mization, enabling a closed loop encompassing material predic-
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Fig. 8 Future perspectives on intelligent agents for discovering new phos-
phors.

tion, design and execution of experimental synthesis, as well as a
feedback mechanism.

The implementation above depends on several key infrastruc-
tures and resources, all seamlessly integrated via MCPs: (1) A
database of phosphor literature, which supports semantic search
and knowledge extraction, enabling an understanding of exist-
ing research findings; (2) An experimental protocol library, which
incorporates standardized process templates to support LLMs in
automatically generating experimental procedures; (3) An auto-
mated experimental platform, which integrates transport robots
with intelligent laboratory equipment to enable end-to-end au-
tomation from sample transfer to experimental execution and
result collection; (4) A machine learning model library, which
brings together both proprietary and open-source models. These
models are designed to perform rapid screening and preliminary
performance prediction of candidate materials in the early stages
of discovery.

Based on the above resources, there is a clear division of
functions within the agent: the MCP-Database is responsible
for extracting information related to the experimental objectives
from the literature and recommending potential candidate ma-
terials; the MCP-Machine-Learning is responsible for predicting
the key performance indexes of the candidate materials by in-
voking the model and completing the preliminary screening; the
MCP-Experiment automatically generates synthesis schemes for
the candidate materials and translates them into commands that
can be recognized by the experimental equipment; and finally,
the robotics automated experimental hardware to carry out the
synthesis and characterization processes. Although the current
work is still focused on the phosphor system, database and knowl-
edge integration, the architecture shows versatility and scalabil-
ity. In the future, once extended to a wider range of materials,
the system is expected to reshape the materials research and de-
velopment process: starting from the target properties, Al agent
will generate the material structure, predict the properties, plan
the synthesis pathway and execute the experiments automatically,
thus truly facilitating the realization of the “robotic scientist” and
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accelerating the progress towards unmanned laboratories and au-
tonomous materials discovery. Some groups have already made
efforts in this direction244>48,

6 Final remarks

We demonstrate that LLMs can serve not only as tools for informa-
tion processing but also as integral components deeply embedded
within the complex and dynamic process of scientific discovery.
The aim is not to replace experiments or traditional computa-
tional simulations, but to foster a smarter, more efficient and col-
laborative research ecosystem. Along this journey, we recognize
the challenges ahead, such as enhancing the depth of scientific
reasoning within LLMs, improving model interpretability and re-
sult reliability and exploring ways to seamlessly interface virtual
screening with real-world experiments in the future. Neverthe-
less, this study offers evidence of the profound application of Al
for materials science. It underscores that only through the deep
integration of data, algorithms and domain expertise can the full
potential of Al in scientific research be unleashed, accelerating
the discovery of fundamental materials laws and driving rapid
breakthroughs in critical technological fields.
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